Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METAL OXIDE pH SENSOR
Document Type and Number:
WIPO Patent Application WO/2016/033632
Kind Code:
A1
Abstract:
A pH sensor comprising a metal oxide-polymer composite, comprising: a continuous polymer resin matrix; and a solid particulate component dispersed in the polymer resin matrix comprising (i) metal oxides and (ii) a particulate carbon-based conductor wherein the metal oxides comprise Ta2O5 and RuO2 in a weight ratio of Ta2O5 : RuO2 (on the basis of weight of metal component) in the range of from 90:10 to 10:90.

Inventors:
CHEN MIAO (AU)
VEPSALAINEN MIKKO (AU)
Application Number:
PCT/AU2015/000521
Publication Date:
March 10, 2016
Filing Date:
August 28, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COMMW SCIENT IND RES ORG (AU)
International Classes:
G01N27/416; C01G35/00; C01G55/00; C08K3/04; C08K3/22; C25B11/12; G01N27/30
Foreign References:
CN103310994A2013-09-18
Other References:
SALAZAR-BANDA, G. ET AL.: "The influence of different co-catalysts in PT -based ternary and quaternary electro-catalysts on the electro-oxidation of methanol and ethanol in acid media", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 668, 2012, pages 13 - 25, XP028463130, DOI: doi:10.1016/j.jelechem.2012.01.006
QUAN, H. ET AL.: "Surface Renewable Hydrogen Ion-Selective Polymeric Composite Electrode Containing Iridium Oxide", BULL. KOREAN CHEM. SOC., vol. 26, no. 10, 2005, pages 1565 - 1568, XP055318100
RIBEIRO, J. ET AL.: "Morphological and electrochemical investigation of RuO2-Ta2O5 oxide films prepared by the Pechini-Adams method", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 38, 2008, pages 767 - 775, XP019606235
See also references of EP 3189327A4
Attorney, Agent or Firm:
PHILLIPS ORMONDE FITZPATRICK (333 Collins StreetMelbourne, Victoria 3000, AU)
Download PDF:
Claims:
Claims

1 . A pH sensor comprising a metal oxide-polymer composite, comprising: a continuous polymer resin matrix; and a solid particulate component dispersed in the polymer resin matrix comprising (i) metal oxides and (ii) a particulate carbon-based conductor wherein the metal oxides comprise Ta2Os and Ru02 in a weight ratio of Ta2Os : Ru02 (on the basis of weight of metal component) in the range of from 90:10 to 10:90.

2. A pH sensor according to claim 1 wherein the composite comprises a weight ratio Ta205 : Ru02 (on the basis of weight of the metal component is in the range of from 70:30 to 30:70.

3. A pH sensor according to claim 1 or claim 2, wherein the metal oxide

component of the composite comprises in the range of from 20% to 80% by weight of the total particulate solids comprising metal oxides and particulate conductor in the composite and the particulate conductor comprises from 20 to 80% by weight of the total particulate solids comprising metal oxides and particulate conductor.

4. A pH sensor according to any one of the previous claims, wherein the

particulate component comprising the metal oxides and particulate carbon- based conductor constitutes at least 40% by weight of the composite

composition.

5. A pH sensor according to any one of the previous claims wherein the

particulate component comprises in the range of from 60% to 80% by weight of the composite.

6. A pH sensor according to any one of the previous claims, wherein the

particulate conductor is a particulate carbon-based conductor selected from particulate carbon, graphite, fullerenes and carbon fibre.

7. A pH sensor according to any one of the previous claims, wherein Ta2Os and Ru02 constitute at least 80% by weight of the total metal oxide content of the composite.

8. A pH sensor according to any one of the previous claims, wherein the metal oxide component of the composite comprises further metal oxides in an amount of up to 20% by weight of the metal oxide component.

9. A pH sensor according to claim 8, wherein the metal oxide component further comprises one or more metal compounds selected from the group consisting of Pt02, Ir02, Ti02, Er203, Zr02, Si3N4, Al203, Rh02, Sn02, La203 and Li20.

10. A pH sensor according to any one of the previous claims, wherein the

particulate conductor is selected from the group consisting of particulate carbon and particulate graphite.

1 1 . A pH sensor according to any one of the previous claims, wherein the

particulate metal oxide is of particle size less than 100 microns.

