Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LOW-COST SUPERIOR PERFORMANCE COINLESS RF POWER AMPLIFIER
Document Type and Number:
WIPO Patent Application WO/2016/207764
Kind Code:
A1
Abstract:
Power amplifier assemblies and components are disclosed. According to some embodiments, a power amplifier assembly (10) is provided that includes a power amplifier (12) having a gate lead (14) with a gate contact surface, a drain lead (13) with a drain contact surface and a source contact surface (15) having a length and width. An extended heat slug (11) is mounted against the source contact surface to conduct heat away (18) from the surface and to extend the electrical path of the source. The extended heat slug has at least a length that is greater than the length of the source contact surface.

Inventors:
SIMPSON REGINALD (CA)
NEHRING RONALD (CA)
ROUABHI MOKHTAR (CA)
Application Number:
PCT/IB2016/053590
Publication Date:
December 29, 2016
Filing Date:
June 16, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ERICSSON TELEFON AB L M (PUBL) (SE)
SIMPSON REGINALD (CA)
NEHRING RONALD (CA)
ROUABHI MOKHTAR (CA)
International Classes:
H05K3/32; H01L23/66; H05K1/02; H05K3/34
Foreign References:
US5877555A1999-03-02
US3609480A1971-09-28
DE1914442A11971-01-14
US7446411B22008-11-04
US201562182987P2015-06-22
Attorney, Agent or Firm:
FORTIN, Jean-Pierre et al. (349 Terry Fox DriveKanata, Ontario K2K 2V6, CA)
Download PDF:
Claims:
We Claim:

1. A power amplifier assembly, comprising:

a power amplifier having a gate lead with a gate contact surface, a drain lead with a drain contact surface and a source contact surface, the source contact surface having a length and width; and

an extended heat slug mounted against the source contact surface to conduct heat away from the surface and to extend the electrical path of said source, the extended heat slug having at least a length that is greater than the length of the source contact surface.

2. The power amplifier assembly of claim 1, wherein the extended heat slug has a width that is substantially greater than the width of the source contact surface.

3. The power amplifier assembly of claim 2, wherein the extended heat slug has a length that is substantially greater than the length of the source contact surface.

4. The power amplifier assembly of claim 3, wherein a portion of the heat slug which extends beyond the width and length of said source contact surface forms with said gate and drain lead contact surfaces, a space for receiving an Radio Frequency (RF) Printed Circuit Board (PCB).

5. The power amplifier assembly of claim 4, wherein said space is of a width equivalent to the thickness of said RF PCB.

6. The power amplifier assembly of claim 4, wherein the extended heat slug is affixed to a casting without an intervening coin.

7. The power amplifier assembly of claim 5, wherein an electrical path is made between the power amplifier assembly and the RF PCB when said gate contact surface, drain contact surface and said extended heat slug mate with predetermined contact regions of the RF printed circuit board.

8. The power amplifier assembly of claim 7, wherein said gate and drain contact surfaces are underneath said gate and drain leads and said source contact surface is extended as said heat slug extends beyond the width and length of said source contact surface.

9. The power amplifier assembly of claim 7, wherein said contact regions comprise upper and lower contact surfaces of said RF PCB.

10. The power amplifier assembly of claim 8, wherein said electrical contact between said power amplifier assembly and said RF printed circuit board is made when said RF PCB is sandwiched between said drain and gate contact surfaces and said extended heat slug.

11. The power amplifier assembly of claim 1, wherein the heat slug includes a slot.

12. The power amplifier assembly of claim 11, wherein the slot is U-shaped.

13. The power amplifier assembly of claim 1, wherein the heat slug has a plurality of layers, with at least one layer being Cu and another layer being CuMo.

14. The power amplifier assembly of claim 1, wherein there are two Cu layers, and the CuMo layer is sandwiched between the two Cu layers.

15. The power amplifier assembly of claim 10, wherein the electrical and thermal contact configurations are orthogonal in both a horizontal and a vertical axis of the extended heat slug.

16. A power amplifier assembly, comprising:

a power amplifier having a housing, a gate lead with a gate contact surface extending away from a first end of said housing, a drain lead with a drain contact surface extending away from a second end of said housing opposite said first end and a source contact surface under said housing, the source contact surface having a length and width; and

an extended heat slug mounted against the source contact surface to conduct heat away from the source contact surface and to extend the electrical path of said source, the extended heat slug having at least a length that is greater than the length of the source contact surface.

17. The power amplifier assembly of claim 16, wherein the extended heat slug has a width that is substantially greater than the width of the source contact surface.

18. The power amplifier assembly of claim 17, wherein a portion of the heat slug which extends beyond the width and length of said source contact surface forms with said gate and drain lead contact surfaces, a space for receiving an Radio Frequency (RF) Printed Circuit Board (PCB).

19. The power amplifier assembly of claim 18, wherein said space is equivalent to the thickness of said RF PCB.

20. The power amplifier assembly of claim 18, wherein the extended heat slug is affixed to a casting without an intervening coin.

21. The power amplifier assembly of claim 18, wherein a portion of said housing extending between said gate contact surface, drain contact surface and source contact surface is circular.

22. A method for manufacturing a power amplifier assembly, the method comprising:

adhering a source surface of a power amplifier to an extended heat slug having a dimension greater than the source surface; and affixing the extended heat slug to a housing of said power amplifier assembly.

23. An extended heat slug for use with a power amplifier, PA, die, and a printed circuit board, PCB, the extended heat slug comprising:

one of a clad and a composite material, the one of the clad and the composite material configured to match the thermal expansion of the PA die and to provide electrical and thermal conductivity;

a top configured to electrically connect to a radio frequency ground on the PCB; and

a bottom configured to thermally connect to a casting without an intervening coin.

24. The extended heat slug of claim 23, wherein the electrical and thermal contact configurations are orthogonal in both a horizontal and a vertical axis of the extended heat slug.

Description:
LOW-COST SUPERIOR PERFORMANCE COINLESS RF POWER

AMPLIFIER TECHNICAL FIELD

[0001] The present disclosure relates to power amplifiers and, in particular, mounting of power amplifiers.

BACKGROUND

[0002] RF and other High Frequency (HF) Power amplifiers (PA) are a type of semiconductor amplifier used to convert a low-power RF signal into a larger RF signal of significant power, typically for driving the antenna of a transmitter. A PA consists of one or more power transistors mounted inside a semiconductor package to form a PA module. In the present description, the PA module will simply be referred to as a PA. PA transistors increase the power of an output signal (drain) by taking energy from a power supply (source) and controlling the output to match the input signal shape (gate), but with larger amplitude. PA output power ranges from under one watt up to several hundred watts. Methods are used to integrate local heat removal systems such as bonding cooling elements to HF circuit boards. Such local heat removal systems are found in the form of metal coins which are often made of copper. Metal coins can remove heat quickly from the components but result in more complex PCB manufacturing processes.

[0003] PA efficiency is a measure of its ability to convert the power supplied into the output signal power delivered to the antenna. Power that is not converted to useful output signal is dissipated as heat. Typical PA performance factors include; output power, gain, linearity, stability, voltage bias, power efficiency and ruggedness. Performance of PA solutions are largely determined by; (1) the quality of the electrical connection to the source, (2) the repeatability of the drain side electrical impedance and (3) the ability to efficiently dissipate large quantities of heat created by the PA.

[0004] FIGS. 1 and 2 show a perspective view and a top view, respectively, of a power amplifier module 4. A typical PA module has a drain 1, a gate 2 and a source connection. The source has an electrical connection through the bottom side of the heat slug and a thermal path 3 is between the base of the PA module 4 through the bottom side of heat slug 5. The heat slug 5 is a clad or composite metal material to match thermal expansion and to improve thermal/electrical conductivity to the PA

semiconductor die. [0005] FIG. 3 shows a sectional view of a known power amplifier 4 mounted on a PCB and utilizing bottom side thermal cooling 9a and electrical connection 9b.

[0006] Current PA solutions utilize bottom side electrical and thermal connections through a custom built printed circuit board (PCB). Metal coins (coins) 6a are machined and embedded or attached into the PCB 8a and 8 b. The bottom side of the PA heat slug 5 is physically attached to the coin 6a in the PCB using a paste (not shown).

[0007] The interior section of the PA module 4 is not shown for clarity but consists of a ceramic air cavity package with a clad metal Cu/CuMo/Cu heat slug 5. The power transistor and input/output capacitors are die bonded directly onto the heat slug and wire bonded to make electrical connections. The PCB consists of two segments: (1) RF PCBs 7a and 7b which carries RF signals and (2) non-RF PCBs 8a and 8b. Routed cavities and cavity wall plating is used. RF PCBs are typically two layer micro strip designs fabricated with RF material and with the RF GND on the bottom side.