12. A pH sensor according to any one of the previous claims, wherein the polymer matrix is selected from the group consisting of, polystyrene, polyurethane, polyethylene, acrylates, methacrylates, vinyl resins, vinyl ester resin, phenol resin, epoxy resin and mixtures thereof.

13. A pH sensor according to any one of the previous claims wherein the metal oxide-polymer composite comprises: a polymer matrix in an amount of at least 15 % by weight of the composite composition and dispersed in the matrix a mixture of particulate materials comprising:

(i) particulate Ta2Os in an amount of at least 5% by weight

(determined as Ta) of the composite composition;

(ii) particulate Ru02 in an amount of at least 5% by weight

(determined as Ru) of the composite composition; and (iii) particulate graphite in an amount of at least 5% by weight of the composition; and optionally

(iv) up to 5% by weight of other metal oxides selected from the group consisting of Pt02, Ir02, Ti02, Er203, Zr02, Si3N4! Al203 and mixtures thereof.

14. A method of preparing a pH sensor comprising a metal oxide-polymer

composite according to any one of the previous claims, the method comprising dispersing a solid particulate component comprising metal oxides and carbon- based conductor in a hardenable liquid resin and hardening the liquid resin to form the polymer resin matrix with dispersed solid particulate component wherein the metal oxides comprises Ta205 and Ru02 in a weight ration of Ta205 : Ru02 in the range of from 90:10 to 10:90.

15. A method of preparing a pH sensor according to claim 14, wherein the polymer resin is an epoxy resin.

A pH sensor according to any one of claims 1 to 13 further comprising a substrate to which the metal oxide-polymer composite has been applied.

17. A method of preparing a pH sensor according to claim 14 or claim 15 wherein the hardenable liquid resin comprising the dispersed solid particulate

component is applied to a substrate by printing and hardened on the substrate.

Description:
Metal Oxide pH Sensor

Field

[1] The invention relates to a pH sensor comprising a metal oxide-polymer

composite. The composite comprises metal oxide particles, specifically Ta 2 Os and R11O2, and carbon-based conducting particles dispersed in a polymer matrix.

Background

[2] pH is one of the most important chemical parameters for monitoring chemical and biological processes. It is commonly used, for example, in the food industry, minerals processing, bioprocessing and environment monitoring. pH is commonly measured by using glass pH electrodes. Glass pH electrodes have good sensitivity and stability. However, they suffer from a number of serious

disadvantages, such as high impedance, mechanical fragility, instability in very acidic solutions and high temperatures, slow response and vulnerability to membrane fouling. For applications where the volume of solution is restricted, glass electrodes are not suitable due to the difficulties in miniaturization.

[3] As a result, non-glass pH sensors, especially solid-state pH sensors using metal oxides, began to draw considerable attention, because they are robust and less sensitive to cation interference. Fog et al., Sensors and Actuators, 1984, 5, 137- 146) describe metal oxide films formed on the surface of precious metal electrodes and their use in measuring hydrogen ion concentration. Electrode potentials due to the oxidation-reduction reaction of the metal oxides are dependent on the hydrogen ion concentration. The useful metal oxides include Ti0 2 , Ru0 2 , Rh0 2 , Sn0 2 , Ta 2 0 5 , Os0 2 , Pd0 2 , Pt0 2 , Ir0 2 , and the like. The hydrogen ion selective electrodes using metal oxides are mostly based on the fact that the potentials due to the reversible oxidation-reduction reactions of the metal oxides are dependent on the hydrogen ion concentration. These metal/metal oxide electrodes exhibit a Nernstian or near-Nernstian response to pH. However, there are also several drawback compared to glass pH electrodes. Most significant ones are (i) interference caused by halogen anions, redox active species and complexing agents, (ii) drift and (iii) hysteresis. [4] Quan et al.,Bull. Korean Chem. Soc. 2005, 26, 1565-1568) describes iridium oxide/carbon-polymer composite hydrogen ion electrodes. These composite electrodes are said to have an advantage in that they are composed of polymer materials and carbon black particles or graphite particles, which are conductors, and uniformly include iridium oxide particles, exhibiting selective sensitivity to hydrogen ion. The electrodes have hydrogen ion selectivity and physical stability due to the mechanical strength of the polymers, thereby easily obtaining a renewable electrode surface through a simple polishing process, whenever the electrodes are inactivated or contaminated.