[0008] FIG. 4 is a substance field diagram of a known design, showing that the coin is used for both electrical and thermal conductivity. Current PA solutions are inadequate because of cost, yield and reliability issues. Coins complicate PCB manufacturing with added or repeated process steps necessary for coin fabrication and for creating the cavity plating for RF connection to the PCB ground planes. Added or repeated process steps increase PCB manufacturing cost, lengthen the PCB manufacturing cycle time and impact new product time to market (TTM) for frequency band variants. Furthermore the quality of electrical connections is not ideal. Manufacturing variation in PA placement and the quality of PA attachment to the coin alters PA performance, thereby negatively impacting manufacturing yields.

[0009] Current PA solutions suffer from a technical contradiction; if PCB coins are used then adequate PA performance is achieved but PCB manufacturing is difficult, lengthy and costly. If PCB coins are not used then PCB manufacturing is standard, quick and cost effective but PA performance is inadequate.

SUMMARY

Some embodiments include a power amplifier assembly. According to some embodiments, a power amplifier assembly is provided that includes a power amplifier and an extended heat slug. The power amplifier has a gate lead with a gate contact surface, a drain lead with a drain contact surface and a source contact surface, the source contact surface has a length and width. The power amplifier has an extended heat slug mounted against the source contact surface to conduct heat away from the surface and to extend the electrical path of the source, the extended heat slug has at least a length that is greater than the length of the source contact surface.

[0010] According to this aspect, in some embodiments, the extended heat slug has a width that is substantially greater than the width of the surface. In some embodiments, a portion of the heat slug which extends beyond the width and length of the source contact surface forms with the gate and drain lead contact surfaces, a space for receiving an Radio Frequency (RF) Printed Circuit Board (PCB).

[0011] In some embodiments, the extended heat slug is affixed to a die without an intervening coin. In some embodiments, the heat slug includes a slot. In some of these embodiments, the slot is U-shaped. In some embodiments, the heat slug has a plurality of layers, with at least one layer being Cu and another layer being CuMo. In some embodiments, there are two Cu layers, and the CuMo layer is sandwiched between the two Cu layers.

[0012] In some embodiments, electrical contact between the power amplifier assembly and the RF PCB is made when the RF PCB is sandwiched between the drain and gate contact surfaces and the extended heat slug. In some embodiments, the electrical and thermal contact configurations are orthogonal in both a horizontal and a vertical axis of the extended heat slug. In some embodiments, an electrical path is made between the power amplifier assembly and the RF PCB when the gate contact surface, drain contact surface and the extended heat slug mate with predetermined contact regions of the RF printed circuit board. In some embodiments, the contact regions comprise upper and lower contact surfaces of the RF PCB.

[0013] According to another aspect, some embodiments include a power amplifier assembly. In some embodiments, the power amplifier has a housing, a gate lead with a gate contact surface extending away from a first end of said housing, a drain lead with a drain contact surface extending away from a second end of the housing opposite the first end and a source contact surface under the housing, the source contact surface having a length and width. In some embodiments, the power amplifier assembly has an extended heat slug mounted against the source contact surface to conduct heat away from the source contact surface and to extend the electrical path of the source, the extended heat slug has at least a length that is greater than the length of the source contact surface.

[0014] According to another aspect, some embodiments include a method for manufacturing a power amplifier assembly. In some embodiments, a method includes adhering a source surface of a power amplifier to an extended heat slug having a dimension greater than the source surface; and affixing the extended heat slug to a housing of the power amplifier assembly.

[0015] According to another aspect, some embodiments include an extended heat slug for use with a power amplifier, PA, die, and a printed circuit board, PCB, in which the extended heat slug is one of a clad and a composite material. The one of the clad and the composite material are configured to match the thermal expansion of the PA die and to provide electrical and thermal conductivity. A top is configured to electrically connect to a radio frequency ground on the PCB. A bottom is configured to thermally connect to a metal housing. In accordance with another aspect, the electrical and thermal connection configurations are orthogonal in both a horizontal and a vertical axis of the extended heat slug.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] A more complete understanding of the present embodiments, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:

[0017] FIG. 1 is a perspective view of a known power amplifier module; [0018] FIG. 2 is a top view of a known power amplifier module; [0019] FIG cross sectional view of a known power amplifier assembly;

[0020] FIG 4 is a substance field diagram of a known power amplifier assembly;

[0021] FIG 5 is a substance field diagram of a power amplifier assembly as described herein;

[0022] FIG 6 is another substance field diagram of a power amplifier assembly as described herein;

[0023] FIGS. 7a, 7b and 7c are top, side and end views of a power amplifier module with an extended heat slug as described herein;

[0024] FIG. 8 is a cross sectional view of a power amplifier assembly with an extended heat slug according to one embodiment;

[0025] FIG. 9 is a diagram of a top view of a power amplifier assembly with an extended heat slug according to the embodiment of FIG. 8; and

[0026] FIGs 10a, 10b and 10c are top, side and end views of a power amplifier module with an extended heat slug according to another embodiment.