[5] Iridium oxide/carbon-polymer composite pH electrodes have problems in that, although the electrodes have improved physical stability and surface renewability compared to conventional glass electrodes or polymer film electrodes, the manufacturing method of the electrode is complicated, the pH dependency of the electrodes varies greatly depending on the electrodes, and hysteresis occurs during repeated use of the electrodes. US Patent 8,486,238 addresses the problems of the Quan et al. composite electrode by providing an iridium oxide glass or ceramic composite electrode which formed by sintering at a temperature of preferably 600°C to 800°C for 3 to 5 hours.

[6] Miao et al., Sensors and Actuators B, 192 (2014)399-405 disclose a tantalum pentoxide based electrolyte-ion sensitive membrane-oxide-semiconductor (ElOS) pH sensor and studies possible interference from a range of metal ions in acid solutions.

[7] The discussion of the background to the invention herein is included to explain the context of the invention. This is not to be taken as an admission that any of the material referred to was published, known or part of the common general knowledge as at the priority date of any of the claims.

Summary

[8] We provide a pH sensor comprising a metal oxide-polymer composite,

comprising: a continuous polymer resin matrix; and a solid particulate component dispersed in the polymer resin matrix comprising (i) metal oxides and (ii) a particulate carbon-based conductor wherein the metal oxides comprise Ta 2 0s and RUO2 in a weight ratio of Ta 2 0 5 : RUO2 (on the basis of weight of metal component) in the range of from 90:10 to 10:90, preferably from 80:20 to 20:80 and more preferably from 70:30 to 30:70.

[9] In one embodiment the metal oxide-polymer composite comprises: a polymer matrix in an amount of y weight of the composite composition and dispersed in the matrix a mixture of particulate materials comprising: particulate Ta 2 0s in an amount of at least 5% by weight (determined as Ta) of the composite composition; particulate RUO2 in an amount of at least 5% by weight (determined as Ta) of the composite composition; and particulate graphite in an amount of at least 5% by weight of the composition; and optionally up to 5% by weight of other metal oxides selected from the group consisting of Pt02, Ir02, T1O2, Zr02, Si3N 4 , AI 2 Os and mixtures thereof.

[10] In a further set of embodiments there is provided a method of preparing a pH sensor comprising a metal oxide-polymer composite, the method comprising dispersing a solid particulate component comprising metal oxides and carbon- based conductor in a hardenable liquid resin and causing the liquid resin to harden wherein the metal oxides comprises Ta 2 0s and RUO2 in a weight ration of Ta 2 0 5 : Ru0 2 in the range of from 90:10 to 10:90, preferably from 80:20 to 20:80 and more preferably from 70:30 to 30:70.

[1 1] In a further set of embodiments there is provided a pH sensor comprising a metal oxide-polymer composite as hereinbefore described and a metallic conductor in electrical communication with the metal oxide-polymer composite. Brief Description of Drawings

[12] Embodiments of the invention are described with reference to the attached

drawings. In the drawings:

[13] Figure 1 is a schematic cross section of a mixed metal oxide-polymer composite mounted on a wire and disposed within a ceramic tube to form a working pH sensor in accordance with an embodiment of the invention.

[14] Figure 2 is a schematic cross section of a pH sensor comprising a mixed metal oxide-polymer composite in accordance with an embodiment of the invention.

[15] Figure 3 is a schematic cross section of an pH sensor comprising a mixed metal oxide-polymer composite coating a conductive needle or fibre. The sensor of Figure 3 may be used as a pH sensor of a biological sample in accordance with Figure 4b showing the schematic representation of the pH sensor as an implant in a biological sample.

[16] Figure 4 is a graph comparing the slope of the mixed metal oxide composite pH sensor of an embodiment of single metal oxide sensors not of the invention referred to in the Example 5.

[17] Figure 5 is a graph showing the Intercept point of the calibration of the mixed metal oxide composite pH sensor of an embodiment and single metal oxide pH sensors not of the invention as referred to in the Examples.

Detailed Description

[18]The pH sensor comprises a metal oxide-polymer composite. The metal oxide- polymer composite comprises Ru0 2 and Ta 2 Os, and optionally also other metal oxides with a particulate carbon-based conductor dispersed in a polymer matrix. We have found that the pH sensing characteristics of the composite provide fast response times, are not sensitive to common cations and allow the use of economical fabrication methods. The composite also allows formation of miniature pH sensors and their use in a wide range of environments including industrial minerals processing, food processing, environmental monitoring and in biological systems. [19]The metal oxide component of the metal oxide-polymer composite includes Ru0 2 and Ta 2 05 in a weight ratio of Ta 2 Os : Ru0 2 (based on metal component in the oxides) in the range of from 90:10 to 10:90, preferably from 80:20 to 20:80 and more preferably from 70:30 to 30:70. This presence of the Ru0 2 and Ta 2 0 5 metal oxide particularly in these ratios provides an improvement in the sensitivity and resistance to interfering ion species which was not expected from the contribution of the respective metal oxides.

[20]The metal oxide component of the metal oxide-polymer composite may include other metal oxides however in one set of embodiments it is generally preferred that the total of the Ru0 2 and Ta 2 Os content constitute at least 70% by weight, preferably at least 80% by weight and most preferably at least 90% by weight of the total metal oxide content of the composite.

[21]The metal oxide component of the composite may thus comprise further metal compounds such as one or more selected from the group consisting of Pt0 2 , Ir0 2 , Ti0 2 , Er 2 0 3 , Zr0 2 , Si 3 N 4 , Al 2 0 3 , Rh0 2 , Sn0 2 , La 2 0 3 and Li 2 0.

[22] The total amount of the metal oxides in addition to Ru0 2 and Ta 2 Os is preferably in an amount of no more than 20% by weight, preferably from 5% to 20% of the total metal oxide component including Ru0 2 and Ta 2 Os.

[23] The amount of Ta 2 Os based on the total composite weight will depend on the

sensitivity required, the ratio of Ru0 2 : Ta 2 Os and nature and amount of other components such as the polymer and carbon based conductor. The particle size of the metal oxides may also have a bearing on the amount used. In one set of embodiments the amount of Ta 2 Os (determined as Ta metal component) is at least 1 % by weight of the composite composition, preferably at least 5% by weight. In certain embodiments the Ta 2 Os content (based on Ta metal

component) is in the range of from 1 % to 25% by weight of the composite composition and more preferably in the range of from 5% to 25% such as 5% to 20% or 5% to 15% by weight of the composite composition.

[24]The amount of Ru0 2 based on the total composite weight will depend on the

sensitivity required, the ratio of Ru0 2 : Ta 2 Os and nature and amount of other components such as the polymer, carbon based conductor and any other metal oxides. The particle size of the metal oxides may also have a bearing on the amount used. In one set of embodiments the amount of RUO2 (determined as Ru metal component) is at least 1 % by weight of the composite composition, preferably at least 5% by weight. In certain embodiments the Ru0 2 content (based on Ru metal component) is in the range of from 1 % to 25% by weight of the composite composition and more preferably in the range of from 5% to 25% such as 5% to 20% or 5% to 15% by weight of the composite.

[25] The particle size of the metal oxide has a bearing on the sensitivity and

performance of the composite in monitoring pH. The optimum particle size may depend on the carbon-conductor content and the concentration of the

components. In one set of embodiments the average particle size is less than 100 microns. We have found that particularly good results are generally achieved where the average particle size is less than 10 microns and particularly less than 5 microns. The value of using particles of particularly small size may be reduced by the cost of obtaining such particles. In one set of embodiments the particles are more than 20 nanometres, such as more than 50 nanometres or more than 100 nanometres in average size.

[26] The solid particulate component dispersed in the polymer resin matrix comprises a carbon based conductor.

[27] In one set of embodiments, the particulate component comprising the metal oxides and particulate carbon-based conductor constitute at least 40% by weight of the composite composition, preferably from 60% to 80% by weight of the composite composition.

[28] The particulate carbon based conductor may be selected from a wide range of known carbon based conductors. Carbon based conductors may, for example, be selected from particulate carbon, graphite, fullerenes and carbon fibre.

[29] The carbon based conductor may have a range of different morphologies

depending on the nature and chemical structure of the carbon based conductor. The particulate carbon based conductor may comprise spherical particles, platelets, rods, fibres or combinations thereof and hence the particles may have non-uniform dimensions. In one set of embodiments the particle size is less than 100 microns such as less than 10 microns or less than 5 microns. In another embodiment the particles are elongated and of up to 1 mm in length such as up to 500 mm. The carbon-based conductor particles may, in the case of fibres, have a range of aspect ratios (maximum/minimum dimensions) such as aspect ratio of 1 .5:1 to 20:1 .

[30] The more preferred carbon based conductor is selected from the group consisting of particulate carbon and particulate graphite.

[31] In one set of embodiment the carbon based conductor comprises in the range of from 10 % to 70 % by weight of the composite composition and preferable in the range of from 15 % to 60 % by weight of the composite composition.

[32]The particulate component including the metal oxides and carbon based

conductor are dispersed in a polymer resin matrix.

[33] The polymer matrix may be selected from a wide range of suitable resins. The resin will generally be resistant to a range of pH conditions. Suitable polymer resins may be selected from the group consisting of, polystyrene, polyurethane, polyolefins (such as polyethylene, polypropylene and polyolefin blends), acrylates, methacrylates, vinyl resins, vinyl ester resin, phenol resin, epoxy resin and mixtures thereof.

[34] In one set of preferred embodiments the pH sensor comprises a metal oxide- polymer composite which comprises: a polymer matrix in an amount of at least 15 % by weight of the composite composition and dispersed in the matrix a mixture of particulate materials comprising:

(i) particulate Ta 2 Os in an amount of at least 5% by weight

(determined as Ta) of the composite composition;

(ii) particulate Ru0 2 in an amount of at least 5% by weight

(determined as Ta) of the composite composition; and

(iii) particulate graphite in an amount of at least 5% by weight of the composition; and optionally (iv) up to 5% by weight of other metal oxides selected from the group consisting of PtO 2 , Ir0 2 , TiO 2 , Er 2 O 3 , ZrO 2 , Si 3 N 4 , AI 2 O 3 and mixtures thereof.

[35] In a preferred set of embodiments the composite comprises: a polymer matrix in an amount of from 15% to 60% (more preferably 20% to 50%) by weight of the composite composition and dispersed in the matrix a mixture of particulate materials comprising:

(i) Ta 2 O5 in an amount (based on Ta metal component) of from 5% to 25% such as 5% to 20% or 5% to 15% by weight of the composite;

(ii) RuO 2 in an amount (based on Ru metal component) in the range of from 5% to 25% such as 5% to 20% or 5% to 15% by weight of the composite;

(iii) carbon based conductor in an amount in the range of from 10 % to 70 % by weight of the composite composition and preferable in the range of from 15 % to 60 % by weight of the composite composition; and

(iv) 0% to 5% by weight of other metal oxides selected from the group consisting of PtO2, lrO2, ΤΊΟ2, Er2O3, ZrO2, Si3N4, AI2O3 and mixtures thereof.

[36] In a further set of embodiments there is provided a pH sensor comprising the composite as hereinbefore described provided on a conductive substrate for connection to a circuit for measuring potential change attributable to pH change. The conductive substrate may be a metal wire, rod, fibre, strip sheet or the like and the composite of the invention lends itself to being used in a range of applications and structures. The circuit may include a reference electrode of well known type.

[37] One of the advantages of the composite for use as a pH sensor is that it may be formed in a wide range of shapes and forms to provide pH sensors designed for specific applications.

[38]The metal oxide-polymer composite may be formed using a liquid resin which allows the particulate materials to be dispersed in the liquid resin and the liquid resin transformed to a hardened state. This allows the composite to be incorporated into a moulded structure, applied as a coating to a suitable substrate or printed onto a suitable substrate. Suitable substrates may be conductive such as metals which may form part of a signal processing circuit. Alternatively, the substrate may simply provide a support for the composite and be conducting or non-conducting with a separate conducting connection being provided to the composite for signal processing.

[39] In one embodiment the polymer resin is a thermoplastic and the particulate

materials are incorporated into the resin matrix while the resin is in a thermally induced plastic state. For example the polymer resin of thermoplastic type may be plasticised and blended in the plasticised state with the particulate materials, In a further example a thermoplastic polymer in particulate form may be mixed with the particulate metal oxide and carbon based conductor and moulded with application of heat to fuse the resin with the particulate metal oxide and carbon based conductor dispersed therein. The resins prepared by thermal processing can include, but not be limited to, such resin materials as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethers and polyvinylidene fluoride.

[40] In another set of embodiments the polymer resin and particulate material is

dispersed in a suitable liquid medium and a solid composite is produced by co- deposition or removal of the solvent. For example PVC may be dispersed in a solvent, such as DMF, allowing co-dispersion of the particulate materials and the composite produced by separation of the composite from the solvent (for example by addition of water where the solvent is DMF).