DETAILED DESCRIPTION

[0027] Before describing in detail example embodiments that are in accordance with the present disclosure, it is noted that the embodiments reside primarily in combinations of apparatus components and processing steps related to a coinless RF power amplifier. Accordingly, the system and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. [0028] As used herein, relational terms, such as "first" and "second," "top" and

"bottom," and the like, may be used solely to distinguish one entity or element from another entity or element without necessarily requiring or implying any physical or logical relationship or order between such entities or elements

[0029] The present embodiments eliminate the PCB metal coin, which have up until now been used for local heat removal in HF board designs.

[0030] FIGS. 5 and 6 are substance field diagrams where no coins are used and further decomposition of present embodiments in which the heat slug is a Cu/CuMo/Cu clad material in which the CuMo is sandwiched between the two Cu layers. An electrical connection is made via the heat slug topside clad material, Cu, and can be directly connected to the PA source. Thermal contact or path is through the heat slug and directly to the casting of the radio which serves as a heat sink.

[0031] FIGS. 7a, 7b and 7c are top, side and end views of an RF power amplifier assembly 10 with extended heat slug 11 according to one embodiment. In this embodiment, the PA assembly 10 has a housing 12, a drain lead 13 on one end, a gate lead 14 on another end opposite the drain lead 13. The source and its contact surface 15 are located underneath the PA assembly housing 12. Similarly, the drain and gate contact surfaces are located underneath their respective leads 13a and 14a. These contact surfaces are adapted to mate with predetermined contact regions of a Radio Frequency (RF) Printed Circuit Board (PCB) not shown. As will be described further below, this embodiment makes use of a design modification to the heat dissipation and source current flow of the PA housing 12 to achieve superior electrical performance and provide a larger heat conductivity area, with reduced thermal resistance. In FIG. 7a, one design modification is to extend the PA heat slug 11 in length and width beyond the length and width of the PA housing 12. The extended PA heat slug 11 enables coin elimination and improves the quality/repeatability of the electrical connection. For example, extending the outward dimensions of the heat slug 11 by approximately 25% beyond the circumference of the PA housing 12 achieves superior heat flow. This extension not only provides a larger heat contact or dissipation area and superior electrical performance but since the extended surface area of the heat slug 11 is in contact with the source, the source contact area or surface 15 is also increased. Note that the size of the heat slug 11 and in particular, its length, width and thickness will vary according to the electrical and heat dissipation requirements of the PA and PCB designs. Similarly, the preferred size of the heat slug may vary according to manufacturing conditions or performance

requirements.

[0032] The heat slug 11 of the present PA assembly is designed to provide: (1) direct and ideal connection to the PA source contact surface, (2) improved drain side quality and repeatability of electrical impedance and (3) direct thermal attachment to the radio casting. The heat slug 1 lof the current configuration achieves improved PA performance at a greatly reduced cost compared to known solutions. When the heat slug 11 is mated against the source contact surface 15, it has the effect of transferring or extending the source contact surface 15, which is below the PA assembly to the upper surface 16 created with the extended heat slug 11. These changes eliminate the need for difficult, lengthy and costly coins in the PCB with a redesigned PA heat slug to provide an improved thermal path and electrical connection.

[0033] The extended heat slug 11 is made from clad or composite materials to match the thermal expansion to the encapsulated PA semiconductor die and housing 12 and provide electrical/thermal conductivity. The source 15 which would normally be below the PA assembly to connect to the heat slug and metal coin is instead provided at the upper surface of the extended head slug 11. As will be shown further, the electrical connection 17a and 17b to the radio frequency ground (RF G D) on the RF PCB (not shown) is made through the topside of the heat slug 11 with a larger contact area than current solutions. The thermal path 18 is made through the bottom side of the heat slug 11 with a reduced thermal resistance than current solutions. The electrical connections 17a, 17b and thermal path 18 are orthogonal in nature in both the horizontal and vertical axis avoiding competition for critical contact area.