[41 ] In another embodiment the liquid resin is a liquid polymerisable composition

which can be hardened by polymerisation to form the polymer resin. The precursor may comprise one or more monomers or prepolymers in which the particulate materials are dispersed prior to curing to form the polymer resin matrix. Curing may be carried out by a wide range of polymerisation processes known in the art for forming different polymers such as thermosets,

polymerisation catalysts, UV curable compositions and the like. The hardenable resin can be a phenol-formaldehyde resin, a phenol-furfural resin may for example be bisphenol epoxy resin, a halogenated bisphenol epoxy resin, a peracteic acid oxidized polyolefin epoxy resin, a methyacrylate resin, an acrylate resin, epoxy resin or any combination thereof.

[42] In one embodiment the polymer resin is formed from a hardenable liquid resin and a hardening catalyst, these components preferably being stored separately until the resin is required to set hard. When the components are mixed the resin hardens by a process of cross-linking and/or polymerisation. The liquid resin and hardening catalyst may be mixed together before mixing with the particulate material or mixing with the liquid resin and particulates to be carried out prior to addition of the hardening catalyst. The appropriate order of mixing may depend on the speed of hardening with the chosen components and reaction conditions. One preferred example is a liquid epoxy resin and amine based hardening catalyst.

[43] The pH sensor may comprise the composite formed about a substrate or as a coating or printed structure on a substrate. In one set of embodiments the resin is applied in liquid form to a substrate such as a wire, rod, fiber, sheet or the like and hardened. The liquid resin may be applied to a surface by coating or by printing and hardened to form the polymer resin matrix.

[44] We have found that pH sensors of mixed Ta 2 Os and RuO 2 metal oxides with

graphite powders and polymer resin to form metal oxide composites show linear Nernstian response between pH 1 - 12 with the slope of 40-60 mV/pH unit.

[45] The pH sensor shows robust resistance to acid, high temperature and pressure making it suitable for use in a wide range of applications in the food processing, industrial chemistry, research and minerals processing in which conventional pH electrodes are not able to operate. The sensor may also be produced at a relatively low cost compared with conventional electrodes. A significant advantage of the pH sensor is in the ability to vary the dimensions, shape and supporting substrate used in fabrication of the pH sensor. The composite may be moulded to a variety of shapes or can be applied by a wide range of coating and printing techniques making the technology much more amenable to different uses and applications. [46] There is also a very significant improvement from reduced interference in the pH sensor compared with similar metal oxide based pH sensors. Indeed, the presence of both ruthenium and tantalum oxides in the required ratio significantly reduces interference from ions commonly present in environments where pH monitoring is required.

[47] Examples of pH sensors will be described with reference to the attached

drawings.

[48] Figure 1 shows a simple pH working sensor (100) in accordance with an

embodiment of the invention which comprises a pH sensing composite in accordance with the invention (1 10) which is connected at a connection point (120) to a wire (130) for connection to a circuit for measuring potential change attributable to pH change. The pH sensor may further comprise a protector (140) for protecting the composite and connection (120). The protector (140) may be formed of a suitable plastics material.

[49] Figure 2 shows a pH sensor (200) in accordance with a further embodiment of the invention which is adapted for use in the corrosive environment such as an acid leach mineral recovery process. An electrode portion (210) is connected at connection point (220) to a wire (230) for connection to a circuit for measuring potential change attributable to pH change. The electrode (210) is formed of an elongate conductive metal substrate such as a metal rod or strip and which has a coating of pH sensing composite (250) in accordance with the invention at the operational end (260) remote from connection point (220). The pH sensor (300) is provided with a protector (270) in the form of a plastic shell extending about the composite coated portion (250) of the sensor and comprises a membrane (280) at the operational end (260) allowing ingress of liquid subject for pH determination for contact with the composite (250).

[50] Figure 3a and 3b show a pH sensor (300) for use in determining the pH of a

biological material (310) in which it may be implanted as shown in Figure 3b. The pH sensor has an electrode portion comprising a conductive needle or fiber (320) provided with a coating of pH sensing composite (330) in accordance with the invention. The electrode conductive portion (320) is connected at connection point (340) to a wire (350) for connection to a circuit for measuring potential change attributable to pH change. The operative portion of the electrode may be protected by a membrane (360) which allows the ingress of liquid subject to pH determination from the biological material (310). The pH sensor of this

embodiment may be fabricated in a very small size such as 100 microns to 1 mm in size and in a range of shapes.

[51] The invention will now be described with reference to the following examples. It is to be understood that the examples are provided by way of illustration of the invention and that they are in no way limiting to the scope of the invention.

EXAMPLES

[52] Examples 1 to 3 and Comparative Examples 4 and 5

[53] Composites and electrodes of these examples were prepared using the general method described below to prepare electrode with composited shown in Table 1 .

[54] Preparing a mixed metal oxide - polymer composite electrode:

1 . Epoxy Polymer resin (bisphenol-A-epichlorhydrin) is mixed with curing agent (3-aminomethyl-3,5,5-trimethylcyclohexylamine) just before the preparation of the electrode.

2. Metal oxide powders (particle size <5 μιη), graphite (particle size <20 μπι) and polymer are weighed.

3. Metal oxide powders and graphite are mixed together (and possibly

grinded) for 2-5 minutes to prepare a homogeneous powder. Additional metal oxides such as lanthanum (III) oxide, lithium oxide and mixtures thereof may be used in a total amount of up to 5% by weight if desired.

4. Polymer is mixed thoroughly with graphite-metal oxide powder in a jar (low consistency) or with mortar and pestle (high consistency) for 2-5 minutes.

5. Paste or suspension is formed into the shape of an electrode for example by:

a Pressing the paste inside a plastic tube (Figure 1 )

b Printing the composite on a conductive substrate (Figure 2) c Dip-coating composite on a conductive fiber (Figure 3) 6. Mixed metal oxide - polymer composite is cured in oven at 60 °C for 2-4 hours and possibly polished with 1200 grit sandpaper.

7. In order to prevent the interference of some ions and redox-active species on sensor signal, protective membrane (nafion, polyurethane etc.) can be coated on top of the sensing material.

8. Sensor and reference electrode, e.g. Ag/AgCI (3 M KCI), are connected into a potential logging device.

9. Sensor is calibrated by recording potential values of the sensor in pH buffer solutions, e.g. pH 4, pH 7 and pH 10.

[55] Table 1. Examples of the composition of the mixed metal oxide sensors and

single metal oxide sensors.

• Sensitivity of the mixed metal oxide electrodes to protons (pH) was higher than pure metal oxide composite electrodes of Comparative Examples 4 and 5 (CE4 and CE5).

• Hysteresis of the slope was smaller for the mixed metal oxide electrodes

compared to the pure metal oxide electrodes (difference between acid to base and base to acid slopes).

• Intercept (mV at pH 0) point was more stable for the mixed metal oxide

sensors.

[56] Table 2. Slope and intercept of the composite electrode and difference of sensor signal measured from acidic pH towards basic pH and vica versa. Day 1

Slope (mV/pH unit) Intercept (mV)

Acid to Base to Acid to Base to

Example Diff. Diff.

base acid base acid

1 -58.6 -57.3 -1 .3 694.9 678.4 16.5

2 -57.6 -58.0 0.4 657.2 661.7 -4.5

3 -58.9 -58.2 -0.7 697.9 685.6 12.3

CE4 -54.1 -51.7 -2.4 672.4 641.7 30.7

CE5 -45.6 -28.8 -16.8 412.9 274.9 138.0

[57] Figure 4 shows a plot of the slope of the pH sensors of Example (Ex) 3 and

Comparative Examples (CE) 4 and 5.

• Slope of the mixed metal oxide sensor stabilised during the first 2 days (stored in pH 7 buffer). Mixed metal oxide sensor maintained high sensitivity to protons for several weeks whereas pure metal oxide sensors suffered significant loss of sensitivity (-10 mV/pH or more).

• Intercept point of the calibration slope stabilised during the first 2 days of

storage (pH 7 buffer).

[58] Figure 5 shows the intercept point of the calibration of the mixed metal oxide composite sensor (Ex 3) and single metal oxide sensors (CE4 and CE5). • Mixed metal oxide sensors were less sensitive to chlorides than pure metal oxide sensors.

[59]Table 3. Interference caused by the CI " anions and difference of the measured pH between a commercial and mixed metal oxide composite electrode.

Measured pH

Example 1 CE4 CE5

CI " 0.03 M 6.957924 6.943846 6.996631

CI " 0.3 M 6.778634 6.707098 6.745546

CI " 0.6 M 6.697703 6.594617 6.482754

Difference between sensors

Example 1 CE4 CE5

CI " 0.03 M -0.00308 -0.01715 0.035631

CI " 0.3 M -0.01037 -0.0819 -0.04345

CI " 0.6 M -0.0133 -0.1 1638 -0.22825