[0034] The heat slug 11 in contact with the source 15 is a clad (or composite) metal material that makes direct connection to the power transistor(s) source through the PA 4 semiconductor die backside. U-slots 19 in the heat slug enable a mechanical attachment (bolted or equivalent) directly to the radio casting (not shown). A slide and mount or push and twist manufacturing technique is used to attach the PA assembly to the RF PCB(s). This is described in detail in applicant's co-pending US application 62/182,987. [0035] FIG. 8 is cross section of the PA assembly 10 mounted to a casting 20. The PA includes a ceramic ring (not shown) which helps control the vertical spacing between the drain lead 13, gate lead 14 and the extended heat slug and source 15. The ceramic ring thickness is closely matched to the thickness of RF PCB 22a, 22b. Although not shown in FIG. 8, the left and right RF PCB 22a, 22b, and PCB 23a, 23b can be a single PCB or multiple PCBs fabricated from different materials. The PCB may be split or slotted 24 (FIG. 9) to enable slide and mount manufacturing. Slide and mount manufacturing enable smaller RF PCB gaps on the drain and gate sides. It should be noted that although the drawing shows each part tightly adjoining or adjacent each other, an actual cross- section of a manufactured product would show a slight gap between the PCBs 22 and 23 and the PA housing 12 and heat slug 11 to permit manufacturing and assembly of the PA module and PCB. Mechanical tooling pins and fixtures (or simple pattern recognition) can be used to produce repeatable near-zero gaps on the critical drain side. As indicated above, the electrical connections 17a and 17b is made on the overlap between the RF PCB GND and the extended heat slug and the thermal path 18 is made directly through the heat slug to the casting 20. Overlap connection is soldered (or equivalent).

[0036] FIG. 9 is a top view of the PA assembly 10 in a PCB cavity (not shown) but formed by between the left and right PCBs 22a, 22b, 23a and 23b. The split or divider 24 is along the same axis as the U-Slots 19. Alternatives to U-Slots that achieve direct mechanical connection to the radio casting may be employed. The split PCB enables; (1) slide and mount manufacturing and (2) the use of separate right and left PCB materials to optimize performance and cost. Alternatively a slot enables; (1) slide and mount manufacturing and (2) the use of a single PCB. The split design enables the drain side RF PCB and the gate side RF PCB to be made from different materials.

[0037] FIGs. 10a, 10b and 10c are top, side and end views of an RF power amplifier assembly 30 with extended heat slug 31 according to another embodiment. In this embodiment, the PA assembly 30 also has a housing 32, a drain lead 33 on one end, a gate lead 34 on another end opposite the drain lead 33. The source and its contact surface 35 are located underneath the PA assembly housing 32. Similarly, the drain and gate contact surfaces are located underneath their respective leads 33a and 34a. These contact surfaces are adapted to mate with predetermined contact regions of a Radio Frequency (RF) Printed Circuit Board (PCB) not shown. In this embodiment, the portion of the housing 40 extending below the drain lead 33 and gate lead 34 is circular. The circular portion of the housing allows for a push and twist manufacturing in a PCB provided with a cavity which matches the shape and circumference of the upper surface of the PA housing 32, drain lead 33 and gate 34 such that when the PA assembly 30 is pushed up through the PCB cavity, the PA assembly can then be twisted or rotated such that the drain lead 33, gate lead 34 and source contact surface 35 on the heat slug 31 can make electrical contact with matching regions of the RF PCB (not shown).

[0038] Embodiments eliminate the need for difficult, lengthy and costly manufacturing of coins into the PCB by re-purposing the PA heat slug to provide an improved thermal path and electrical connection. This is realized by; (1) a design modification to extend the length and width of the current PA heat slug and (2) a design modification to PCB to enable slide and mount manufacturing of the PA assembly 20 or the push and twist or rotate of the PA assembly 30.

Advantages of the embodiments described herein include:

• Greatly reduced cost over current solutions

• Superior electrical performance achieved with improved RF ground connection to the topside of the extended PA heat slug. Larger contact area and connection to the high conductivity heat slug Cu clad metal layer connected directly to the PA transistor die backside (source).

• Superior thermal performance. Coin elimination enables direct mechanically clamped thermal path to the casting. Result is reduced thermal resistance.

• Improved repeatability. Slide and mount manufacturing enables reduced drain side air gap. • Faster Time to Market (TTM) for frequency band variants. Coinless PCBs has fewer process steps and shortened PCB manufacturing cycle time. Cycle time reduction is >50% over current solutions.

• Flexibility. Gate and drain side RF PCBs can be constructed with different materials types to improve performance or reduce costs.

[0039] It will be appreciated by persons skilled in the art that the present embodiments are not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings.