Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MACROMONOMERS HAVING REACTIVE END GROUPS
Document Type and Number:
WIPO Patent Application WO/1993/004099
Kind Code:
A1
Abstract:
Rigid-rod macromonomers, and methods for preparing such macromonomers, having a polyaromatic backbone, solubilizing side groups, and reactive end groups are provided. The macromonomers are chemically incorporated into polymer systems to provide stronger, stiffened polymers.

Inventors:
Gagne, Robert R.
Marrocco III, Matthew Louis Trimmer Mark Steven Hendricks Neil H.
Application Number:
PCT/US1992/005889
Publication Date:
March 04, 1993
Filing Date:
July 14, 1992
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MAXDEM INCORPORATED.
International Classes:
C08F299/02; C07C225/16; C07C225/22; C07C235/84; C07C255/56; C07D207/404; C07D207/452; C07D209/76; C07D295/192; C07D303/22; C07D303/36; C07D303/46; C08F4/46; C08F290/00; C08F290/06; C08F290/14; C08G8/28; C08G61/00; C08G61/02; C08G61/10; C08G61/12; C08G63/00; C08G63/181; C08G63/685; C08G64/06; C08G64/12; C08G64/42; C08G69/00; C08G69/02; C08G69/20; C08G69/26; C08G69/32; C08G69/36; C08G73/06; C08G73/18; C08G85/00; C08L67/00; C08L67/02; C08L69/00; C08L71/12; C08L85/00; C07D207/40; C07D207/44; (IPC1-7): C08F4/46; C08F20/00; C08F283/00; C08F283/08; C08G2/00; C08G8/02; C08G14/00; C08G16/00; C08G59/00; C08G61/00; C08G63/00; C08G63/02; C08G64/00; C08G69/14; C08G73/06; C08G75/00; C08G77/00; C08G79/08
Foreign References:
JPH01259030A1989-10-16
JPH02113023A1990-04-25
Other References:
See also references of EP 0599886A4
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. A rigidrod macromonomer of the formula: wherein each A1f A2, A3, and A4, on each monomer unit, independently, is C or N; each Gv G2, G3, and G4, on each monomer unit, independently, is H or a solubilizing side group, provided that when any of A1, A2, A3, and A4 is N, the corresponding G1f G2, G3, or G4 is nil; E is a reactive end group; the macromonomer has a degree of polymerization, DPn, greater than about 6; and adjacent monomer units are oriented headtohead, headtotail, or randomly.
2. A macromonomer according to claim 1, wherein E is selected from the group consisting of acetals, acetalε from ethylvinylether, acetylenes, acetyls, acid anhydrides, acids, acrylamides, acrylates, alcohols, aldehydes, alkanols, alkyl aldehydeε, alkyl halideε, amides, amines, anilines, aryl aldehydes, azides, benzocyclobutenes, biphenylenes, carboxylateε, carboxylic acidε and their salts, carboxylic acid halides, carboxylic anhydrides, cyanates, cyanideε, epoxideε, eεters, ethers, formylε, fulveneε, halides, heteroaryls, hydrazineε, hydroxylamineε, imides, imines, iεocyanateε, ketals, ketoalkyls, ketoaryls, ketoneε, aleimideε, nadi ideε, nitriles, olefins, phenolε, phoεphateε, phosphonates, quaternary amines, silaneε, silicateε, εilicones, εilyl ethers, εtyrenes, sulfonamides, sulfones, sulfonic acids and their εaltε, εulfonyl halides, sulfoxides, tetrahydropyranyl ethers, thioethers, urethanes, vinyl ethers, and vinyls.
3. A macromonomer according to claim 1, wherein at least one monomer unit has at least one nonhydrogen solubilizing side group.
4. A macromonomer according to claim 1, wherein the solubilizing side group iε εelected from the group conεisting of alkyls, amides, arylε, aryl εulfides, aryl sulfones, esters, ethers, thioethers, fluoroalkylε, and ketones.
5. A macromonomer according to claim 1, wherein G1 is an arylketone and E is an aminederived end group.
6. A macromonomer according to claim 1, wherein G1 is an arylketone and E is selected from the group consisting of amides, carboxylic acids, carboxylic acid halides, carboxylic anhydrides, and esters.
7. A macromonomer according to claim 1, wherein G1 is an arylketone and E comprises an alcohol.
8. A macromonomer according to claim 1, wherein G1 iε an arylketone and E is selected from the group consisting of epoxide, vinyl, and imide groups.
9. A macromonomer according to claim 1, wherein G1 is an aryl group and E is an aminederived end group.
10. A macromonomer according to claim 1, wherein G, is an aryl group and E is selected from the group conεiεting of amides, carboxylic acids, carboxylic acid halides, carboxylic anhydrides, and esterε.
11. A macromonomer according to claim 1, wherein G1 iε an aryl group and E compriεeε an alcohol.
12. A macromonomer according to claim 1, wherein G1 iε an aryl group and E iε selected from the group consisting of epoxide, vinyl, and imide groupε.
13. A macromonomer according to claim 1, wherein G1 iε an aryl ether and E is an aminederived end group.
14. A macromonomer according to claim 1, wherein G1 is an aryl ether and E iε εelected from the group conεiεting of amides, carboxylic acids, carboxylic acid halides, carboxylic anhydrides, and eεterε.
15. A macromonomer according to claim 1, wherein G1 is an aryl ether and E compriseε an alcohol.
16. A macromonomer according to claim 1, wherein G1 iε an aryl ether and E iε εelected from the group consisting of epoxide, vinyl, and imide groups.
17. A macromonomer according to claim 1, wherein G1 is an amide and E is an aminederived end group.
18. A macromonomer according to claim 1, wherein G1 is an amide and E is selected from the group consiεting of amideε, carboxylic acidε, carboxylic acid halideε, carboxylic anhydrideε, and eεters.
19. A macromonomer according to claim 1, wherein G, is an amide and E comprises an alcohol.
20. A macromonomer according to claim 1, wherein G1 iε an amide and E iε εelected from the group conεiεting of epoxide, vinyl, and imide groups.
21. A method of producing reinforced polymers, comprising: copolymerizing macromonomers of claim 1 with one or more complementary condensation monomers.
22. A method of producing reinforced polymers comprising: copolymerization of macromonomers of claim 1 with one or more addition monomers.
23. A method according to claim 22, wherein said one or more addition polymers is selected from the group consisting of alkylmethacrylates, butadiene, styrene, tetrafluoroethylene, vinyl acetate, and vinyl chloride.
24. A method of producing reinforced polymers comprising: mixing macromonomers of claim 1 with one or more preformed polymers; and forming chemical bonds between the macromonomers and said one or more preformed polymers, wherein bond formation proceeds in an order selected from the group consiεting of bond formation simultaneous with mixing, bond formation subsequent to mixing, and bond formation both simultaneous with and subεequent to mixing of the macromonomers and said one or more preformed polymers.
25. A method according to claim 24, where the mixing process comprises melt blending.
26. A method according to claim 24, where the mixing process comprises solution blending.
27. A method according to claim 24 where the chemical bonds are formed during reaction injection molding.
28. A method according to claim 2'4 where said one or more preformed polymers are selected from the group conεiεting of polyamides, polyimides, polyesters, polycarbonates, polyamideimides, polyamideesterε, po 1yimide etherε , po 1ycarbonate esters , polyphenyleneoxideε, polystyrenes, and polyamideethers.
29. A method according to claim 24 where said one or more preformed polymers are polyamides and the macromonomer has reactive end groups selected from the group consiεting of carboxylic acidε, amideε, eεterε, amines, anilines, aldehydes, imides, imines, ketones, hydroxylε, and phenolε.
30. A method according to claim 24 where said one or more preformed polymers are polyimides and the macromonomer has reactive end groups selected from the group consisting of carboxylic acidε, amides, esters, amines, anilines, imides, imines, ketones, hydroxyls, and phenols.
31. A method according to claim 24 where said one or more preformed polymers are polyesters and the macromonomer has reactive end groups selected from the group consisting of carboxylic acids, amideε, esters, amines, anilines, imides, imines, hydroxyls, and phenols.
32. A method according to claim 24 where said one or more preformed polymers are polycarbonates and the macromonomer has reactive end groups selected from the group consisting of carboxylic acids, amideε, esters, amines, anilines, imides, imines, hydroxyls, and phenols.
33. A method of preparing reinforced polymers comprising: mixing macromonomers of claim 1 with one or more preformed polymerε; and forming chemical bonds between the macromonomers and preformed polymer, wherein at least some of the bonds are formed subsequent to the mixing of the macromonomers and said one or more preformed polymers.
34. A method of producing thermoset epoxide polymers, comprising: reacting a macromonomer of claim 1 with a diepoxide or polyepoxide to form a croεεlinked resin containing rigid segments derived from said macromonomer.
35. A method of producing thermoset phenolic polymerε, comprising: reacting a macromonomer of claim 1 having phenoltype end groupε E, with one or more εubεtances selected from the group consisting of formaldehyde, paraformaldehyde, trioxane, phenolformal¬ dehyde resins, novalac reεins, resole resins, and resorcinolformaldehyde resins.
36. A method of producing thermoset polyimide polymerε, compriεing: reacting a macromonomer of claim 1, having a inetype reactive end groupε E, with at leaεt one of pyromellitic acid or . its anhydride, bisphenoltetracarboxylic acid or its anhydride, benzophenonetetracarboxylic acid or its anhydride, polyamic acids, and uncured polyimide resinε.
37. A method of producing reinforced thermoεet reεinε, comprising: reacting a macromonomer of claim 1 with uncured resins selected from the group consisting of allyl resins, bisacetylene resins, bisbenzocyclobutene resinε, biεbiphenylene resins, epoxy reεinε, furan resinε, iεocyanate resins, maleimide resinε, melamine resinε, nadimide reεins, phenolic reεins, εilicone resins, unsaturated polyeεter reεins urea reεins, urethaneε, and vinyl eεter reεins.
38. A method of producing a reinforced thermoset resin, comprising: reacting a macromonomer of claim 1 with a curing agent having reactive groupε complementary to the reactive end groupε E on the macromonomer and capable of forming covalent crosslinks with the end groups E.
39. A polymer comprising: a copolyamide of the type —_AABB—/—AMABB—_n formed from an AMAtype macromonomer of claim 1, where AA and BB are monomers selected from the group consisting of diaminetype monomers and diacidtype monomers.
40. A polymer according to claim 39, wherein AA and BB are selected from the group conεiεting of pphenylenediamine, mphenylenediamine, oxydianiline, methylenedianiline, terephthalic acid, terephthaloyl chloride, and esters of terephthalic acid.
41. A polymer according to claim 39, wherein AA and BB are selected from the group consisting of hexamethylenediamine, adipic acid, esters of adipic acid, and adipoyl chloride.
42. A polymer comprising: a copolyamide of the type —_—AB ]χ [ AMA ] [ BA—_χ formed from AMAtype macromonomers of claim 1 condensed with an AB monomer selected from the group conεiεting of amino acidε, amino acid esters, lactams, and lactoneε.
43. A polymer according,to claim 42, wherein the AB monomer iε caprolactam.
44. A polymer comprising a copolyamide having covalently bound rigidrod segments derived from the macromonomers of claim 1.
45. A method for producing reinforced polyamides comprising copolymerization of a macromonomer of claim 1 with one or more monomers capable of producing polyamides.
46. A polymer having a rigid εegment derived from macromonomers of claim 1, covalently attached to flexible segments derived from flexible polymers selected from the group consisting of polyacetals, polyamideε, polyimideε, polyesters, polycarbonates, polyamideimides, poly amideesters, polyimideethers, polycarbonateesters, and polyamideethers.
47. A polymer comprising: a copolyester formed from AMAtype macromonomers of claim 1 condensed with one or more complementary monomers selected from the group consisting of biscarboxylic acids, biscarboxylic acid chlorides, biscarboxylic acid esters, bisdiols, hydroxycarboxylic acids, and lactones.
48. A polymer according to claim 47, where the complementary monomers are terephthalic acid and ethylene glycol.
49. A polymer comprising: a copolyacrylate formed from macromonomers of claim 1 having acrylatetype end groups E, and prepared by mixing said macromonomers with acrylate monomers and initiators, followed by polymerization.
50. A thermoset resin formed by curing macromonomerε of claim 1 having end groupε εelected from the group consisting of epoxides, acetylenes, maleimides, nadimides, benzocyclobutenes, biphenylenes, acrylateε, isocyanateε, and vinyls, in the presence of curing agents or initiators.
51. A polymeric material prepared by reacting a macromonomer of claim 1 having εelected reactive end groupε E with one or more polymerε or monomerε having functional groups capable of chemically reacting with the selected reactive end groups E.
52. A reinforced polymer having rigid segments derived from macromonomers of claim 1, covalently attached to flexible segments derived from one or more preformed flexible polymers.
53. A reinforced polymer according to claim 52, wherein the flexible polymer is selected from the group consiεting of polyalkylmethacrylateε, polyethylene, polypropylene, polyεtyrene, polyvinylacetate, polyvinylalcohol, and polyvinylchloride.
54. A thermoset composition formed by thermally curing macromonomers of claim 1.
55. The thermoset of claim 54 where the reactive end groups are chosen from the group consiεting of acetylene, benzocyclobutene, biphenylene, maleimide, and nadimide.
56. A thermoεet composition comprising a product obtained by curing a macromonomer of claim 1 with a curing agent having reactive groups complementary to the reactive end groups E on the macromonomer and capable of forming covalent croεεlinkε with the end groups E.
57. The thermoset of claim 56, wherein the curing agent is selected from the group consisting of diamines, polyamines, diepoxideε, and polyepoxides.
58. A reinforced polymer elaεtomer comprising: an elastomer having a polymer network; and rigid segments derived from macromonomers of claim 1 covalently attached to said polymer network.
59. A polymer according to claim 58, wherein the elastomer is selected from the group consiεting of polybutadiene, copolymers of butadiene with one or more other monomers, butadieneacrylonitrile rubber, styrene butadiene rubber, polyiεoprene, copolymerε of iεoprene with one or more other monomerε, polyphoεphazenes, natural rubber, and blends of natural and synthetic rubber.
60. A polymer according to claim 58, wherein the elastomer is selected from the group consisting of polydimethylsiloxane, copolymers containing the dimethylsiloxane unit, polydiphenylsiloxane, and copolymerε containing the diphenylεiloxane unit.
61. A method for producing reinforced polymers comprising: copolymerization of a macromonomer of claim 1 with monomers capable of producing a flexible polymer εelected from the group consisting of polycarbonates, polyethers, polyetherketones, polyesters, polyimides, polyphenyl eneoxideε, and polyεulfoneε.
62. A method of producing reinforced polymerε, compriεing: phyεically blending macromonomerε of claim 1 with one or more preformed polymerε.
63. A rigidrod macromonomer of the formula: wherein each G1r G2, G3, and G4, on each monomer unit, independently, iε H or a solubilizing side group; E iε a reactive end group; the macromonomer haε a degree of polymerization, DPn, greater than about 6; and adjacent monomer unitε are oriented headtohead, headtotail, or randomly.
64. A macromonomer according to claim 63, wherein E iε εelected from the group consisting of acetals, acetals from ethylvinylether, acetylenes, acetylε, acid anhydrideε, acids, acrylamides, acrylates, alcohols, aldehydes, alkanolε, alkyl aldehydeε, alkyl halideε, amideε, amineε, anilineε, aryl aldehydes, azides, benzocyclobuteneε, biphenyleneε, carboxylates, carboxylic acids and their salts, carboxylic acid halides, carboxylic anhydrides, cyanates, cyanides, epoxides, esters, ethers, formyls, fulveneε, halides, heteroaryls, hydrazideε, hydroxylamineε, imides, imines, isocyanates, ketals, ketoalkylε, ketoarylε, ketones, maleimides, nadimides, nitriles, olefins, phenols, phosphateε, phoεphonateε, quaternary amineε, silanes, silicates, silicones, silyl ethers, styreneε, εulfonamides, sulfones, sulfonic acids and their salts, sulfonyl halides, sulfoxideε, tetrahydropyranyl ethers, urethanes, vinyl ethers, thioethers, and vinyls.
65. A macromonomer according to claim 63, wherein the εolubilizing side group iε εelected from the group consisting of alkyls, amides, aryls, aryl εulfideε, aryl sulfoneε, eεterε, etherε, thioethers, fluoroalkyls, ketoneε, and fluorinesubstituted analogs of same.
66. A macromonomer according to claim 63, wherein G1 is benzoyl and G2, G3, and G4 are each hydrogen.
67. A macromonomer according to claim 63, wherein G1 is a εulfone and G2, G3, and G4 are each hydrogen.
68. A macromonomer according to claim 63, wherein G1 is an amide and G2, G3, and G4 are each hydrogen.
69. A macromonomer according to claim 68, wherein the amide is Nbound.
70. A macromonomer according to claim 68, wherein the amide is carbonylbound.
71. A macromonomer according to claim 63, wherein G1 is an aromatic or substituted aromatic group and G2, G3, and G4 are each hydrogen.
72. A macromonomer according to claim 63, wherein G1 is an aryl ether and G2, G3, and G4 are each hydrogen.
73. A macromonomer according to claim 63, wherein Gj is benzoyl, G2, G3, and G4 are each hydrogen, and E is Nsuccinimido.
74. A macromonomer according to ciaim 63, wherein G1 is benzoyl, G2, G3, and G4 are each hydrogen, and E is selected from the group consisting of acetoxy, 5(2aminobenzophenone) , 3aminophenyl, carboxy, carboxyphenyl, 3carbomethoxyphenyl, cyanophenyl, 4(4'hydroxybenzophenone) , and hydroxyphenyl.
75. A macromonomer according to claim 63, wherein G1 is carbonylmorpholine, G2, G3, and G4 are each hydrogen, and E is selected from the group consiεting of acetoxy, 5(2aminobenzophenone) , 3aminophenyl, 4aminophenyl, acetoxyphenyl, 4(4'hydroxybenzophenone) , hydroxyphenyl, carboxy, carboxyphenyl, 3carbomethoxyphenyl, cyanophenyl, and 4εtyrene oxide.
76. A macromonomer according to claim 63, wherein C, iε carbophenoxy, G2, G3, and G4 are each hydrogen, and E is 4benzocyclobutene.
77. A macromonomer according to claim 63, wherein G1 is phenyl, G2, G3, and G4 are each hydrogen, and E is 2biphenylene.
78. A macromonomer according to claim 63, wherein G1 is carbonylpiperidine, G2, G3, and G4 are each hydrogen, and E is selected from the group consisting of acetoxy, 5(2aminobenzophenone) , 3aminophenyl, 4aminophenyl, carboxy, carboxyphenyl, 3carbomethoxyphenyl, cyanophenyl, 4 (4 ' hydroxybenzophenone) , and hydroxyphenyl.
79. A macromonomer according to claim 63, wherein G, iε benzoyl, G2, G3, and G4 are each hydrogen, and E iε 4(1,2epoxyethylphenoxy)phenyl.
80. A macromonomer according to claim 63, wherein G1 is hydroxy1, G2, G3, and G4 are each hydrogen, and E is 4phenethylalcohol.
81. A macromonomer according to claim 63, wherein G1 and G3 are each phenyl, G2 and G4 are each hydrogen, and E is 4aminophenyl.
82. A method of making a macromonomer of claim 63 comprising reductive coupling of substituted 1,4dihalobenzenes, uεing a nickel or palladium catalyst to form a metalloterminated polyphenylene, followed by addition of an endcapper.
83. A method of making a macromonomer of the formula: where each A1, A2, A3, and A4, on each monomer unit, independently, is C or N; each G1, G2, G3, and G4, on each monomer unit, independently is H or a solubilizing side group, provided that when any of A1, A2, A3, and A, is N, the corresponding G,, G2, G3 or G4 is nil; E is a reactive end group; the macromonomer haε a degree of polymerization, DPn, greater than about 6; and adjacent monomer units are oriented headtohead, headtotail, or randomly, compriεing: reductive coupling of εubεtituted 1,4dihaloaromatic compounds in the presence of a εubεtituted monohaloaryl endcapper.
84. A method according to claim' 83, wherein the reductive coupling is catalyzed by nickel salts using a reducing agent selected from the group consisting of zinc, manganese, and magneεium.
85. A method according to claim 83 wherein the coupling is catalyzed by nickel saltε in the presence of a phosphine ligand, using zinc as a reducing agent.
86. A method according . to claim 83, wherein the 1,4dihaloaryl compounds are treated with magnesium to form Grignard reagentε, which are then coupled using a nickel compound as a catalyst.
87. A reinforced polyecaprolactam prepared by copolymerizing ecaprolactam with from about 2 to about 50 weight percent of a macromonomer of claim 63, where E is 3carbomethoxyphenyl and G, is benzoyl or substituted benzoyl.
88. A reinforced polyecaprolactam prepared according to claim 87, wherein ecaprolactam is copolymerized with from about 5 to about 15 weight percent of the macromonomer.
89. macromonomer of the on each monomer unit, independently, is H or a solubilizing side group; E is a reactive end group; the macromonomer haε a degree of polymerization, DPn, greater than about 6; and adjacent monomer units are oriented headtohead, headtotail or randomly, comprising: catalytic coupling of substituted 4halobenzeneboronic acid in the presence of an endcapper selected from substituted monohalobenzenes and εubεtituted benzeneboronic acids.
90. A reinforced polycaprolactam formed by physically blending preformed polycaprolactam with macromonomers of claim 1 having reactive endgroups selected from the group consiεting of carboxylic acids, amides, esters, amines, anilines, hydroxyls, and phenols, wherein the endgroupε can participate in tranεamination reactions with the amide groups of the polycaprolactam to form chemical bonds between the preformed polycapro lacta and the macromonomers.
91. A rigidrod macromonomer of the formula: wherein each A1, A2, A3, and A4, on each monomer unit, independently, is C or N; each G G2, G3, and G4, on each monomer unit, independently, is selected from the group consisting of H, εolubilizing side groups, and reactive εide groups, and provided that when any of A.,, A2, A3, and A4 is N, the corresponding G1# G2, G3, or G4 is nil; E is a reactive end group; the macromonomer has a degree of polymerization, DPn, greater than about 6; and adjacent monomer units are oriented headtohead, headtotail, or randomly.
92. A rigidrod macromonomer according to claim 91, wherein at least one monomer unit has at least one reactive side group.
93. A rigidrod macromonomer according to claim 91, wherein a plurality of monomer units have at least one reactive side group.
Description:
MACROMONOMERS HAVING REACTIVE END GROUPS

Field of the Invention

This invention relates to soluble macromonomers having . rigid-rod backbones, pendant, flexible, solubilizing organic groups attached to the backbone, and reactive end groups at the endε of the macromonomer chains. They can be chemically incorporated into other polymer and monomer systems to yield strengthened, stiffened polymer compositions.

Background of the Invention

It is well known that the stiffnesε and strength of a polymer are related to the flexibility of the polymer chain on the molecular level. Thus-, if the chemical structure of the main chain restricts chain coiling and flexing, the resulting polymer will be stiff and strong. An example of a stiff polymer is poly-l,4-pheny- lene-l,4-terephthalamide (PPTA). While PPTA can coil in solution, the amide linkages . and para-phenylene groups favor an extended chain conformation. Fibers can be prepared in which the chains are essentially all extended into rod-like conformations, and these fibers are extraordinarily strong and stiff. Unfortunately, PPTA iε difficult to process (except for fiber spinning) and cannot be molded or extruded. In general, the more rigid the polymer main chain the mere difficult it is to prepare and process.

Some applications require strong, stiff materials that can be easily processed by molding or extrusion, A widely used approach to obtain εuch εtiff materials is to add fillers such as carbon or silica, or to incorporate fibers, such as glass and carbon fibers, into a relatively flexible polymer, thereby forming a stiff, strong composite material. The most widely utilized, high-performance fiber-polymer composites are composed of oriented carbon (graphite) fibers embedded in a suitable polymer matrix.

The improvements in strength and stiffness of compoεiteε are related to the aεpect ratio of the filler or fiber, i.e., the length to diameter ratio of the εmalleεt diameter cylinder that will enclose the filler or fiber. To contribute reasonable strength and stiffness to the composite, the fibers must have an aεpect ratio of at least about 25, and preferably at least 100. Continuous fibers have the highest aspect ratio and yield the best mechanical properties but are costly to process. Low aspect ratio materials, such as chopped fibers and fillers, give limited improvement in mechanical properties but are easy and inexpensive to procesε. The success of co positeε is demonstrated by their wide use as εtructural materialε. There are εeveral drawbackε aεεociated with compoεite materials. Composites are often more costly than the unreinforced polymer. This is because of the expense of the fiber component and the additional labor needed to prepare the composite. Compositeε are difficult or impossible to repair and, in general, cannot be recycled. Many composites also have undesirable failure characteriεticε, failing unpredictably and catastrophically.

Molecular compoεiteε (composed of polymeric materials only) offer the prospect of high performance, lower cost and easier processability than conventional fiber-polymer compositeε. In addition, molecular compoεiteε generally

l can be recycled and repaired. Because molecular composites contain no fibers, they can be fabricated much more easily than fiber-polymer compositions, which contain macroscopic fibers.

5 Molecular compositeε are materials composed of a rigid-rod polymer embedded in a flexible polymer matrix. The rigid-rod polymer in a molecular composite can be thought of as the microscopic equivalent of the fiber in a fiber-polymer composite. The flexible polymer component

10 of a molecular composite serves to disperse the rigid-rod polymer, preventing bundling of the rigid-rod molecules. As in conventional fiber/resin compoεiteε, the flexible polymer in a molecular compoεite helps to distribute stresε along the rigid-rod moleculeε via elastic

15 deformation of the flexible polymer. Thus, the second, or matrix-resin, polymer must be sufficiently flexible to effectively surround the rigid-rod molecules while still being able to stretch upon stress. The flexible and rigid-rod polymers can also interact strongly via Van der

20 Waals, hydrogen bonding, or ionic interactionε. The advantages of molecular composites have been demonstrated by W.F. Hwang, D.R. Wiff, C.L. Brenner and T.E. Helminiaak, Journal of Macromolecular Science Phvs. B22, 231-257 (1983).

25 Molecular composites are simple mixtures or blends of a rigid-rod polymer with a flexible polymer. Aε iε known in the art, most polymers do not mix with other polymers, and attempts at blends lead to macroscopic phase separation. This is also true of rigid-rod

30 polymer/flexible polymer blends. Metastable blends may be prepared by rapid coagulation from solution. However, metastable blends will phase separate on heating, ruling out further thermal processing, such as molding or melt spinning. The problem of macroscopic phase separation is

35 reported by H.H. Chuah, T. Kyu and T.E. Helminiak, Polymer. 28. 2130-2133 (1987) . Macroscopic phase separation is a major limitation of molecular composites.

Rigid-rod polymers produced in the past are, in general, highly insoluble (except in the special case of polymers with basic groups, which may be dissolved in strong acids or in organic εolventε with the aid of Lewiε acids) and infusible. Preparation and processing of such polymerε is, accordingly, difficult. A notable exception is found in U.S. patent application Serial No. 07/397,732, filed August 23, 1989 (assigned to the assignee of the present invention) , which is incorporated herein by this reference. The rigid-rod polymers described in the above-referenced application have a rigid-rod backbone comprising a chain length of at leaεt 25 organic monomer unitε joined together by covalent bondε wherein at least about 95% of the bonds are substantially parallel; and εolubilizing organic groupε attached to at leaεt 1% of the monomer units. The polymers are prepared in a solvent system that is a solvent for both the monomer starting materials and the rigid-rod polymer product. The preferred monomer units include: paraphenyl, parabi- phenyl, paraterphenyl, 2,6-quinoline, 2,6-quinazoline, paraphenylene-2-benzobisthiazole, paraphenylene-2-benzo- bisoxazole, paraphenylene -2-benzobiεimidazole, paraphenylene-1-pyromellitimide, 2, 6-naphthylene, 1,4-naphthylene, 1,5-naphthylene, 1,4-anthracenyl, 1,10-anthracenyl, 1,5-anthracenyl, 2,6-anthracenyl, 9,10-anthracenyl, and 2,5-pyridinyl.

The rigid-rod polymerε deεcribed above can be used as self-reinforced engineering plastics and exhibit physical properties and cost-.effectiveness superior to that exhibited by many conventional fiber-containing compoεites.

It would be quite useful if rigid-rod polymers could be incorporated into conventional flexible polymerε, eεpecially large volume commodity polymerε. The value of a flexible polymer would be increased significantly if its mechanical properties could be enhanced by addition of rigid-rod polymers. Such molecular composites could

displace more expensive engineering resins and specialty polymers and conventional composites as well. To date, practical molecular compositeε have not been demonεtrated. Thiε is chiefly due to deficiencies in currently available rigid-rod polymers, namely limited solubility and fusibility, and unfavorable chemical and physical interactions between the rigid-rod and flexible polymer component.

There is a need in the art for a rigid-rod polymer that can be chemically incorporated into flexible polymers and polymer systems, during or subsequent to polymerization, to thereby add strength and/or stiffness to the resulting polymerε. Chemical rather than phyεical incorporation iε desirable to inhibit phase separation during the procesεing and uεe of the polymer and to increaεe the reεulting polymer's solvent resiεtance. The mechanical behavior of polymer systemε which contain chemically incorporated rigid-rod moietieε can be different and superior to physical blends of, for example, rigid-rod polymers with flexible polymers.

Summary of the Invention

It has now been found that, for any given polymer, improvements in stiffness and strength can be obtained by preparing a copolymer, thermoset resin, or the like, which incorporates rigid segmentε and the more flexible εegmentε of the original polymer. These rigid segments act in a manner conceptually similar to the way stiff fibers act to reinforce compositeε; however, in the present invention no macroscopic fiberε are present.

In the present invention, the problem of macroscopic phase separation, found in molecular composites, is avoided by the use of rigid-rod macromonomers having reactive end groupε. In one embodiment of the preεent invention, the rigid-rod macromonomers are made to react with flexible polymers, via reactive end groups, to form covalent bonds between the rigid-rod macromonomer and the

flexible polymer, thereby preventing macroscopic phase separation.

In a second embodiment, macroscopic phase separation is prevented by forming the flexible polymer in the presence of the macromonomer. The reactive end groups of the macromonomer react with monomers during polymerization of the flexible polymer, forming covalent bonds between the macromonomer and flexible polymer.

In a third embodiment, the rigid-rod macromonomer iε modified, by way of chemical transformation of its reactive end groups, such that the end groupε are made compatible with the flexible polymerε. Compatibilizerε include groupε which will interact with the flexible polymer ionically, by hydrogen bonding, or by van der Waalε interactions. Compatibilizers may be polymeric, or oligomeric. For example, a rigid-rod macromonomer may be made to react, via its reactive end groupε, with caprolactam to form short polycaprolactam chains at either end, the resulting polycaprolactam-modified macromonomer being compatible with polycaprolactam.

In a fourth embodiment, the rigid-rod monomers are used alone to form thermosetting reεinε. In thiε case, the reactive end groups provide εome degree of processability and will react under the appropriate conditions, e.g., heat, irradiation, exposure to air, etc., to form crosslinks and effect curing.

Other methods of incorporating the rigid-rod macromonomers of the present invention into materials are contemplated and depend on the chemistry and propertieε of the material to be modified.

It εhould be underεtood that while macroεcopic phaεe εeparation iε prevented, there may be varying degrees of microscopic phase separation. Microscopic phase εeparation results in the formation of phaseε having size on the order of the dimensions of the polymer chain. Microphase separation may be conducive to significant

improvements in mechanical or other propertieε deεired from incorporation of rigid-rod macromonomer .

The macromonomers of the present invention have the structure (1) :

where each G,, G 2 , G 3 , and G 4 , on each monomer unit, independently, is a solubilizing side group or hydrogen, ' E is a functional ("reactive") end group, and the number average degree of polymerization, DP n , is greater than about 6. If DP n iε less than about 7 or 8, the rigidity and stiffness of the resulting macromonomer-reinforced polymer is only slightly increased. In some applications, however, macromonomers prepared in accordance with the present invention having a DP n as low as 4 may be useful, e.g., for decreasing the thermal expanεion coefficient of a flexible polymer, such as a polyimide or polyamide. Preferably, DP n is between 10 and 500. G will be uεed to mean a general εolubilizing group and G , G 2 , G 3 , and G 4 specific solubilizing groups.

The structures presented here show only a single monomer unit and do not imply regular head-to-tail

'arrangement of monomer units along the chain. Monomer units may have random orientation, or may be alternating head-to-head, tail-to-tail, or regular head-to-tail, or have other arrangements, depending on the conditions of the polymerization and reactivity of monomers.

The macromonomers of the present invention may also contain heteroatomε in the main chain. Heteroaromatic rigid-rod macromonomers have structure (2), where A.,, A 2 , A 3 , and A 4 on each monomer unit, independently, may be carbon or nitrogen and G and E are as defined above,

except that where an A is nitrogen, the corresponding G is nil.

Additionally, other rigid-rod monomer units can be incorporated into the macromonomers prepared in accordance with the present invention. Thuε a rigid-rod macromonomer having monomer unitε of the type shown in structureε (1) and/or (2) and benzobisthiazole monomer units

can be used in the same way as (1) and (2) . Likewise, rigid-rod pyromellitimide, benzobisoxazole, benzobisimidazole and other rigid-rod monomer units may be substituted for some of the phenylene units without loss of function. The benzobiεimidazole, thiazole and oxazole unitε can have either ciε or trans configuration. The rigid-rod macromonomers of the present invention may be further polymerized or cured by virtue of their reactive end groups. Depending on the nature of the end groups and cure conditions, either linear, branched or network structures result. The macromonomers of the present invention may be used to form thermosetε, either alone or in combination with other thermoεetting polymerε. The macromonomerε may

also be used with thermoplastics, e.g., by forming a copolymer.

Detailed Description of the Invention As discuεεed above, the strength and stiffness of a polymer are related to the flexibility of the polymer chain on a molecular level. It has now been found that for any given polymer, improvements in stiffnesε and strength can be obtained by preparing a copolymer having rigid segmentε aε well aε the more flexible segments of the original polymer. These rigid segments act in a manner conceptually similar to the way stiff fibers act to reinforce composites, however, in the present invention no macroscopic fibers are present. The rigid segments are provided by incorporating rigid-rod macromonomers having structures (1) and/or (2) during or subsequent to polymerization of the flexible polymer. Several approaches are provided by the present invention.

Macromonomers having structure (1) are solubilized polyparaphenylenes having reactive functional end groups. Macromonomerε having structure (2) are aza derivatives of polyparaphenylenes having reactive end groups. In each case, G., through G 4 are solubilizing side groups or hydrogen, E is a functional end group, and the number average degree of polymerization, DP n is greater than about 6, preferably between 10 and 500.

Aε used herein, the term "endcapper" shall mean any reagent which serveε to terminate growth of one or both endε of the macromonomer being formed, thus preventing further extension of the rigid-rod macromonomer backbone via the ongoing macromonomer-forming reaction, and which resultε in a "reactive end group", E, being chemically incorporated into that end of the rigid-rod macromonomer molecule. The terms "reactive end group," "functional end group," and the like, are defined to mean any chemical moiety incorporated into an end of a rigid-rod

macromonomer molecule, which chemical moiety can be used in a subsequent reaction to effect one or more of the following reactions: a) Reaction with a flexible polymer resulting in formation of one or more covalent bonds between the macromonomer and the flexible polymer;

b) Reaction with monomers, either before or during a reaction in which such monomers are polymerized to give a flexible polymer, resulting in formation of one or more covalent bonds between the macromonomer and the resulting flexible polymer;

c) Reaction with an oligomer or other small molecular species, resulting in increased compatibility of the rigid-rod macromonomer with flexible polymers in blends, mixtures, composites, copolymers, composites, alloys and the like; and

d) Polar, ionic, or covalent interaction with an inorganic matrix, resulting in a modified ceramic or an inorganic glass or glass-like material.

Reactive groupε may be transformed by further chemical reaction including, without limitation, oxidation, reduction, deprotonation, halogenation, Schiff base formation, hydrolysiε, electrophilic or nucleophilic εubεtitution, and the like, to yield new reactive groupε.

One skilled in the art will recognize that it sometimes will be desirable to incorporate such endcapper reactive groups in a protected form in order to ensure that the reactive group does not poison or otherwise participate in or interfere with the macromonomer-forming reaction, e.g., an amine can be incorporated aε an amide, a carboxylic acid can be incorporated aε an eεter, and an alcohol can be incorporated _.ε an ester or as an ether.

Once formation of the macromcnomer has been completed the

protected reactive end group can then be deprotected, e.g., an amide or an eεter can be hydrolyzed to produce an amine and an alcohol, respectively.

Nonlimiting examples of reactive end groupε, E, include acetalε, acetals from ethylvinylether, acetylenes, acetyls, acid anhydrideε, acidε, acrylamides., acrylates, alcoholε, aldehydes, alkanols, alkyl aldehydes, alkyl halides, amides, amines, anilines, aryl aldehydes, azides, benzocyclobutenes, biphenylenes, carboxylates, carboxylic acids and their saltε, carboxylic acid halides, carboxylic anhydrides, cyanates, cyanideε, epoxides, esters, ethers, formyls, fulvenes, halides, heteroaryls, hydrazines, hydroxylamines, imides, imines, isocyanates, ketals, ketoalkyls, ketoarylε, ketoneε, maleimideε, nitrileε olefinε, phenols, phosphates, phosphonates, quaternary amines, silanes, silicates, silicones, silyl ethers, styrenes, sulfonamides, sulfones, sulfonic acids and their salts, sulfonyl halides, sulfoxides, tetrahydropyranyl ethers, thioethers, urethanes, vinyl ethers, vinyls, and the like. In some cases, the functional end groupε are capable of reacting with each other.

One skilled in the art will recognize that reactive groupε can be prepared from "non-reactive" groups and "less reactive" groups. For example,' some applications make it desirable to incorporate a rigid rod polymer having tolyl end groups into a flexible polyeεter. The tolyl group is unreactive toward polyesters or polyester monomers, however, the tolyl group can be oxidized to a reactive carboxyphenyl group which then can react with polyeεterε by tranε-eεterification, or with polyeεter monomers to form polyesters containing the rigid rod macromonomer. Similarly, a relatively non-reactive acetyl group can be modified by formation of a Schiff'ε base with 4-aminophenol, to give a macromonomer having phenolic end groupε, useful for reinforcing thermoset resins such as epoxieε and phenolicε. Other exampleε will be apparent to those skilled in the art.

The term "solubilizing εide group" as used herein means a chemical moiety which, when attached to the backbone of the macromonomer, improves the solubility of the macromonomer in an appropriate solvent system. For the purposes of the present invention, the term "soluble" will mean that a solution can be prepared containing greater than 0.5% by weight of the macromonomer or greater than about 0.5% of the monomer(ε) being used to form the macromonomer. It is understood that various factors must be considered in choosing a solubilizing group for a particular polymer and solvent, and that, all else being the same, a larger or higher molecular weight solubilizing group will induce a higher degree of solubility. Conversely, for smaller εolubilizing groups, matching the properties of the solvent and solubilizing groups is more critical, and it may be necessary to have, in addition, other favorable interactions inherent in the structure of the polymer to aid in solubilization. In some embodiments of the invention, some of the εide groups G will alεo be "reactive" functional groups, in the same sense that the end groups E are reactive.

The number average degree of polymerization, DP n , is defined by: DP n = (number of monomer molecules present initially) / (number of polymer or oligomer chains in the system) .

The number average molecular weight, M n is defined by:

M = M X DP . ,

where M 0 is the weight of one monomer unit in the chain. We will use a convention where the end groupε are not counted in figuring the DP n . The end groups make only εmall contribution to the molecular weight and are not included in the definition.

As deεcribed below in greater detail, the rigid-rod macromonomers of the present invention are formed by reacting a macromonomer with an "endcapper" or endcapping moiety. The endcapper provides the functional end group E, directly or by chemical transformation (including, e.g., deprotection) into E.

For an ideal condensation polymerization, DP n may be calculated given the initial amounts of monomer and endcapper deεcribed below by:

DP n = 2Xmols monomer/mols endcapper.

In practice, this iε uεually an upper limit due to adventitious endcapping reactions which lower the molecular weight of the macromonomer. When adventitious endcappers (impurities) are present, DP n = 2x ols monomer ÷ [ (mols of endcapper) + (mols of adventitious endcapping impurities) ] . If the amount of adventitious endcapper is small, then the observed DP n will be close to that which is calculated neglecting impurities.

Side reactions will also limit molecular weight of the macromonomers. Side reactions may be accounted for in calculation of DP n by including a term for the extent of reaction, as described below in the discusεion following General Procedures I-III.

The number average degree of polymerization DP n is indicated in structural formulae, as in structure (1) , by "n".

Compounds having structure (1) or (2) are rigid-rod macromonomerε having reactive end groupε. Such macromonomers are rigid or stiff on both the microscopic and macroscopic level. These macromonomers can be incorporated into other polymers via the two reactive end groups, E, and will impart stiffneεε and strength to the resultant polymers. Compounds of this type are sometimes called telechelic polymers or telechelic oligomers. The distinction between oligomers and polymers is that the

properties of an oligomer change measurably on changing the degree of polymerization by one, while for a polymer adding an additional monomer unit has little effect on properties. Since the range of DP n (>6) considered here covers both oligomers and polymers, and since thiε technical distinction is not of great importance to the applications of these compounds, we will use the term macromonomer to imply the entire range from oligomers to polymerε. In macromonomers having structure (2) , if' only one of the A's iε nitrogen, for example if A 4 is N, substituted polypyridines of εtructure (3) reεult:

If only A 1 and A 2 are N, the monomer unit iε a pyridazine; if only A 1 and A 3 are N, the monomer unit is a pyrazine, if only A 1 and A 4 are N, the monomer unit iε a pyrimidine. If three A'ε are N, the monomer unit iε a triazine. Other heterocyclic monomer units are included if some of the G's are bridging, for example, if G 1 and G 2 are -CHCHCHCH-, and A 3 is N, the monomer unit is an isoquinoline.

Macromonomerε having the structure (2) include compounds of the structure (1) as a subset. It is poεsible to have rigid-rod macromonomers in accordance with the present invention comprising several types of monomer units, each with a different set of A's and G's, i.e., each A 1 , A 2 , A 3 and A 4 on each monomer unit, independently is C or N, and each G 1 , G 2 , G 3 , and G 4 on each monomer unit, independently is H or a solubilizing side group. In other words, adjacent monomer units need not be identical. Macromonc ers compriεed of different

monomers are copolymer-type macromonomers and are usually prepared using more than one monomer.

Aε εtated above, the number and type of side groups necessary to impart solubility will depend on the solvent, n and the nature of E. If n is small, only a few side chains will be needed for solubility. That is, only some of the monomer units in each chain may be substituted; the rest are unsubstituted, i.e., the G's are all H. Where n is very small and E aids solubility, all the G's may be H. Where n is large, solubility may be maintained by using more non-H G's per chain or by using G's with higher molecular weight. In many cases, the macromonomer will have exactly one non-hydrogen G per monomer unit, i.e. G,,=εolubilizing group, G 2 =G 3 =G 4 =H. Structures (1) and (2) are meant to imply both homopolymers and copolymers where not all monomer units have the same set of G's.

The macromonomers of the present invention may interact differently with different classes of flexible polymers, for example, addition polymers and condensation polymers. A nonlimiting list of flexible polymers that can incorporate the macromonomers of the present invention includes polyacetals, polyamides, polyimides, polyesters, polycarbonates, polyamide-imides, polyamide-eεters, polyamide ethers, polycarbonate-esters, polyamide-ethers, polyacrylates; elastomers such as polybutadiene, copolymers of butadiene with one or more other monomers, butadiene-acrylonitrile rubber, styrene-butadiene rubber, polyisoprene, copolymers of isoprene with one or more other monomers, polyphosphazenes, natural rubber, blends of natural and synthetic rubber, polydimethylsiloxane, copolymers containing the diphenylsiloxane unit; polyalkylmethacrylateε, polyethylene, polypropylene, polystyrene, polyvinylacetate; polyvinylalcohol, and polyvinylchloride.

Reinforcing Condensation Polymers

Rigid segmentε may be introduced into a wide variety of condensation polymers through the use of the rigid-rod macromonomerε of the preεent invention. In one embodiment, the macromonomer is added during the polymer forming reacting (polymerization) of the polymer to be εtiffened. The polymer to be εtiffened and/or εtrengthened will be referred to as the flexible polymer, regardless of its absolute stiffness. In one embodiment, in addition to being rigid, the macromonomer will disεolve in the flexible polymer polymerization dope and have functionality enabling it to take part in the polymerization reaction. In another embodiment, the initially formed flexible condenεation polymer iε isolated, and a solvent is selected for both the macromonomer and the flexible polymer. The flexible polymer and macromonomer are redissolved, and the macromonomer reacts with the originally formed flexible polymer. Macromonomers may also be dissolved in the melt of the flexible polymer, where reaction of the end groups may then occur.

Several types of condensation polymerε may be distinguished. Condensation polymers may include a single monomer, usually referred to as an A-B monomer:

X A-B > —_-A-B-_ n

Alternatively, two complementary difunctional monomers, usually referred to as A—A and B—B may be condensed:

X A-A + X B-B > —f—AA-BB—_- n .

Where the rigid-rod macromonomers are uεed in a condenεation polymerization, they may be conεidered A—A (or B-B) type monomers. That is, the two reactive end groupε E can be considered to be the A-A (or B-B) type end groups typically described in condensation polymerization

εyεtemε. A-A, B-B, and A-B type monomers are described in U.S. Patent No. 4,000,187 to Stille, incorporated herein by this reference. For purposes of the present invention, the designation of particular monomers as being "A-A" or "B-B" iε arbitrary, so long as A and B are complementary functionalities. Thus A-A can represent a diamine, e.g., and B-B a diacid, and vice versa. If more than one type of macromonomer is used they may be conveniently distinguished by denoting them by "AMA", "A'MA"', "BMB", "B'MB"', and so forth.

Nonlimiting examples of A-A and B-B type monomers include diamine-type monomers such as p-phenylenediamine, m-phenylenediamine, oxydianiline, methylenedianiline, tetramethylenediamine, hexamethylenediamine; diol-type monomers such as resorcinol and hexanediol; bisaminoketone , biεthiols; diacid-type monomers such as adipic acid, adipoyl chloride, esters of adipic acid, terephthalic acid, terephthaloyl chloride, esters of terephthalic acid; bisketomethylenes, bis(activated halides) such as chlorophenyl sulfone, and the like.

Nonlimiting examples of A-B type monomers include amino acids, amino acid esters, activated halides such as 4-fluoro-4'-hydroxybenzophenone, lactams (e.g., capro- lactam) , lactones, and the like. Several typeε of reinforced polymers and copolymers are posεible with rigid macromonomers. Let AMA (or BMB) represent a rigid macromonomer. In the εimplest case AMA is condensed with a B-B monomer:

AMA + B-B > —f—AMA-BB-r n .

The resulting copolymer will incorporate rigid AMA macromonomer blocks separated by εingle B—B type monomer unitε. A copolymer alεo ' can be formed uεing AMA macromonomers in conjunction with a second A—A monomer having similar end functionality, and a B—B monomer:

x A-A + y AMA + z B-B > - — AA-BB / AMA-BB— _ n

where the symbol "/" indicates a random copolymer.

The relative amount of rigid segments is determined by the ratio of x to y, that is by the ratio of A—A monomer to AMA macromonomer used. Aε iε known in the art, the degree of polymerization, indicated by n, may be controlled by controlling the monomer balance, that is the ratio of B—B monomer to the total of A—A and AMA monomers, where x+y=z iε perfect balance and gives highest n.

Rigid macromonomers AMA when used with A—B monomers result in tri-block copolymers when the molar amount of A—B monomer is large relative to AMA:

2X A-B + AMA > —[—AB ] χ [ AMA ] [ BA—_- χ .

In general the macromonomer will form the center block with AB blockε at the endε. If A—B iε not in molar excess, mixtures of di and tri blocks, e.g., may reεult. More complex mixtures of rigid macromonomers with

A—A, B—B and A—B monomers are also possible. Order of addition and control of monomer imbalance can be used to create complex block copolymerε. Any set of A—A, B—B and A—B monomers which will co-condense with an AMA (or BMB) type macromonomer will be called complementary monomers. For example, terephthalic acid and ethylene glycol are complementary monomers that will condense with the AMA-type macromonomers of the present invention. Similarly, a co-polyester can be formed by condensing AMA-type macromonomers having structure (1) or (2) with one or more complementary monomers such as biscarboxylic acids, biscarboxylic acid halides, biscarboxylic acid esters, bisdiols, hydroxycarboxylic acids, lactones, and the like. Two variables which may be used to control the properties of the copolyπers .having macromonomers

incorporated therein are: the average length of the rigid segments, L r , which is proportional to DP n , and the weight fraction of rigid segments in the copolymer, W p .

If A—B and/or A-A type monomers are present along with AMA and B-B type monomers, W p is lowered. The molecular weight ratio can also be changed by changing the macromonomer M.

Reinforcing Thermoset Resins The rigid-rod macromonomers of the present invention may also be used to form thermoset resins, either alone or in conjunction with existing thermoset formulas to impart strength, stiffneεε, and/or a lower coefficient of thermal expansion. Thermosets are often formed in stages, where monomers are allowed to react to a limited extent to give a processable resin, which iε cured in a second stage, often by heat treatment. Thermosetε are typically crosslinked, and the stages are defined by the degree of crosslinking. Aside from the insoluble, infusible nature of the resulting cured thermoset, the chemistry is similar to condensation polymers. Diols, polyols, diamines and polya ines are commonly used thermoset precursors that will react with the macromonomers of the present invention. Rigid-rod polymers heretofore have not been used in thermosets, primarily because it is commonly thought that rigid-rod polymers are not soluble in reεin systems, including solutions of resins or pre-polymers used to prepare thermoεet reεins. The rigid-rod macromonomers of this invention, however, are soluble in common solvents, and can be made compatible with various resin systems by proper choice of side groups, G. The end groups E also should be compatible with the cure chemistry of the thermoset. Typically, but not necessarily, E will be chosen to match the reactive groups in -he thermoset. For example, E should be an epoxy group or an amino group for use with

an epoxy resin, or a phenol group for use with phenolic resins. It is also usually desirable for the cure temperatures of the end groups E and the thermoset to be similar. Nonlimiting examples of thermoset systems which can incorporate the rigid-rod macromonomers of the present invention are: allyl resins, benzophenonetetracarboxylic acid or its anhydride, bisacetylene resins, bisbenzocyclobutene resins, bisbiphenylene resins, bisphenoltetracarboxylic acid or its anhydride, diepoxides, epoxy resinε, formaldehyde and paraformaldehyde-baεed reεins, furan resins, phenolic resins, polyepoxides, pyromellitic acid or its anhydride, trioxaneε, phenol-formaldehyde resinε, novolac resinε, reεole reεinε, resorcinol-formaldehyde reεins, silicone reεins, urethanes, melamine reεinε, isocyanate resins, resinε based on cyanuric acid and cyanuric chloride, polyamic acids, polyamide resins, crosslinked polyamides and polyesters, unsaturated polyeεter resins, urea resins, vinyl ester resins, and natural resins, gums, lacquers and varniεheε.

The rigid-rod macromonomers of the present invention may alεo be uεed alone to form thermoεetting resinε. In this case, the side groups G are not needed for solubility in, or compatibility with, other reεins, polymerε or monomers, but impart some degree of thermoformability. In general, rigid-rod macromonomers with smaller n will have lower glass transition temperatures and melting temperatureε, and will be more readily heat processed. As is known in the art it is necessary to adjust the melting temperature and cure temperature so that the polymer system does not cure before it is thermoformed, and so that unreasonably high temperatures are not needed for curing.

When used as a thermoset, the rigid-rod macromonomer must have εufficient flow propertieε to be shaped or processed, typically at elevaied temperatures. Thus, the side groups G and the DP n are chosen to allow some degree

of thermoformability. In general, larger and more flexible G's increase procesεability, aε doeε lower DP n . On the other hand, smaller G'ε and larger DP n 'ε enhance stiffness and strength, so that optimum sizeε for DP n and G can be found. Different processing methods will have different require entε; for example, sintering doeε not require complete melting, whereas injection molding requireε low viscosity melts. The reactive end groups E of a rigid-rod macromonomer for use as a thermoset should have a cure temperature consistent .with the required processing temperature. If the cure temperature is too low, the material will cure before proceεsing can be completed. If the cure temperature is too high, the material may not fully cure or the flow properties at the curing temperature may be undesirable. In an exemplary and nonlimiting embodiment of the invention, cure is effected by using a curing agent such as a catalyst or low molecular weight crosslinking agent.

Non-limiting examples of reactive end groups with good cure temperatures are maleimides, nadimides, and acetylenes.

Reinforcing Addition Polymers

The rigid-rod macromonomers of the present invention also find use as pre- and post-polymerization additives. As post-polymerization additives, rigid-rod macromonomers may be used in compounding, blending, alloying, or otherwise mixing with preformed polymers, preformed blends, alloys, or mixtures of polymers. In these caεeε the εide groupε and end groupε help make the macromonomer compatible with the polymer to be reinforced. Such compounding, blending, alloying etc. may be done by εolution methodε, melt proceεεing, milling, calendaring, grinding or other physical or mechanical methods, or by a combination of such methods. Chemical reaction of the end groups E of the macromoromer with the polymer into which the macromonomer is being incorporated may take

place during εuch processes or E may simply make the rigid segment M compatible with the performed polymer, for example via non-covalent interactions, including hydrogen bonding, ionic bonding and van der Waals forceε. Mechanical heating or εhearing can initiate such chemical proceεεeε which will effect the final composition.

For many addition polymers, where it is not convenient to introduce the macromonomer during polymerization, the rigid-rod macromonomer may be introduced by the above methods in post-polymerization processeε. Nonlimiting exampleε of εuch polymerε include, polyethylene, polypropylene, polyvinylchloride, polyεtyrene, polyacrylonitrile, polyacrylateε, ABS, SBR, and other homopolymerε, copolymers, blends, alloys etc. The above methods may also be used with condensation polymers.

As pre-poly erization additives, the macromonomers of the present invention are added along with other monomers to be polymerized to yield the final polymer. Optionally, conventional fillers such as carbon black, silica, talc, powders, chopped or continuous fibers, or other macroscopic reinforcing agents as are known in the art can be added to the polymer systemε which incorporate the rigid-rod macromonomers of the present invention. In embodiments of the invention in which macroscopic reinforcing agents are added, the macromonomers of the present invention add additional εtrength, εtiffneεs, creep reεiεtance, fire reεistance, toughnesε and/or other properties to what would otherwise be conventional co poεiteε and reεins and also serve to decrease the amount of filler used in a conventional composite or resin.

The rigid-rod macromonomers of the present invention may be used to enhance the properties of all types of natural and synthetic polymerε, including but not limited to, addition polymers, condensation polymerε, ring opening polymerε, thermosetε, thermoplaεticε, elaεtomerε, rubberε.

εiliconeε, silicone rubbers, latexes, gums, varnisheε, and cellulose derived polymers.

When uεed with rubbers and elastomerε having a polymer network the rigid rod macromonomers act to modify such properties aε strength, abrasion resistance, resilience, wear resistance, creep, and the like, and may be used to replace or eliminate the use of fillers.

The reinforced polymerε of the preεent invention may be uεed to fabricate filmε, fiberε, and molded parts having improved properties, especially improved mechanical properties, relative to the same material without reinforcement by rigid-rod macromonomers. Other non-limiting examples of applications of the reinforced polymers of the preεent invention include adheεiveε, elaεtomerε, coatings, membranes, plastic sheet, and sheet molding compounds.

Preparation of Macromonomers Having Functional End Groups In order to introduce rigid segments into a wide variety of polymers a rigid-rod type macromonomer is first prepared. The poly-1,4-phenylene structure (1) and aza derivatives (εtructure (2)) offer a εtiff, strong, thermally stable, and chemically inert backbone, of potentially low cost. Several methodε may be used to prepare poly-para-phenylenes and aza analogs. The simplest rely on reductive condensation of 1,4-dihaloaromatics, either by way of a Grignard reagent, or directly in the preεence of a reducing agent such as zinc metal. A catalyst, such aε bis(triphenylphoεphine) nickel (II) chloride or l,4-dichloro-2-butene iε uεed. Para-bro oaryl boronic acidε may be coupled uεing palladium baεed catalysts. Polyphenylenes have also been prepared by methods which do not give excluεive para linkage, εuch as Diels-Alder condensation of biε-acetyleneε and biε-pyroneε, polymerization of 1,3-cyclohexadiene followed by aromatization and oxidative polymerization of benzene.

The rigid-rod macromonomers of the present invention may be made by these and other methods, keeping in mind the special requirements of side groups and end groups. The catalytic reductive coupling of 1,4-dihaloaryls is preferred, (and more preferably, reductive coupling of 1,4-dichloroaryls) because of its εimplicity and wider tolerance of functional groups. The special nature of the rigid-rod macromonomers of the present invention muεt be taken into account in order to εucceεsfully prepare these macromonomerε.

The synthesis of even short rigid-rod molecules is made difficult by their low solubility. For example, poly-l,4-phenylene (structure (1), where G, through G 4 and E are each hydrogen) compounds with n greater than about 8 are esεentially insoluble in all solventε, and are infusible. Solubility is achieved in the present invention by appropriate choice of εolubilizing groups G, bearing in mind the solvent systems to be employed. For example, for polar aprotic solvents, such as dimethylforma ide or N-methylpyrrolidone, polar aprotic εide groupε εuch as amides and ketones are appropriate. For protic solvents, e.g. water, acidε or alcoholε, ionizable εide groupε, e.g. pyridyl or εulfonate, might be considered. The solubilizing substituent may also act to twiεt the main chain phenylene unitε out of planarity (although the main chain remains straight and not coiled) . Phenylene pairs with subεtituents at the 2,2' positionε will be twiεted out of planarity by εteric repulεion. Since planar phenylene chains pack more efficiently, a twisted chain will be more soluble. One means of solubilizing rigid-rod molecules iε to provide adjacent phenylene pairs with substituents ortho with respect to the other phenylene of the pair. Even occaεional 2,2.' side groupε will disrupt packing and enhance solubility. Another means of improving εolubility is to decrease the order (increase the entropy) of the side groups, for

example by a random copolymer with two or more different types of substituent . Other mechanisms of increasing solubility may also be possible.

Nonlimiting examples of G are: phenyl, biphenyl, naphthyl, phenanthryl, anthracenyl, benzyl, benzoyl, naphthoyl, phenoxy, phenoxyphenyl, phenoxybenzoyl, alkyl, alkyl ketone, aryl, aryl ketone, aralkyl, alkaryl, alkoxy, aryloxy, alkyl ester, aryl ester (esters may be C-bound or O-bound) , amide, alkyl amide, dialkyl amide, aryl amide, diaryl amide, alkyl aryl amide, amides .of cyclic amines such as piperidine, piperazine and morpholine (amides may be CO-bound or N-bound) , alkyl ether, aryl ether, alkyl sulfides, aryl sulfides, alkyl sulfones, aryl sulfones, thioether, fluoro, trifluoromethyl, perfluoroalkyl, and pyridyl, where alkyl is a linear or branched hydrocarbon chain having between 1 and 30 carbon atoms, and aryl is any single, multiple or fused ring aromatic or heteroaromatic group having between 3 and 30 carbon atoms. Flourine-substituted analogs of the above-identified εide groups may also be used.

G 1 and G 2 , and/or G 3 and G 4 may be interconnected to form bridging groupε. Nonlimiting exampleε of εuch groupε and the monomer unitε that result are shown below:

G 1 G Resulting Monomer Unit

Solubilizing side groups G may also be oligomeric or polymeric groups. Using side groupε which are functionally equivalent to the flexible polymer to be εtrengthened increaεes the compatibility of the rigid segments with the flexible segments. A nonlimiting example is the use of a macromonomer, denoted "M o ," bearing oligocaprolactam side groups G, as a comonomer with a caprolactam in the preparation of poly(hexamethyleneadipamide-co-M o . go ) .

For cases where the monomer unit of the macromonomer is unsymmetrical about the plane perpendicular to the polymer axis and centered on the monomer unit, for example if G 1 is benzoyl and G 2 , G 3 , and G 4 , are hydrogen, isomeric forms of the macromonomer exist. The monomers can link excluεively head-to-tail to form a regular εtructure. The monomers can also form a regular structure by linking exclusively head-to-head and tail-to-tail. Other more complicated structures and a random structure are also poεεible. The particular monomerε and conditionε uεed to form the macromonomer will determine the detailed

εtructure. Aε uεed herein, εtructureε ' (1), (2) and (3) repreεent all iεomeric cases, either regular or random.

More than one type of monomer may be used to prepare the macromonomers of the present invention. Depending on the monomer used and the conditionε of preparation, the resulting macromonomer may be a random copolymer or it may have additional order, as in a block, diblock, multiblock, or alternating copolymer. Copolymerization is a convenient way to adjust the number and type of side groups G.

It will sometimes be desirable to include 1,4-di- chlorobenzene as a comonomer, so that some monomer unitε will be unsubstituted, i.e., G 1 = G 2 = G 3 = G 4 = H. The unsubstituted units will increase stiffness, but lower solubility. Unsubstituted monomer units will also lower cost.

Reactive End Groups

The reactive end groups, E, are chosen to allow copolymerization with the flexible polymer to be stiffened or strengthened. In one embodiment of the invention, an end group is interconnected with the main chain of the rigid-rod macromonomer by reacting a chemical moiety referred to herein as an "endcap" or "endcapper" during or after polymerization of the monomer units that form the main chain of the macromonomer.

Reactive end groups can be further derivatized to provide additional examples of end functionality E, aε for example during deprotection, or tranεformation of one reactive group into another, for example reduction of a nitrile into an amine, or an aldehyde into an alcohol, or an amine into an imine. More than one type of end group may be preεent. For example, if three different endcapperε are uεed during preparation of the macromonomer, a diεtribution of end groups will result. '

The relative reactivity of endcapper and monomer must also be taken into account during macromonomer

preparation. If the endcapper is significantly more reactive than the monomer it will be depleted before the monomer, resulting in some chainε without end groupε and an irregular molecular weight diεtribution. The endcapper may be added after the reaction has proceeded to a desired molecular weight, as determined for example by viscosity; however, in this case exceεε endcapper may be used, and there may be formation of some "endcapper dimer." If the endcapper is inexpensive, the dimer may be tolerated and, if necesεary, removed in a later purification step.

It should be noted that impurities and side reactions will act to limit the molecular weight and will result in some of the end groups being different from the desired group E. It will often be the case that many chains are terminated at one, and to a lesεer extent both, ends by non-reactive end groups derived from adventitious endcappers or εide reactionε. This will not usually detract from the utility of the rigid-rod macromonomers of the present invention. The small amount of macromonomer chains having a εingle reactive endgroup will εtill be able to participate in later processing. The even smaller amount with both ends non-reactive is not likely to acrophase separate due to its low concentration and affinity toward the larger amount of doubly terminated macromonomerε.

It may be desirable to prepare macromonomers having several types of reactive end groupε. Thiε may be accompliεhed by adding several different endcappers during syntheεis of the macromonomer. It may be desired that the different end groups have varying degrees of reactivity. It may alεo be desired that each macromonomer have only one reactive end group, the other being relatively inert. If two endcappers are used during macromonomer εyntheεiε, typically a statistical distribution of end groups will result, consiεtent with the relative reactivities of the endcappers and the growing macromonomer chain. Such a statistical distribution may be εeparated by methodε known

in the art, for example chro atography, to yield substantially pure samples of macromonomers having two end groups, E and E' . Macromonomerε with a εingle reactive end group and a single inert end group may be useful in addition polymerizations where crosslinking must be avoided.

If the macromonomer is prepared using a transition metal catalyst, and the syntheεiε proceedε through metallo-terminated chains as intermediates, the molecular weight of the resulting macromonomer may be controlled by the catalyεt-to-monomer ratio. In thiε case the polymerization will cease when the number of chain ends (capped with catalyεt) equals the number of catalyst molecules initially present. The DP n will equal twice the monomer to catalyst ratio. End groups E then may be introduced by adding reagents which displace the metallo end groups. The metallo-terminated macromonomer is thereby quenched. Introducing end groups by quenching avoids any problems of relative rates of endcapper and monomer.

A macromonomer bearing a particular end group, for example, an amine or alcohol, may be prepared by first endcapping or quenching with a precursor which is subsequently transformed into the desired end group. The precursor group need not be an amine or alcohol, e.g., and may be unrelated to the final end group except that an appropriate chemical transformation exists to convert the precursor to, e.g., an amine or alcohol. For example, a fluorobenzophenone precursor group can be converted into a variety of amines or alcohols by nucleophilic displacement of fluoride.

A ineε form an important class of end groups. Amine-terminated macromonomerε can be uεed with polyamides, polyimides, polyimidamides, polyureas, polyi ines, and other polymers derived from bisamine monomers. Amine-terminated macromonomers can also be uεed with polymerε not derived from biεamine monomers, such aε

epoxides and polyesters; in the latter case the macromonomer would be incorporated into the polyester chain via amide links. Preparation of the amine terminated macromonomers can involve protection/ deprotection of the amine groups, for example as a succini ide, or an amide.

The following are nonlimiting examples of amine derived end groups: amino, aminoalkyl, aminoaryl, aminoalkaryl, aminoaralkyl, aniline, C-alkylaniline, N-alkylaniline, aminophenoxy, and aminobenzoy.l. Other substituted and/or chemically protected aniline side groups may also be used. The following structures illustrate non-limiting examples of amine-derived end groups. Typical amines, amino alkylε, and amino aralkylε are given by the following εtructures (4a-4d) :

(a) (b) (c) (d)

where R and R' may be independently chosen from: hydrogen, alkyl, aryl, alkaryl, aralkyl, alkylketone, arylketone, alkylether or arylether, where alkyl and aryl are as defined above, x ranges from one to about twenty, and X is a difunctional group chosen from: nil, phenyleneoxy, ketophenylene, phenylenesulfone, -0-, -NH-, keto, -S0 2 ~, aryl, alkyl, alkaryl, or aralkyl. R and R' include bridging groups, such as -CH 2 CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 OCH 2 CH 2 -, and -CH 2 CH 2 CH 2 CO-. R and R' will often be used as protecting groups, to be removed at a later stage of processing, and as such include common amine and alcohol protecting groups, nonlimiting examples of which are: trimethylsilyl, trityl, tetrahydropyranyl, tosyl, methoxyiεopropylidene, imide, imine, amide, eεter, and the like.

Typical amino aryl end groups, E, have the structures

(5a-5c) :

(a) (b) (c)

where X, R, R' and the groups G 1 through G 4 are aε defined above. Aniline end groups have the above structure where X is nil and the G's are all hydrogen.

Aminophenoxyphenyl and aminobenzophenone end groupε have the general εtructures (6a and 6b) :

(a) (b)

where R and R' are as defined above.

It should be noted that some endcappers can react to form dimers. The extent of εuch reactions is determined by the ratio of endcapper to monomer, and is usually very small. This is usually not of significance, however, certain endcappers, for example N-(4-chlorophenyl)- succinimide, will, when dimerized, form benzidine or benzidine derivatives, which are highly toxic. If such materials are used proper precautionε should be taken. Where possible such materials should be avoided. The imides comprise a second clasε of end groupε. The maleimides are represented by the structures 4a-6b, where R and R' together equal the bridging group -C0CH=CHC0-.

Biεmaleimides are commercially valuable in thermoset resins. Rigid-rod macromonomers with maleimide end groups are uεeful for εtrengthening conventional bismaleimide resins. They may also be used alone aε novel biεmaleimide reεins containing rigid-rod elements. Other reactive imide end groups are contemplated by the present invention, including the nadimide end groups. Unreactive imides may also be used; succinimide may be used as a protected form of amine. Closely related to the amines are the amides. In structures 4a-6b, if R or R' = -COalkyl or -COaryl, the end groups are amides. If R or R' = -COCH=CH 2 , the end groups are acrylamides. Amide functionalized macromonomerε are also useful in reinforcing polyamides, such as nylon. Amide groupε may react by tranεamination with the flexible polymer during polymerization or compounding.

Another important claεε of reactive end groups are alcohols and ethers. Diol-capped macromonomers may be used as comonomers with other diol monomers. Polyesters, polycarbonates, urethanes, and polyethers are nonlimiting exampleε of polymers prepared from diols. Alcohol macromonomers may also be used in non-diol derived polymerε, for example, polyamides, where linkage to the macromonomer iε through eεter linkε. Both the amine macromonomerε and the alcohol macromonomerε may be used to replace dibasic monomers, in general, in condensation polymerizations.

Nonlimiting examples of alcohol-terminated macromonomers are: hydroxy, hydroxyalkyl, hydroxyaryl, hydroxyalkaryl, hydroxyaralkyl, phenol, C-alkylphenol, O-alkylphenol, hydroxyphenoxy, and hydroxybenzoyl. The following nonlimiting structures (7a-7d) illustrate exemplary alcohol end groups:

(a) (b) (c) (d)

where R, x and X are as defined in the discussion following structures (4a-4d) .

The following structures (8a-8c) are representative of phenolic end groups:

(a) (b) (c)

where G 1 - G 4 , R, and X are as defined above.

The following structures (9a-9c) are more specific exampleε of the above structures:

(a) (b) (c)

where R iε aε defined above.

For R=H, the εtructures (9a-9c) represent phenol, hydroxyphenoxyphenyl, and hydroxybenzophenone end groups, respectively. For R=ketoalkyl or ketoaryl, the structures (9a-9c) are phenylesters. R may contain additional reactive groups, such as acrylate or vinyl. In structures 7a through 9c, for R = -C0CH=CH 2 the end groups are

acrylates, for R = -CH=CH 2 the end groups are vinyl ethers.

Carbonyl-containing reactive end groups including acetyl, formyl, carboxy, ester, amide, acrylate, ketoalkyl and ketoaryl are represented by the εtructureε (lOa-lOd) where Y is CH 3 , H, OH, OR, NRR' , vinyl, alkyl and aryl reεpectively, and G 1 - G 4 and X are as defined above. Amides may be C- or N-bound; see structures 4a-6b above

(a) (b) (c) (d)

Macromonomers of the present invention having carboxy end groupε may be uεed to reinforce polyeεterε, polycarbonates, and polyamides.

Acetylene end groups have the structureε (lla-lld) where Y is -CCH. Olefin end groupε have the structures (lla-lld) where Y is -CH=CH 2 . Halide, cyano, cyanate, and iεocyanate end groups have the structures (lla-lld) where Y is -halogen, -CN, -OCN and -NCO respectively.

(a) (b) (c) (d)

Reactive end groups may also be strained ring compounds including epoxides, biphenylenes and benzocyclobutenes.

In situationε where the reactive end groups E are reactive with each other, both the end groups E and the groups on the flexible polymer or monomer with which they are ultimately to react should be selected so that the relative rates of reaction are approximately equal. This will enhance the randomness of the distribution of the macromonomer within the final polymer.

When the rigid-rod macromonomers of the present invention are used aε pre-polymerization additiveε, they are preferably added in an amount εuch that W r ranges from 1 percent to 60 percent, i.e., the rigid-rod macromonomers make up from 1 percent to 60 percent of the weight of the resulting polymeric material. Such a range takes into account the trade off between increased cost and decreased processability that results as the value of W p increaεes in magnitude. In practice, it iε deεirable to experimentally determine the optimal weight fraction required for particular applicationε.

In certain circumεtances, it may be desirable for W p to exceed 60 percent of the total weight of the copolymeric material. For instance, when the rigid-rod macromonomers of the present invention are uεed alone as thermosetting resins, W r can approach the limiting value of 100 percent, depending on the size, frequency, and orientation of the crosεlinking groupε formed during curing. In addition, suitable endcapped macromonomers could be utilized to prepare new rigid-rod copolymers wherein all of the segments are rigid. For instance, if a macromonomer with amino endgroupε were reacted with pyromellitic dianhydride (PMDA) , the resulting copolymer would be a rigid-rod after complete imidization. The polyamic acid prepolymer should retain reasonable procesεability and could be fabricated into deεirable εhapeε before effecting imidization to the final rigid-rod polymer.

There will alεo be an optimal range for L r , typically between 8 and 500 repeat uπ:_s, beyond which additional

increases in length will have little further effect on strength or stiffness but will reduce processability. Optimal ranges for both W p and L r can be readily determined by one skilled in the art. The aspect ratio of the macromonomers incorporated into copolymers also affects the physical properties of the copolymers, particularly the procesεability thereof. The aspect ratio of a macromonomer is defined to be the length to diameter ratio of the smallest diameter cylinder which will enclose the macromonomer segment, including half the length of the terminal connecting bonds, including hydrogen but not any attached side groupε, such that the axis of the cylinder is parallel to the connecting bonds in the εtraight segment. For rigid-rod polyphenylenes, and aza analogs, the aεpect ratio iε approximately equal to the DP n , becauεe the phenylene monomer unit has an aspect ratio of about one.

When the average aspect ratio of the macromonomers is less than about 7 or 8, the macromonomers typically do not impart the desired strength and stiffness into the final polymer. As the aspect ratio is increased, the mechanical properties of the reinforced polymer improve. All other factors being equal, a longer rigid-rod segment will provide a greater increase in stiffness than a shorter rigid-rod segment. This is true for reinforcement of any geometrical type of polymer, e.g., linear, branched, crosslinked, and so forth. It is known in the art that for conventional fiber-containing composites mechanical properties improve rapidly up to aspect ratios of about 100, after which there are lesεer improvements. A similar situation has been found to exist for rigid-rod macromonomers.

Although mechanical properties of the polymers improve as the aspect ratio increases, processing becomes more difficult. Viscosities of polymer solutions are dependent on the DP n of tr.e polymer. Viscosities of

rigid-rod polymerε increase much more rapidly with DP n than viscoεitieε of flexible polymerε. Similarly, melt viεcosities of flexible polymers reinforced with rigid-rod polymers increaεe with the DP n of the rigid εegmentε, making thermal processing more difficult as DP n increaseε.

There iε generally a trade-off between improved mechanical properties and difficulty of processing, resulting in an optimal aspect ratio and DP n for the rigid-rod macromonomers. For example, if it is desired to increase the modulus of a flexible polymer reinforced with rigid-rod macromonomers, the aspect ratio of the macromonomer could be increased, but the melt and solution viscosity will increase and solubility of the rigid-rod macromonomer will decrease, making processing and preparation more difficult. DP n 's of about 100 are often optimal; however, higher or lower DP.'s may sometimes be desirable.

The following procedures provide three exemplary methods for preparing the rigid-rod macromonomers of the present invention, an exemplary method of preparing succinimide-protected amineε, and other synthetic methods used in the present invention. More specific methods are given below in the Examples, which refer to the General Procedures. The choices and amounts of reagents, temperatures, reaction times, and other parameters are illustrative, but are not considered limiting in any way. Other approaches are contemplated by, and within the scope of, the present invention.

It will also be recognized by one skilled in the art that for any given procedure certain functionalities will not be tolerated. For example, .in General Procedures I-III protic side groups, end groups, εolventε, or any εource of acidic protons are not tolerated. Other procedures, e.g., that of Example 67 using a palladium catalyst, will tolerate protic groups and solvents. As a second example, nickel catalyzed couplings are known to be senεitive to nitro groups and ortho-dihalo groups.

For the nickel catalyzed coupling reactions used here, many variations on catalyst composition, accelerators, solvent, reducing agent, order of addition, and the like are possible. For example, phosphines other than triphenylphosphine have been used with nickel coupling catalysts, including triethylphosphine and bis(diphenylphosphino)ethane; electrochemical reduction has been used as an alternative to zinc; accelerators have included chloride, bromide, iodide, and aromatic nitrogen heterocycles such as 2,2'-bipyridine; and solvents have included ethers, acetone, dimethylformamide, and acetonitrile.

General Procedure - I. (Preparation of Macromonomer by Simultaneous Addition of Monomer and Endcapper)

Anhydrous bis(triphenylphoεphine) nickel(II) chloride

(0.25 g; 0.39 mmol), triphenylphosphine (0.60 g; 2.29 mmol), sodium iodide (0.175 g, 1.17 mmol), and 325 mesh activated zinc powder (approximately 1.5 mmol / mmol monomer) are placed into a 25 ml flask under an inert atmosphere along with 7 ml of anhydrous N-methylpyrrolidinone (NMP) . This mixture is stirred for about 10-20 minuteε, leading to a deep-red coloration. A εolution of between 3-20 mmol of monomer and between about 0.3 to 2.5 mmol endcapper in 8 ml of anhydrouε NMP is then added by syringe. After stirring for about 12-60 hourε at 50-60°C, the resulting viscous εolution is poured into 100 ml of 1 molar hydrochloric acid in ethanol to dissolve the excesε zinc metal and to precipitate the macromonomer. This εuspenεion iε filtered and the precipitate triturated with acetone and dried to afford a light yellow to white powder in 40-99% yield.

General Procedure - II. (Preparation of Macromonomer by Slow Addition of Endcapper to Monomer)

Anhydrous bis(triphenylphosphine) nickel(II) chloride (0.25 g, 0.39 mmol), triph-: .ylphosphine (0.60 g; 2.29

mmol), sodium iodide (0.175 g, 1.17 mmol), and 325 mesh activated zinc powder (approximately 1.5 mmol / mmol monomer) are placed into a 25 ml flask under an inert atmosphere along with 7 ml of anhydrous N-methyl- pyrrolidinone (NMP) . This mixture is εtirred for about 10-20 minuteε, leading to a deep-red coloration. A solution of between 3-20 mmol of monomer in 8 ml of anhydrous NMP is then added all at once by syringe, and between 0.3 to 2.5 mmol endcapper in 5 ml of anhydrous NMP is then added dropwise by syringe over a period ranging from about 15 to about 60 minutes with the reaction mixture held at 50-60°C. After stirring for about 12-60 hours, the resulting viscous solution is poured into 100 ml of 1 molar hydrochloric acid in ethanol to disεolve the exceεs zinc metal and to precipitate the macromonomer. This suspension is filtered and the precipitate triturated with acetone and dried to afford a light yellow to white powder in 40-99% yield.

General Procedure - III. (Preparation of Macromonomer by Adding Endcapper to Monomer at End of Reaction)

Anhydrous bis(triphenylphosphine) nickel(II) chloride (0.25 g, 0.39 mmol), triphenylphosphine (0.60 g; 2.29 mmol), sodium iodide (0.175 g, 1.17 mmol), and 325 mesh activated zinc powder (approximately 1.5 mmol / mmol monomer) are placed into a 25 ml flask under an inert atmosphere along with 7 ml of anhydrous N-methyl- pyrrolidinone (NMP) . This mixture is stirred for about 10-20 minutes, leading to a deep-red coloration. A solution of between 3-20 mmol of monomer in 8 ml of anhydrous NMP is then added all at once by syringe and the reaction mixture brought to 50-60°C. After a period ranging from about 15 minutes to about 24 hours (depending on the reactivity of the monomer) , a large excess (at leaεt about 5-10 mmol) of endcapper iε then added by syringe. Typically the color of the reaction mixture will

become green upon addition of the monomer and then evolve through orange and then back to red as the monomer is consumed. The endcap is optimally added just aε the reaction begins to develop the orange coloration. After stirring for about 12-60 hours, the resulting viscous solution is poured into 100 ml of 1 molar hydrochloric acid in ethanol to dissolve the excess zinc metal and to precipitate the macromonomer. This suspension is filtered and the precipitate triturated with acetone and dried to afford a light yellow to white powder in 40-99% yield.

The above procedures I-III describe macromonomer formation by reductive coupling of monomer precursors, e.g., substituted 1,4-dihaloaromatic compounds, in the presence of a catalyst, and reaction with endcappers. For the nickel catalyzed coupling reactions described in General Procedures I-III, it is believed that before quenching or workup, the nickel catalyst resideε at the end of the chain, and on completion of reaction functions as a chain terminator. Therefore, the length of the macromonomer chain will be largely determined by the molar ratios of monomer (U) , endcapper (E) and catalyst (C) :

cC U + eE > E (U^ E

where m, e and c are the number of moles of monomer, endcapper and catalyst, respectively.

Those skilled in the art will recognize that the DP n at the completion of the macromonomer-forming reaction can be calculated using the Carothers equation. Asεuming no chain limiting impuritieε, equal reactivity of monomer and endcapper, and that end groupε E are not counted when calculating DP n , the Carotherε equation for General Procedures I and II simplifieε to:

DP n = 2m/ (e+c)

Procedure III largely dependε upon quenching the nickel-terminated polymer chainε with an exceεs of endcapper so the degree of polymerization does not depend on e (because initially e=0) , and thus:

DP n = 2m/c

Methods for calculating required ratios of monomer, endcapper, catalyst, etc. given a desired DP n are known in the art for various types of polymerization reactions and conditions. It is often uεeful to experimentally determine the extent of reaction, p, by preparing a polymer in the absence of endcapper and measuring DP n . The extent of reaction p is then given by:

p = 1 - 1/DP.

This experimentally determined p may then be used by methods known in the art to calculate the molar amounts of monomer and endcapper required.

Of course, DP n or any other property, εuch aε viscosity, may be adjusted by trial and error, varying ratios of monomer, endcapper and catalyst experimentally to identify the desired range.

General Procedure - IV. (Preparation of succinimide protected amines)

The dry amine (0.5 mol) and succinic anhydride (0.5 mol) are dissolved in 2L dry toluene. Catalyst, p-toluenesulfonic acid (0.01 mol), is then added and the mixture iε held at reflux for 24 hours, using a Dean-Stark trap to collect water. After cooling, the product is precipitated with diethyl ether, filtered, waεhed with ether and dried.

General Procedure - V. (Removal ' of protecting groups)

In the cases where the functional end group is protected as an imide, amide, or eεter, the protecting groups are removed as follows: The protected macromonomer is suspended in 25 ml of 10% HC1 in ethanol and heated to reflux for six to twelve hours. This mixture iε neutralized with εodium hydroxide, filtered, washed and dried. Further purification by disεolution and precipitation by adding a non-solvent may be effected.

Preparation of 2,5-Dichlorobenzoyl Compounds

2,5-dichlorobenzoyl-containing compounds (e.g. 2,5-dichlorobenzophenones and 2,5-dichlorobenzamideε) can be readily prepared from 2,5-dichlorobenzoylchloride. Pure 2,5-dichlorobenzoylchloride iε obtained by vacuum diεtillation of the mixture obtained from the reaction of commercially available 2,5-dichlorobenzoic acid with a εlight excess of thionyl chloride in refluxing toluene. 2,5-dichlorobenzophenones (2,5-dichlorobenzophenone, 2,5-dichloro-4'-methylbenzophenone,2,5-dichloro-4'-meth- oxybenzophenone, and 2,5-dichloro-4'-phenoxy-benzo- phenone) are prepared by the Friedel-Craftε benzoylationε of benzene and εubεtituted benzeneε (e.g. toluene, anisole, diphenyl ether) , reεpectively, with

2,5-dichlorobenzoylchloride at 0-5°C using 2-3 mol equivalents of aluminum chloride as a catalyst. The solid products obtained upon quenching with water are purified by recrystallization from toluene/hexaneε. 2,5-dichlorobenzoylmorpholine and 2 ,5-dichloro- benzoylpiperidine are prepared from the reaction of 2,5-dichlorobenzoylchloride and either morpholine or piperidine, respectively, in toluene with pyridine added to trap the HC1 that is evolved. After waεhing away the pyridinium salt and any excesε amine, the product iε crystallized from the toiuer . solution.

Preparation of Activated Zinc Powder

Activated zinc powder is obtained after 2-3 washingε of commercially available 325 mesh zinc dust with 1 molar hydrogen chloride in diethyl ether (anhydrous) and drying in vacuo or under inert atmosphere for several hours at abut 100-120°C. This material should be used immediately or stored under an inert atmosphere away from oxygen and moisture.

The following specific examples are illustrative of the preεent invention, but are not conεidered limiting thereof in any way.

EXAMPLE 1 Preparation of a macromonomer of the structure (1), where G., is p-toluyl (-COC 6 H 4 -4-CH 3 ) _ G 2 through G 4 are hydrogen, E is 3-carbo__etho__yphenyl (-C 6 H 4 (COOCH 3 ) ) , and DP„ = 7.

Anhydrouε bis(triphenylphosphine)nickel(II) chloride (0.505 g; 0.77 mmol), triphenylphosphine (0.40 g; 1.53 mmol), sodium iodide (0.175 g, 1.17 mmol), and 325 mesh activated zinc powder (1.0 g, 15.3 mmol) were placed into a 25 ml flask under an inert atmosphere along with 7 ml of anhydrouε N-methylpyrrolidinone (NMP) . Thiε mixture was stirred for about 10-20 minutes, leading to a deep- red coloration. A solution of 2,5-dichloro-4'- methylbenzophenone (1.84 g; 6.94 mmol) and methyl-3- chlorobenzoate (0.32 g; 1.88 mmol) in 8 ml of anhydrouε NMP waε then added by εyringe. After stirring for about 18 hours at 50°C, the reaction mixture was poured into 100 ml of 1 molar hydrochloric acid in ethanol to disεolve the exceεε zinc metal and to precipitate the macromonomer. This suεpenεion waε filtered and the precipitate triturated with acetone and dried to afford a 42% yield of the macromonomer. Analyεis of the macromonomer by size exclusion chromatography (SEC) indicated a weight average molecular weight (relative to polystyrene) of 14,000 with a polydispersity of 1.4.

Proton nuclear magnetic resonance ( 1 H NMR; 500 MHz) spectroscopy indicated that the macromonomer consisted of a monomer-to-endcap ratio of 8.8:1.

EXAMPLE 2

Preparation of a macromonomer of the structure (1), where G 1 is p-toluyl, G 2 through G 4 are hydrogen, E is 3-carbometho_ryphenyl, and DP n » 7.

The procedure of Example 1 was followed, except that an additional 0.33 g of methyl-3-chlorobenzoate was added to the reaction mixture after about 3 hourε at 50°C.

After 4.5 hours, the reaction mixture waε worked up aε in

Example 1 to afford a 48% yield of the macromonomer.

SEC analysis (relative to polystyrene) indicated M H = 15,600 and polydispersity of 1.5.

EXAMPLE 3 Preparation of a macromonomer of the structure (1) , where G, is p-toluyl, G 2 through G 4 are hydrogen, E is 3-carbomethoxyphenyl, and DP n = 7.

The procedure of Example 2 was followed, except that the additional 0.33 g of methyl-3-chlorobenzoate was added after about 18 hours. After 24 hours, the reaction mixture was worked up as before to afford a 43% yield of the macromonomer. SEC analysiε (relative to polystyrene) indicated M H = 14,000 and polydisperεity of 1.4.

EXAMPLE 4 Preparation of a macromonomer of the structure (1), where G, is p-toluyl, the G 2 through G 4 are hydrogen, E is 3-carbomethoxyphenyl, and DP n = 16.

General Procedure I was followed, where the monomer was 2,5-dichloro-4'-methylbenzophenone (2.55 g; 9.62 mmol), the endcapper was methyl-3-chlorobenzoate (0.16 g; 0.96 mmol), and 1.0 g (15.3 mmol) of zinc was used.

After 18 hours the reaction was worked up to afford a 69%

yield of the macromonomer. SEC analyεis (relative to polystyrene) indicated M M = 29,500 and polydiεperεity of 3.0.

EXAMPLE 5

Preparation of a macromonomer of the structure (l), where G 1 is p-toluyl, G 2 through G are hydrogen, E is 3-carbomethoxyphenyl, and DP n » 30.

General Procedure I waε followed, where the monomer waε 2,5-dichloro-4'-methylbenzophenone (5.11 g; 19.27 mmol), the endcapper was methyl-3-chlorobenzoate (0.16 g; 0.96 mmol), and 2.0 g (39.7 mmol) of zinc was uεed. After 18 hours the reaction was worked up to afford a greater than 90% yield of the macromonomer. SEC analysiε (relative to polyεtyrene) indicated M H = 54,000 and polydispersity of 3.9. Proton nuclear magnetic resonance ( 1 H NMR; 500 MHz) spectroscopy indicated that the macromonomer consisted of a monomer-to-endcap ratio of 34:1.

EXAMPLE 6 Preparation of a macromonomer of the structure (1), where G 1 is p-toluyl, G 2 through G 4 are hydrogen, E is 3-carbomethoxyphenyl, and DP n » 30. The procedure of Example 5 was followed, but an additional 0.16 g of the methyl-3-chlorobenzoate endcapper was added to the reaction mixture after 6 hourε. After 18 hourε the reaction was worked up to afford a 95% yield of the macromonomer. SEC analysis (relative to polystyrene) indicated M H = 66,000 and polydisperεity of 3.8.

EXAMPLE 7

Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 3-carbometho_ryphenyl, and DP n = 16. Anhydrous bis(triphenylphosphine)nickel(II) chloride

(5.04 g; 7.7 mmol), triphenylphosphine (12 g; 45.75 mmol), sodium iodide (3.5 g, 23.35 mmol), and 325 mesh activated zinc powder (20 g, 306 mmol) were placed into a 500 ml round-bottom flask under an inert atmosphere along with 140 ml of anhydrous N-methylpyrrolidinone

(NMP) . This mixture was stirred for about 10-20 minutes, leading to a deep-red coloration. A εolution of

2,5-dichlorobenzophenone (48.36 g; 193 mmol) and methyl-3-chlorobenzoate (3.28 g; 19.2 mmol) in 160 ml of anhydrous NMP was then added. After stirring for about 3 days at 50°C, the viεcouε reaction mixture waε poured into 700 ml of 1 molar hydrochloric acid in ethanol to dissolve the excesε zinc metal and to precipitate the macromonomer. Thiε εuεpension was filtered and the precipitate triturated with acetone and dried to afford a 62% yield of the macromonomer. Analysis of the macromonomer by SEC indicated a weight average molecular weight (relative to polystyrene) of 37,000 with a polydispersity of 1.9.

EXAMPLE 8 Preparation of a macromonomer of the structure (l), where G t is p-toluyl, G 2 through G 4 are hydrogen, E is 3-carbomethoxyphenyl and DP n =10. General Procedure III was followed, where the monomer was 2,5-dichloro-4'-methylbenzophenone (2.55 g,

9.62 mmol) and the endcapper, methyl-3-chlorobenzoate

(0.164 g; " 0.96 mmol), was added after a period of 25 minutes. After stirring for about 18 hours, the viscous reaction mixture was poured into 100 ml of 1 molar hydrochloric acid in ethanol to disεolve the exceεε zinc metal and to precipitate the macromonomer. Thiε

suspenεion waε filtered and the precipitate triturated with acetone and dried to afford a 66% yield of the macromonomer. Analyεis of the macromonomer by SEC indicated a weight average molecular weight (relative to polystyrene) of 19,000 with a polydispersity of 2.1.

EXAMPLE 9 Preparation of a macromonomer of the structure (1), where G 1 is p-anisoyl, G 2 through G 4 are hydrogen, E is 3-acetylphenyl, and DP n = 16.

General Procedure II is followed, where the monomer is 2,5-dichloro-4'-methoxybenzophenone (2.4 g, 8.37 mmol) and the endcapper, 3-chloroacetophenone (119 mg, 0.77 mmol) , is added over about 15 minutes to yield the acetyl-functionalized macromonomer.

EXAMPLE 10 Preparation of a macromonomer of the structure (1), where G 1 is p-anisoyl, G 2 through G 4 are hydrogen, E is 4-acetylphenyl, and DP n = 41.

General Procedure II is followed, where the monomer is 2,5-dichloro-4'-methoxybenzophenone (4.8 g, 16.74 mmol) and the endcapper is 4-chloroacetophenone (63 mg, 0.44 mmol) , which is added dropwise over a period of about 30 minutes, to yield the acetyl-functionalized macromonomer.

EXAMPLE 11 Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4-acetylphenyl, and DP n « 22.

General Procedure III is followed, where the monomer iε 2,5-dichlorobenzophenone (1.1 g, 4.38 mmol) and the endcapper is 4-chloroacetophenone (1 ml, 7.7 mmol), which is added all at once after a period of 20 minutes, to yield the acetyl-functionalized macromonomer.

EXAMPLE 12

Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is 3-formylphenyl, and DP n = 11. General Procedure II is followed, where the monomer is 2,5-dichlorobenzophenone (1.1 g, 4.38 mmol) and the endcapper is 3-chlorobenzaldehyde (70 mg, 0.5 mmol) in 5 ml of anhydrous NMP, which is added over a period of about 30 minutes, to yield the formyl-functionalized macromonomer.

EXAMPLE 13 Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 3-carbophenoxyphenyl, and DP n =13.

General Procedure I is followed, where the monomer is 2,5-dichlorobenzophenone (2.89 g; 11.5 mmol) and the endcapper is phenyl-3-chlorobenzoate (0.40 g, 1.72 mmol) to yield the ester-functionalized macromonomer. Phenyl-3-chlorobenzoate is prepared by reacting

3-chlorobenzoyl chloride with phenol in toluene with some pyridine (1 mol equivalent per acid chloride) to trap the HC1 that evolves. After aqueous extraction of the pyridiniu salt and any excesε εtarting materialε, the product is crystallized from the toluene solution.

EXAMPLE 14 Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4- (N,N-dimethylcarbamyl)phenyl, and DP n =17.

The procedure of Example 13 is followed, but the endcapper is 4-chloro-N,N-dimethylbenzamide (0.20 g, 1.09 mmol) to yield the amido-functionalized macromonomer.

4-Chloro-N, N-dimethylbenzamide is prepared by reacting 4-chlorobenzoyl chloride with dimethylamine in toluene with some pyridine (1 mol equivalent per acid chloride) to trap the HC1 that is evolved. After aqueous

extraction of the pyridinium salt and any excess starting materials, the product is crystallized from the toluene solution.

EXAMPLE 15

Preparation (l), where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4-acrylylphenyl (4-C 6 H 4 COCHCH 2 ) , and DP n »28.

The procedure of Example 13 is followed, but the endcapper is 4'-chloro-3-dimethylaminopropiophenone (0.10 g, 0.47 mmol) to yield the ketone-functionalized macromonomer. The product has structure 1, where G 1 is benzoyl, G 2 through G 4 are hydrogen, E iε 4'-(3-di- methyl-aminopropionyl)phenyl, and DP n «28. This oligomer can be converted to the more useful acrylyl-terminated form by thermally induced loss of dimethylamine.

4 -Chloro-3-dimethylaminopropiophenone is prepared by treating 4'-chloro-3-dimethylaminopropiophenone hydrochloride with aqueous base to remove the HC1. The free amine is extracted into diethyl ether and recovered by evaporation of the solvent. The hydrochloride salt iε prepared by the method of Maxwell in Org . Synth . Coll . Vol. Ill, 305-306. Thuε, a mixture of 4-chloroace¬ tophenone, dimethylamine hydrochloride, and paraformaldehyde iε refluxed for.2-4 hourε in 95% ethanol with a εmall amount of added hydrochloric acid. The solid product is obtained after adding acetone and cooling overnight.

EXAMPLE 16

Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 4-cyanophenyl, and DP n =3 .

General Procedure II is followed, where the monomer is 2,5-dichlorobenzophenone (2.89 g; 11.5 mmol) and the endcapper is 4-chlorobenzonitrile (41 mg, 0.3 mmol) to yield the cyano-functionalized macromonomer.

3-Chlorophenyl vinyl ketone is prepared by thermolysis of 4'-chloro-3-dimethylaminopropiophenone hydrochloride (εee Example 15) .

EXAMPLE 17

Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 4-(napthalic-l,8-dianhydride) , and DP n =20-25.

The procedure of Example 11 is followed, where the endcapper is 4-bromo-l,8-naphthalic anhydride (1.5 g,

5.41 mmol) in 10 ml of anhydrous NMP, which is added all at once after a period of 20 minutes, to yield the anhydride-functionalized macromonomer.

EXAMPLE 18

Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is 3-carboxyphenyl, and DP n =20-25.

The procedure of Example 11 is followed, where the endcapper is 3-iodotoluene (1 ml, 7.79 mmol), which is added all at once after a period of 30 minutes, to yield the methyl-functionalized macromonomer. The product has structure 1, where G, iε benzoyl, G 2 through G 4 are hydrogen, E is 3-tolyl, and n«20-25. This oligomer can be converted to the more useful carboxy-terminated form by oxidation.

EXAMPLE 19 Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 4-acrylylphenyl, and DP n =20-25.

The procedure of Example 11 iε followed, where the endcapper iε 4-chlorophenyl vinyl ketone (1 ml, 7.79 mmol) , which is added all at once after a period of 15 minutes, to yield the aerylyl-functionalized macromonomer.

EXAMPLE 20

Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is methyl, and DP n =20-25. The procedure of Example 11 is followed, where the endcapper is methyl iodide (0.5 ml, 8.0 mmol), which is added all at once after a period of 90 minutes, to yield the methyl-functionalized macromonomer. This oligomer can be converted, to the more useful carboxy-terminated form by oxidation. The resulting product has structure 1, where G 1 is benzoyl, the remaining G's are hydrogen, E iε carboxy, and n«20-25.

EXAMPLE 21 Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is cyano, and DP n =20-25.

The procedure of Example 11 is followed, where the endcapper is sodium cyanide (0.5 g; 10.2 mmol) in 1 ml of anhydrous NMP, which is added all at once after a period of 30 minutes, to yield the cyano-functionalized macromonomer.

EXAMPLE 22 Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is N-succinimido, and DP n »20-25.

The procedure of Example 11 is followed, where the endcapper is N-bromosuccinimide (NBS) (1 g, 5.6 mmol), which iε added all at once after a period of 30 minutes, to yield the succinimido-functionalized macromonomer. This oligomer can be converted to the more useful amino-terminated form by acidic hydrolysis. The resulting product has structure 1, where G 1 is benzoyl, the remaining G'ε are hydrogen, E iε amino, and n«20-25.

EXAMPLE 23

Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is acetyl, and DP_=20-25. The procedure of Example 11 is followed, where the endcapper is acetyl chloride (0.5 ml, 7.0 mmol), which is added all at once after a period of 90 minuteε, to yield the acetyl-functionalized macromonomer.

EXAMPLE 24

Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is acrylyl, and DP n =20-25.

Procedure of Example 11 is followed, where the endcapper is acryloyl chloride (0.5 ml, 6.2 mmol), which is added all at once after a period of 90 minutes, to yield the aerylyl-functionalized macromonomer.

EXAMPLE 25 Preparation of a macromonomer of the structure (1), where G, is benzoyl, G 2 through G 4 are hydrogen, E is 5-carbethoxypentanoyl (C0CH 2 CH 2 CH 2 CH 2 C0 2 CH 2 CH 3 ) , and

The procedure of Example 11 iε followed, where the endcapper is adipoyl chloride (1 ml, 6.9 mmol), which is added all at once after a period of 90 minuteε, to yield the adipyl-functionalized macromonomer.

EXAMPLE 26 Preparation of a macromonomer of the structure (l), where G 1 is carbonylmorpholine (-(C0)NCH 2 CH 2 0CH 2 CH 2 ) , G 2 through G 4 are hydrogen, E is 4-acetylphenyl, and

General Procedure III iε followed, where the monomer is 2,5-dichlorobenzoylmorpholine (1.1 g, 4.23 mmol) and the endcapper is 4-chloroacetophenone (1 ml, 7.7 mmol),

which is added all at once after a period of 18 hours, to yield the acetyl-functionalized macromonomer.

EXAMPLE 27 Preparation of a macromonomer of the structure (l), where G, is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 3-carbophenoxyphenyl, and DP n =20-25.

The procedure of Example 26 is followed, where the endcapper is phenyl-3-chlorobenzoate (1.5 g, 6.4 mmol), which is added all at once after a period of 8 hours, to yield the ester-functionalized macromonomer.

EXAMPLE 28 Preparation of a macromonomer of the structure (1), where G, is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 4-carbethoxyphenyl, and DP n =2l.

General Procedure I is followed, where the monomer is 2,5-dichlorobenzoylmorpholine (2.5 g, 10.0 mmol) and the endcapper is ethyl-4-chlorobenzoate (0.1 ml, 0.64 mmol) to yield the ester-functionalized macromonomer.

EXAMPLE 29 Preparation of a macromonomer of the structure (1), where G, is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 4-acrylylphenyl, and DP n =l9.

General Procedure II is followed, where the monomer is 2,5-dichlorobenzoylmorpholine (2.5 g, 10.0 mmol) and the endcapper is 4'-chloro-3-dimethylaminopropiophenone (0.15 g, 0.71 mmol) to yield the ketone-functionalized macromonomer. The product has structure (1) , where C, is carbonylmorpholine, the remaining G's are hydrogen, E is 4'-(3-dimethylaminopropionyl)phenyl, and nκ20-25. Thiε oligomer can be converted to the more uεeful acrylyl-terminated form by thermally induced loεε of dimethylamine.

EXAMPLE 30

Preparation of a macromonomer of the structure (l), where G, is 4-phenoxybenzoyl, G 2 through G 4 are hydrogen, E is 4-acetylphenyl, and DP n =27. General Procedure I is followed, where the monomer is 2,5-dichloro-4'-phenoxybenzophenone (5.0 g, 14.6 mmol) and the endcapper is 4-chloroacetophenone (0.1 ml, 0.77 mmol) to yield the acetyl-functionalized macromonomer.

EXAMPLE 31

Preparation of a macromonomer of the structure (1), where G 1 is 4-phenoxybenzoyl, G 2 through G 4 are hydrogen, E is 3-carbophenoxyphenyl, and DP n =19.

The procedure of Example 30 is followed, where the endcapper is phenyl-3-chlorobenzoate (0.30 g, 1.3 mmol) to yield the ester-functionalized macromonomer.

EXAMPLE 32 Preparation of a macromonomer of the structure (1) where G, is benzoyl, G 2 through G are hydrogen, E is 2-(4'-aminobenzophenone) , and DP n =16.

General Procedure I is followed, where the monomer is 2,5-dichlorobenzophenone (11.5 mmol) and the endcapper is 2-chloro-4'-(N-succinimido)benzophenone (1.15 mmol) (prepared in the manner described below) . The reεulting macromonomer is in the protected succinimide form. The free amine is obtained by refluxing the succinimide with 25 ml of 10% HC1 in ethanol for six hours, followed by neutralization with sodium hydroxide, and extraction into methylene chloride. The methylene chloride layer is waεhed with aqueous base, then water, and ethanol is added to precipitate the diamine product.

2-Chloro-4 ' - (N-succinimido) benzophr none iε prepared as follows: To a solution of 2-chloro-4'-fluoro- benzophenone (lOOmmol) in NMP (100 ml) is added succinimide (110 mmol) and potaεεium carbonate (200 mmol) . After heating at 80°C for 8 hourε, 100 ml of water

is added and the mixture extracted with methylene chloride. The product is recrystallized from methylene chloride - ethanol.

EXAMPLE 33

Preparation of a macromonomer of the structure (l) where G, is benzoyl, G 2 through G 4 are hydrogen, E is 3-aminophenyl, and DP n =16.

General Procedure I is followed, where the monomer is 2,5-dichlorobenzophenone (11.5 mmol), and the endcapper is N-(3-chlorophenyl)succinimide (1.15 mmol) (prepared from 3-chloroaniline using General Procedure IV) . The resulting macromonomer is in the protected εuccinimide form. The free amine is obtained by refluxing the succinimide with 25 ml of 10% HC1 in ethanol for six hours, followed by neutralization with sodium hydroxide, and extraction into methylene chloride. The methylene chloride layer is washed with aqueous base, then water, and ethanol is added to precipitate the diamine product.

EXAMPLE 34 Preparation of a macromonomer of the structure (l) where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 4-(2-aminoethyl)phenyl, and DP n =l6. General Procedure I is followed, where the monomer is 2,5-dichlorobenzophenone (11.5 mmol), and the endcapper is N-2-(4-chlorophenyl)ethylsuccinimide (1.15 mmol) (prepared from 2-(4-chlorophenyl) ethylamine using General Procedure IV) . Deprotection, as in the general procedure, yields the amino-functionalized macromonomer.

EXAMPLE 35 Preparation of a macromonomer of the structure (l) where G, is benzoyl, G 2 through G 4 are hydrogen, E is 7-amino-2-fluorenyl, and DP n =l4.

The procedure of Example 32 is followed, where the endcapper is 2-bromo-7-N-suc mimidofluorene (1.533 mmol)

(prepared from 2-amino-7-bromofluorene using General Procedure IV) . Deprotection yields the amino- functionalized macromonomer.

EXAMPLE 36

Preparation of a macromonomer of the structure (l) where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4-(2-methoxy-5-methylaniline) , and DP n =19.

The procedure of Example 32 is followed, where the endcapper is the phthalimide of 4-chloro-2-meth- oxy-5-methylaniline (0.92 mmol). Deprotection yields a macromonomer having structure 1 where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 4-(2-methoxy-5-methyi- aniline) , and DP n =19.

EXAMPLE 37 Preparation of a macromonomer of the structure (1) where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4-phenol, and DP n =14. The procedure of Example 32 iε followed, where the endcapper is 4-chlorophenylacetate (1.533 mmol). Deprotection yieldε the hydroxy-functionalized macromonomer.

4-Chlorophenyl acetate is prepared by acylation of 4-chlorophenol with acetic anhydride using Schotten Baumann conditions.

EXAMPLE 38 Preparation of a macromonomer of the structure l where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4-( '-hydroxybenzophenone) , and DP_=10.

The procedure of Example 32 is followed, where the endcapper is 4-acetoxy-4'- chlorobenzophenone (2.3 mmol), prepared by acylation of 4-chloro-4'-hydroxybenzophenone with acetic anhydride using Schotten Baumann conditions.

EXAMPLE 39

Preparation of a macromonomer of the structure (l) where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is 4-phenethylalcohol, and DP n =16. The procedure of Example 32 is followed, where the endcapper is the tetrahydropyran l ether of 4-chloro- phenethyl alcohol (1.15 mmol). Deprotection yields the hydroxy-functionalized macromonomer.

EXAMPLE 40

Preparation of a macromonomer of the structure (1) where G 1 is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 3-aminophenyl, and DP n =16.

General Procedure I is followed, where the monomer is N-(2,5-dichlorobenzoyl)morpholine (11.5 mmol), and the endcapper is N-(3-chlorophenyl)succinimide (1.15 mmol).

Deprotection yields the amino-functionalized macromonomer.

EXAMPLE 41 Preparation of a macromonomer of the structure (1) where G, is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 4-(2-aminoethyl)phenyl, and DP n =l6.

General Procedure I is followed, where the monomer is N-(2,5-dichlorobenzoyl)morpholine (11.5 mmol) , and the endcapper is N-2 (4-chlorophenyl)ethylsuccinimide (1.15 mmol) . Deprotection yields the amino-functionalized macromonomer.

EXAMPLE 42 Preparation of a macromonomer of the structure (l) where G 1 is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 7-amino-2-fluorenyl, and DP n =14.

General Procedure I is followed, where the monomer is N-(2,5-dichlorobenzoyl)morpholine (11.5 mmol), and the endcapper is 2-bromo-7-N-succinimidofluorene (1.533 mmol) . Deprotection yields the amino-functionalized macromonomer.

EXAMPLE 43

Preparation of a macromonomer of the structure 1 where G τ is carbonylmorpholine, G 2 through G 4 are hydrogen, E is 4-(4'-hydroxybenzophenone) , and DP n =16. General Procedure I is followed, where the monomer is N-(2,5-dichlorobenzoyl)morpholine (11.5 mmol), and the endcapper iε 4-acetoxy-4'chlorobenzophenone (1.15 mmol). Deprotection yields the hydroxy-functionalized macromonomer.

EXAMPLE 44 Preparation of a macromonomer of the structure 1 where G, and G 3 are phenyl, G 2 through G 4 are hydrogen, E is 4-amino-5-methoxy-2-methylphenyl, and DP n =19. General Procedure I is followed, where the monomer is l,4-diiodo-2,5-diphenylbenzene (11.5 mmol), and the endcapper is 4-chloro-2-methoxy-5-methylphenylphthalimide (0.92 mmol). Deprotection yields the amino- functionalized macromonomer. l, 4-Diiodo-2 , 5-diphenylbenz ' ene iε prepared aε described in M. Hart and K. Harada, Tetrahedron Letters , Vol. 26, No. 1, pages 29-32 (1985).

EXAMPLES 45-47: BISMALEIMIDE RIGID-ROD MACROMONOMERS

EXAMPLE 45 Preparation of a macromonomer of the structure (1) where G, is benzoyl, G 2 through G 4 are hydrogen, E is 4-maleimidophenyl and DP n =10. General Procedure I is followed, where the monomer is 2,5-dichlorobenzophenone ( ' 11.5 mmol), and 2.30 mmol of the endcapper 4-chloro-(N-succinimido)benzene (prepared from 4-chloroaniline using General Procedure IV) is employed. The free amine obtained upon deprotection as described in the general procedure has n = 10.

The amine-terminated rigid-rod macromonomer is disεoived in 25 ml of N,N-<imethylacetamide. To this

solution, 2.5 mmol of maleic anhydride and 0.25 mols of p-toluenesulfonic acid are added. The solution is refluxed for 12 hours and then cooled to room temperature. The solution is poured into toluene, whereupon the product precipitates. The product is filtered, washed with toluene, and dried to constant weight.

EXAMPLE 46 Preparation of a macromonomer of the structure (l) where G., is 4-phenoxybenzoyl, G 2 through G 4 are hydrogen, E is 4-(4-maleimidophenoxy) henyl and DP n =10.

General Procedure I is followed, where the monomer is 2,5-dichloro-4'-phenoxybenzophenone (11.5 mmol). 2.30 mmol of the endcapper 4-chloro-4'-(N-succinimido)diphenyl ether is employed. The free amine obtained upon deprotection has n = 10.

The amine-terminated rigid-rod macromonomer is dissolved in 25 ml of toluene. To this solution, 2.5 mmol of maleic anhydride and 0.25 mmol p-toluenesulfonic acid are added. The solution is refluxed for 12 hourε and then cooled to room temperature. The εolvent is evaporated, and the product is washed repeatedly with 1M potassium carbonate, followed by washing with water. The bismaleimide macromonomer is then dried to constant weight.

The endcapper 4-chloro-4 ' - (N-succinimido) diphenylether is prepared by an Ullmann ether εynthesis. The reaction of 4-chlorophenol with 4-bromonitrobenzene yieldε 4-chloro-4'-(nitro)diphenylether. Reduction of the nitro group under standard conditions yields the corresponding aminochloro derivative. The succinimide is prepared by allowing succinic anhydride to react with the aminochloro compound in toluene, using p-toluenesulfonic acid as catalyst.

EXAMPLE 47

Preparation of a macromonomer of the structure 1 where G 1 and G 3 are butoxy, G 2 and G 4 are H, E is 5-(2-maleimido)benzophenone, and DP π =20. General Procedure I is followed, using 1,4-di- chloro-2,5-dibutoxybenzene (11.5 mmol) as monomer and 1.15 mmol of the succinimide derived from 2-amino-5-chlorobenzophenone as endcapper. The free amine is obtained upon deprotection as described in General Procedure V.

The monomer 1, 4-dichloro-2 , 5-dibutoxybenzene can be obtained by treatment of 2,5-dichlorohydroquinone (R. L. Beddoes, J. M. Bruce, H. Finch, L. M. J. Heela , I. D. Hunt, and 0. S. Mills, J. C. S. Perkin I. 2670, (1981).) with sodium carbonate in N,N'-dimethylacetamide, followed by addition of approximately 2.2 equivalents of n-butanol.

The amine-terminated rigid-rod macromonomer is dissolved in 25 ml of toluene. To this solution 1.25 mmol of maleic anhydride and 0.13 mmol p-toluenesulfonic acid are added. The solution is refluxed for 12 hours and then cooled to room temperature. The solvent is evaporated, and the product is washed repeatedly with IM potassium carbonate, followed by washing with water. The product iε then dried to conεtant weight.

EXAMPLES 48-51: NADIMIDE RIGID-ROD MACROMONOMERS

EXAMPLE 48 Preparation of a macromonomer of the structure (1) where G,, is benzoyl, G 2 through G 4 are hydrogen, E is 2-(nadimido benzene), and DP n =16.

The amine-terminated rigid-rod macromonomer of

Example 33 is dissolved in 25 milliliters of N,N-di- methyl-acetamide. To .this εolution, 2.5 mmol of cis-5-norbornene-endo-2,3-dicarboxylic anhydride and 0.25 mmol p-toluenesulfonic acid are added. The solution is

refluxed for 12 hours and then cooled to room temperature. The solution is poured into toluene, whereupon the product precipitates. The product is filtered, washed with toluene, and dried to constant weight to give the nadimide terminated macromonomer.

EXAMPLE 49 Preparation of a macromonomer of the structure (l) where G n is 4-phenoxybenzoyl, G 2 through G 4 are H, E is 2-(4'-nadimidobenzophenone) , and DP n =10.

General Procedure I is followed, where the monomer is 4'-phenoxy-2,5-dichlorobenzophenone (11.5 mmol), and 2.30 mmol of the endcapper 2-chloro-4'-(N-succini- mido)benzophenone is employed. The free amine obtained upon deprotection has n = 10.

The amine-terminated rigid-rod macromonomer is dissolved in 25 ml of N,N-dimethylacetamide. To this solution, 2.5 mmol of cis-5-norbornene-endo-2,3-di- carboxylic and 0.25 mols of p-toluenesulfonic acid are added. The solution is refluxed for 12 hours and then cooled to room temperature. The solution is poured into toluene, whereupon the product precipitates. The product iε filtered, washed with toluene, and dried to constant weight.

EXAMPLE 50 Preparation of a macromonomer of the structure (1) where G 1 and G 3 are butoxy, G 2 and G 4 are H, E is 5-(2-nadimido)benzophenone, and DP n =20. The amine-terminated rigid-rod macromonomer of Example 47 is dissolved in 25. ml of N,N-dimethy.l- acetamide. To this solution, 1.13 mmol cis-5-norbor- nene-endo-2,3-dicarboxylic anhydride and 0.13 mmol p-tolueneεulfonic acid are added. The εolution iε refluxed for 12 hourε. and then cooled to room temperature. The solution is poured into toluene, whereupon the product precipitates. The product is

filtered, waεhed with toluene, and dried to conεtant weight.

EXAMPLE 51 Preparation of a macromonomer of the structure (1) where G, is 4-phenoxybenzoyl, G 2 through G 4 are H, E is 2-(4'-nadimido)benzophenone, and DP n =20.

General Procedure I iε followed, where the monomer is 2,5-dichloro-4'-phenoxybenzophenone (11.5 mmol) and 1.15 mmol of the endcapper 2-chloro-4'-(N-succini- mido)benzophenone is employed. The free amine obtained upon deprotection aε described in Example 1 has n = 20.

The amine-terminated rigid-rod macromonomer is dissolved in 25 ml of N,N-dimethylacetamide. To this solution, 1.13 mmol cis-5-norbornene-endo-2,3-di- carboxylic anhydride and 0.13 mmol p-tolueneεulfonic acid are added. The εolution iε refluxed for 12 hourε and then cooled to room temperature. The solution is poured into toluene, whereupon the product precipitates. The product is filtered, washed with toluene, and dried to constant weight.

EXAMPLES 52-55: BENZOCYCLOBUTENE RIGID-ROD MACROMONOMERS

EXAMPLE 52

Preparation of a macromonomer of the structure (l) where G, is carbophenoxy (-(CO)OC 6 H 5 ) G 2 through G 4 are H, E is 4-benzocyclobutene, and DP n =10.

General Procedure I iε followed, where the monomer iε 2,5-dichlorophenylbenzoate (11.5 mmol) (prepared by benzoylation of 2,5-dichlorophenol with benzoyl chloride uεing Schotten Baumann conditionε) and 2.3 mmol of the endcapper 4-chlorobenzocyclobutene is employed. The endcapper 4-chlorobenzocyclobutene is obtained from the commercially available monosodium salt of 4-chlorophthalic acid. Reduction to the dibenzyl alcohol using lithium aluminum hydride in refluxing

tetrahydrofuran, followed by treatment ' with phosphorouε tribromide in refluxing toluene, yieldε the dibenzyl bromide. Treatment of thiε compound with diεodium εulfide in refluxing 95% ethanol yieldε 4-chloro- benzotetrahydrothiophene. This compound is treated with peracetic acid to yield the corresponding sulfone. Pyrolysiε of this sulfone in vacuo yields 4-chlorobenzocyclobutene. [reference to syntheεis: M. P. Cava and A. A. Deana, JACS 8_1, 4266 (1959) ] .

EXAMPLE 53 Preparation of a macromonomer of the structure (1) where G 1 and G 2 form a bridging group -CHCHCHN-, G 3 and G 4 are H, E is 4-benzocyclobutene, and DP n =10. General Procedure I is followed, where the monomer is 5,8-dichloroquinoline (11.5 mmol) [reference to synthesis: M. Gordon and D. E. Pearson, J. Org. Chem. , 29. 329 (1964)], and 2.3 mmol of the endcapper 4-chlorobenzocyclobutene is employed.

EXAMPLE 54 Preparation of a macromonomer of the structure 2 where A 1 and J^ are N, G 1 and G 2 are nil, G 3 and G 4 are H, E is 4-benzocyclobutene, and DP n = 6. General Procedure I is followed, where the monomer is commercially available.3,6-dichloropyridazine (11.5 mmol), and 3.8 mmol of the endcapper 4-chlorobenzo¬ cyclobutene is employed.

EXAMPLE 55

Preparation of a macromonomer of the structure (1) where G 1 is carbonylpiperidine, G 2 through G 4 are H, E is 4-benzocyclobutenemethane, and DP n =20.

General Procedure I is followed, where the monomer is N-(2,5-dichlorobenzoyl)piperidine (11.5 mmol) and 1.15 mmol of the endcapper 4-iodomethylbenzocyclobutene is employed.

The endcapper 4-iodomethylbenzocyclobutene can be obtained by first esterifying commercially available 3,3-dimethylbenzoic acid with ethanol, using HC1 as a catalyst. The corresponding ethyl ester derivative is treated with N-bromosuccinimide to yield the dibenzyl bromide. Treatment of this compound with disodium sulfide in refluxing 95% ethanol yieldε ethylbenzo- tetrahydro-thiophene-4-carboxylate. Thiε compound iε treated with peracetic acid to yield the correεponding εulfone. Pyrolyεiε of thiε εulfone in vacuo leadε to ethylbenzocyclobutene-4-carboxylate [ref. M. P. Cava and A. A. Deana, JACS __L, 4266 (1959) ] . Thiε ethyl ester is reduced to the corresponding benzyl alcohol with lithium aluminum hydride in THF. The benzyl alcohol is treated with p-toluenesulfonyl chloride in pyridine at room temperature to form the corresponding sulfonate ester. This compound, when treated with sodium iodide in acetone, yields 4-iodomethylbenzocyclobutene.

EXAMPLES 56-58: BIPHENYLENE-TERMINATED MACROMONOMERS

EXAMPLE 56 Preparation of a macromonomer of the structure (1) where G, is carbonylmorpholine, G 2 through G 4 are E, E is 2-biphenylene and DP_=10.

General Procedure I is followed, where the monomer is N-(2,5-dichlorobenzoyl)morpholine (11.5 mmol), and 2.30 mmol of the endcapper 2-chloro-biphenylene is employed. The endcapper 2-chlorobiphenylene is prepared from the correεponding 2-aminobiphenylene [Reference to synthesiε: W. Vancraeyneεt and J.K. Stille, Macromolecules, 13, 1361 (1980)]. The amine is first converted to 2-diazobiphenylene by treatment with nitrous acid, followed by addition of cuprouε chloride, which reεults in formation of 2-chlorobiphenylene (Sandmeyer reaction) .

EXAMPLE 57

Preparation of a macromonomer of the structure (1) where G, is phenyl, G 1 through G 4 are H, E is 2-bipheny¬ lene, and DP n = 20. General Procedure I is followed, where the monomer is 2,5-dichlorobiphenyl (11.5 mmol). 1.15 mmol of the endcapper 2-chlorobiphenylene is employed, yielding a biphenylene-terminated rigid-rod macromonomer.

The monomer 2, 5-dichlorobiphenyl is prepared by treating dichlorobenzene with 75% dibenzoyl peroxide (25% water) for 2.5 hours from 100°C to 140°C. The product is iεolated by diεtillation under reduced preεεure [H. T. Land, W. Hatke, A. Greiner, H. W. Schmidt, W. Heitz, Makromol. Chem.. 191. 2005 (1990)].

EXAMPLE 58 Preparation of a macromonomer of the structure (1) where G, is phenyl, G, through G 4 are H, E is 2-bipheny¬ lene, and DP n = 20. General Procedure I is followed, as in Example 29;

1.15 mmol of the endcapper 2-chlorobiphenylene is employed, and the resulting biphenylene terminated rigid-rod macromonomer haε structure 1 where G 1 is benzoyl, the remaining G's are H, E is 2-biphenylene and n = 20.

EXAMPLE 59: ACETYLENE TERMINATED MACROMONOMERS

EXAMPLE 59 Preparation of a macromonomer of the structure (l) where G 1 is benzoyl, G 2 through G 4 are H, E is ethynyl, and DP n =10.

To the monomer of Example 11 (4.2 g, 1 mmol) in 25 ml of anisole (cooled to 0°C) is added lithium diisopropylamine (LDA) . (2 mmol) and diethyl chlorophosphate (2 mmol) . The reaction mixture is warmed

to room temperature and additional LDA (2.2 mmol) iε added. After 4 hours, the mixture is poured into 100 ml of ethanol and the precipitate iε filtered, washed with 25 ml of ethanol, and dried.

EXAMPLES 60-62: EPOXIDE-TERMINATED MACROMONOMERS

EXAMPLE 60 Preparation of a macromonomer of the structure (1) where G, is carbonylmorpholine, G 2 through G 4 are H, E is 4-styrene oxide, and DP n is 15.

General Procedure I is followed, where the monomer is N-(2, 5-dichlorobenzoyl)morpholine (11.5 mmol), and 1.53 mmol of the endcapper 4-chlorobenzaldehyde is employed. Upon isolation of the aldehyde-terminated rigid-rod macromonomer, conversion . to the styrene oxide-terminated [e.g., bis(epoxide) ] macromonomer iε carried out by treating the biε(aldehyde) with dimethylsulfonium methylide. This iε accompliεhed by first preparing the anion of dimethyl sulfoxide (DMSO) by treatment with 1.68 mmolε of sodium hydride at 80°C. At room temperature, this solution is diluted with tetrahydrofuran, cooled to 5°C, and 1.68 mmols of trimethylεulfonium iodide added to form dimethylεulfonium methylide. This εolution iε then added by syringe to a solution of the bis (aldehyde) macromonomer disεolved in methylene chloride [E.J. Corey and M. Chaykovsky, Journal of the American Chemical Society, 87, 1345 (1965) ; also Ibid, page 1353.] The product bis (epoxide) rigid-rod macromonomer is isolated by precipitation into water. Soxhlet extraction of the product with a 90:10 mixture of water/triethylamine for 24 hours yields the purified bis (epoxide) .

EXAMPLE 61

Preparation of a macromonomer of the structure (l) where G, is benzoyl, G 2 through G 4 are H, E is 4-(l,2-epoxyethylphenoxy)phenyl and DP_ is 10. General Procedure I is followed, where the monomer iε 2,5-dichlorobenzophenone (11.5 mmol). 2.3 mmol of the endcapper 3-(4-chlorophenoxy)-benzaldehyde is employed. Upon isolation of the aldehyde-terminated rigid-rod macromonomer, conversion to the bis(epoxide) macromonomer iε carried out by treating the bis(aldehyde) with dimethylsulfonium methylide, aε described in the preceding example.

EXAMPLE 62 Preparation of a macromonomer of the structure (1) where G 1 and G 3 are methyl, G 2 and G 4 are H, E is 4-N,N-bis(2,3-epoxypropyl)aminophenyl, and DP n =6.

General Procedure I is followed, where the monomer is 2,5-dichloro-p-xylene (11.5 mmol) and 3.8 mmol of the endcapper 4-(N-succinimido)chlorobenzene iε employed. The free amine obtained upon deprotection as described in General Procedure V has n = 6.

The amine-terminated rigid-rod macromonomer is suspended in 25 ml of dichloromethane (or, alternatively, triethyla ine) , and 4.0 mmolε of epichlorohydrin is added. The solution iε allowed to stir for two hourε at room temperature, at which time the biε(epoxide) rigid-rod macromonomer is isolated by pouring into a solution of water/triethylamine in a 90:10 ratio. The precipitated macromonomer is further purified by Soxhlet extraction with a 90:10 water/triethylamine εolution for 24 hourε.

EXAMPLE 63

Preparation of a macromonomer of the structure (1) where G n is benzoyl, G 2 through G 4 are hydrogen, E is 5-veratryl, and DP n =25. Anhydrouε nickel(II) chloride (50 mg, 0.39 mmol), triphenylphosphine (750 mg, 2.86 mmol), sodium iodide (150 mg, 1.0 mmol), and 325 mesh activated zinc powder (1.2g, 18 mmol) are placed into a 25 ml flask under an inert atmosphere along with 5 ml of anhydrous N-methylpyrrolidinone (NMP) . This mixture is stirred at 50°C for about 10 minutes, leading to a deep-red coloration. A solution of 11.5 mmol of monomer in 10 ml of anhydrous NMP is then added by syringe. After stirring for 10 hourε, 0.92 mmol 5-bromoveratraldehyde is added to the resulting viscouε εolution, which iε εtirred for an additional 10 hours. The solution is then poured into 100 ml of 1 molar hydrochloric acid in ethanol to dissolve the excess zinc metal and to precipitate the macromonomer. This suεpenεion iε filtered and the precipitate triturated with acetone, and dried to afford a light tan to white powder, in nearly 100% yield. The aldehyde function of the veratryl end groupε may then be reduced to a hydroxymethyl group. Alternatively the aldehyde group may be converted into an aminomethyl group by forming the Schiff'ε baεe with ammonia or a primary or εecondary amine, followed by reduction.

EXAMPLE 64 Preparation of a macromonomer of the structure (1) where G 1 is benzoyl, G 2 through G 4 hydrogen, E is -NH 2 , and DP n =50.

Anhydrous nickel(II) chloride (0.4 mmol), triphenylphosphine (750 mg, 2.86 mmol), sodium iodide (150 mg, 1.0 mmol), and 325 mesh activated zinc powder (1.2g, 18 mmol) are placed into a 25 ml flask under an inert atmoεphere along with 5 ml of anhydrouε N-methyl¬ pyrrolidinone (NMP) . This mixture is stirred at 50°C for

about 10 minutes, leading to a deep-red coloration. A εolution of 10 mmol of monomer in 10 ml of anhydrouε NMP iε then added by εyringe. After stirring for 10 hours, the reaction is quenched with 10 mmol sodamide in 1 ml NMP and εtirred for an additional hour. The εolution iε then poured into 100 ml of 1 molar hydrochloric acid in ethanol to dissolve the excesε zinc metal and precipitate the macromonomer. Thiε εuεpenεion is filtered and the precipitate triturated with acetone, and dried to afford a light tan to white powder, in nearly 100% yield.

EXAMPLE 65 Preparation of a macromonomer of the structure (1), where G 1 is benzoyl, G 2 through G 4 are hydrogen, E is carboxy, and DP_~20-25.

Anhydrouε nickel(II) chloride (50 mg, 0.39 mmol), triphenylphoεphine (750 mg, 2.86 mmol), sodium iodide (175 mg, 1.17 mmol), and 325 mesh activated zinc powder (0.5-1.0 g, 7.5-15 mmol) are placed into a 25 ml flask under an inert atmosphere along with 7 ml of anhydrous N-methylpyrrolidinone (NMP) . This mixture is stirred at 50°C for about 10-20 minutes, leading to a deep-red coloration. A solution of 2,5-dichlorobenzophenone (l.lg, 4.38 mmol) in 8 ml of anhydrouε NMP iε then added all at once by εyringe. After a period of about 20 minuteε, the reaction iε pressurized with carbon dioxide. After stirring for about 24 hours, the resulting viscous solution is poured into 100 ml of 1 molar hydrochloric acid in ethanol to hydrolyze the metal carboxylate derivative, disεolve the excess zinc metal and precipitate the macromonomer. This suspension is filtered and the precipitate triturated with acetone and dried to afford the carboxy-terminated macromonomer.

EXAMPLE 66

Preparation of a macromonomer of the structure (1) where G, is OH, G 2 through G 4 are hydrogen, E is 4-phenethylalcohol, and DP n =40. The Grignard reagent of 2,5-dibromophenol-tetra- hydropyranylether, was prepared by addition of 2,5-dibromophenol-tetrahydropyranylether (50 mmol) to magnesium turnings, 50 mmol, in dry tetrahydrofuran (THF) . Upon completion of the reaction, 2.5 mmol 2-(3-bromophenyl)-1,3-dioxolane is added, followed by 0.1 mmol of bis(triphenylphosphine)nickel(II) chloride. The solution is heated to reflux for 6 hr. The polymer is precipitated by addition of the cooled solution to dilute acid.

EXAMPLE 67 Preparation of a macromonomer of the structure (1) where G, and G 3 are phenyl, G 2 through G 4 are hydrogen, E is 4-aminophenyl, and DP_=5. A mixture of 4-bromo-2,5-diphenylbenzeneboronic acid

(10 mmol) , 4-amino-benzeneboronic acid (2 mmol) , tetrakis(triphenylphosphine)palladium (0.1 mmol), benzene (50 ml) and aqueous Na 2 C0 3 (2M, 40 ml) are refluxed and stirred under N 2 for 48 hours. The mixture is then poured into acetone (250 ml) to precipitate the macromonomer.

4-Bromo-2, 5-diphenylbenzeneboronic acid is prepared as follows: A solution of n-butyllithium (1.6 M, 15 ml) in hexane iε added εlowly to a cooled (-40°C) εolution of 1,4-di-bromo-2, 5-diphenylbenzene (25 mmol) in diethylether (100 ml) . Thiε mixture iε allowed to warm to room temperature an is stirred for 2 hourε. This solution is transferred into a dropping funnel and added to a cooled (-60°C) solution of trimethylborate (74 mmol) in ether (200 ml) . It is then stirred for 8 hours at room temperature. After hydrolysis with aqueous HC1 (2M, 150 ml) , the layers are separated and the aqueous layer is extracted with ether (100 ml) . The solvent is then

removed from the combined organic layers and water (5 ml) and petroleum ether (100) are added. The precipitate iε recovered by filtration, and recrystallized from toluene.

EXAMPLES 68-82: POLYMERS INCORPORATING RIGID-ROD MACROMONOMERS

EXAMPLE 68 A solution of the macromonomer of Example 39 (1 mmol, 2.76 g) , hexamethylenediamine (99 mmol, 11.505 g) , and pyridine (20 ml) in 150 ml NMP is added to a εolution of terepthaloyl chloride (100 mmol, 20.302 g) in 50 ml NMP. The solution is warmed to 50°C for 4 hours, then poured into water to precipitate the copolymer. The resulting polyhexamethyleneadipamide-co-poly-2,5-benzo- phenone iε approximately 10% by weight rigid-rod.

EXAMPLE 69 The procedure for preparation of bisphenol-A polycarbonate given in Macromolecular Synthesis , J. A. Moore, Ed., John Wiley & Sons New York; 1977, Collective Vol. 1, pp 9-12 (incorporated herein by this reference) ; iε followed, except that 2 g of the macromonomer of Example 38 iε added along with the biεphenol-A. More specifically, a 500 ml four-necked flask (or resin pot) equipped with a stirrer, thermometer, a wide bore gas inlet tube, and a gas outlet is charged with 22.8 g (0.10 mol) of bisphenol-A, 2 g of the macromonomer of Example 38, and 228 ml of pyridine. Phosgene at a rate of 0.25 g/min. is passed into the rapidly stirred reaction mixture, which is maintained at 25-30° with a water bath. Pyridine hydrochloride will begin to separate from the reaction mixture after about 25 minutes. This is an indication that the reaction is about 60 percent completed. Approximately 15 minuteε later, a marked increaεe in viεcoεity will be noted over a period of 2-3

minutes; the polymerization is then essentially completed. The copolymer may be precipitated directly in the reaction flask and is approximately 9 percent by weight rigid-rod.

EXAMPLE 70 The procedure for preparation of phenol-formaldehyde resin given in Macromolecular Synthesis , J. A. Moore, Ed., John Wiley & Sons New York; 1977, Collective Vol. 1, pp 211-213 (incorporated herein by this reference), is followed, except that 893 g of phenol is used, ' and 30 g of the macromonomer of Example 38 is added along with the phenol. More specifically, a 3 L three-necked round bottom flask (or resin pot) equipped with a Teflon or stainless steel paddle-type stirrer, thermometer, efficient bulb-type reflux condenser, and heating mantle is charged with 893 g (9.5 mol) of phenol (99 percent purity), 70 g (0.75 mol) of aniline, 30 g (0.0163 mol) of the macromonomer of Example 38, 1,130 g of 37.2 percent formaldehyde solution (14 mols) and 110 g of a 28.5 percent hot water solution of barium hydroxide octahydrate. The pressure is reduced to 300-350 torr and the reactants are heated slowly to a reflux temperature of 80° and maintained there for 15 min. The reflux condenser is then replaced with a condenser set for distillation, and the resin is dehydrated at 10-20 torr to a final temperature of 80-90°. As the dehydration proceedε, the molecular weight and viscosity of the condensate increase progressively, and the resin becomeε increaεingly εensitive to further heating. When the "gel time," as determined by the so-called stroke cure test, falls to 65-85 sec, the apparatus iε quickly diεassembled and the resin is poured in a thin layer into a large shallow vessel covered with heavy aluminum foil to provide rapid cooling. The resulting resin is approximately 5% by weight rigid-rod.

EXAMPLE 71

The procedure for preparation of polyethylene terephthalate given in Macromolecular Synthesis , J. A. Moore, Ed., John Wiley & Sons New York; 1977, Collective Vol. 1, pp 17-21 (incorporated herein by this reference) , is followed, except that 3 g of the macromonomer of Example 5 iε added to the charge along with the ethylene glycol. More specifically, a glass "polymer tube" about 25 mm by 250 mm, sealed to a 10 mm by 70 mm neck carrying a side arm for distillation is charged with 13.6 g (0.07 mol) of dimethyl terephthalate (DMT) , 3 g of the macromonomer of Examiner 5, 10 g (8.8 ml, 0.16 mol) of ethylene glycol, 0.022 g (0.15% based on DMT) of calcium acetate dihydrate, and 0.005 g (0.035% based on DMT) of antimony trioxide. The charge is melted by submerging the tube about half way in the vaporε of boiling ethylene glycol (197°), and a fine capillary connected to nitrogen under pressure, is introduced through the neck of the tube. A vacuum tight seal is made with a piece of heavy walled rubber tubing, well lubricated with silicone grease. The capillary must be adjusted to reach the very bottom of the polymer tube. Methyl alcohol distillε rapidly for a few minutes. After one hour, the tube is adjusted to be heated as completely as possible by the glycol vapors, and heating at 197° is continued for two hours more. The polymer tube is then transferred to a 222° (methyl salicylate) vapor bath for 15 minutes, during which time excesε glycol distills and polymerization begins. The side arm of the polymer tube is then connected by means of a εhort piece of heavy walled tubing to a receiver having a εide arm for collection under vacuum. The tube -is heated at 283° (dimethyl phthalate) . Polymerization proceeds and glycol distillε slowly. After 5 to 10 minutes vacuum iε applied very cautiouεly and the pressure is brought to 0.2 torr or less in about 15 minutes. Polymerization should be complete within 3

hours. The tube is then filled with nitrogen, removed from the vapor bath and allowed to cool. The glass iε cracked away from the mass of polymer by wrapping it in a towel and tapping with hammer. The laεt of the glass, which adheres very tenaciously, must be removed with a course file.

The resulting copolymer is approximately 15% by weight rigid-rod.

EXAMPLE 72

The procedure of Padaki, Norris, ' and Stille for the preparation of poly [ 2 , 2 ' - (p, p ' -oxydipheny- lene)-6, 6'-oxy-bis(4-phenylquinoline) ] , given in Macromolecular Synthesis; J. A. Moore, Ed., John Wiley & Sons New York; 1985, Vol. 9, pp. 53-55 (incorporated herein by this reference) , is followed, except that 0.2797 g of 4,4'-diacetyldiphenyl ether is used along with 0.7500 g of the diacetyl-substituted macromonomer of Example 11 (with molecular weight of about 4200) . More specifically, a mixture of 0.5223 g (1.279 mmol) of 4,4'- diamino-3,3'-dibenzoyldiphenyl ether, 0.2797 g (1.100 mmol) of 4,4'-diacetyldiphenyl ether, 0.7500 g (0.179 mmol) of the diacetyl-εubstituted macromonomer of Example 11 (with molecular weight of about 4200), 8.8 g (32 mmol) of di-m-cresyl phosphate, and 1.5 g (14 mmol) of distilled m-cresol iε stirred in a three-neck polymerization flask equipped with a nitrogen inlet, an overhead stirrer and a nitrogen outlet. The reaction mixture is flushed with nitrogen for about 5 minutes and then heated in an oil bath from room temperature to 135° to 140° in about 30 minutes. It is maintained at this temperature for 48 hours under a static nitrogen atmosphere.- The resulting clear, highly viscous solution iε poured εlowly into a εtirred solution of 500 ml of ethanol containing 50 ml of triethylamine to yield an off-white fibrous material. This fibrous polymer is suεpended in a small amount (about 50 ml) of ethanol

containing 10% v/v of triethylamine, chopped in a blender and collected by filtration. The polymer is continuously extracted for 24 hours in a Soxhlet apparatus with ethanol containing 10% v/v triethylamine. It is then air dried and then further dried at 110° and 0.1 torr for 4 hourε. The polymer is redisεolved in 30 ml of chloroform and reprecipitated by slow addition to a stirred solution of 300 ml of ethanol containing 30 ml of triethylamine. The precipitated fibrous polymer iε suspended in about 50 ml of ethanol containing 5 ml of triethylamine, chopped in a blender, collected by filtration, air dried, and then dried further at 110° and 0.1 torr for 24 hourε to yield the copolymer, which is approximately 50% by weight rigid rod.

EXAMPLE 73 The procedure of Wynn, Glickman, and Chiddix for the preparation of 4-nylon, given in Macromolecular Synthesis ; J. A. Moore, Ed., John Wiley & Sons New York; 1977, Coll. Vol. 1, pp. 321-323 (incorporated herein by this reference) , is followed, except that 10 g of the ester-substituted macromonomer of Example 4 is added just prior to the addition of silicon tetrachloride. More specifically, a 250 ml 3-necked round bottom flask equipped with stirrer, thermometer and Claisen head suitable for vacuum distillation is charged with a 120 g of freshly distilled 2-pyrrolidone. The charge is heated under nitrogen to 80° with a Glas-Col mantel. Flake potassium hydroxide (97%) (3.4 g) is added. The water formed, together with about 20 " ml of monomer, is rapidly distilled from the flask at 1 torr. The hot solution is rapidly transferred to an 8 oz. polyethylene bottle previously - purged with nitrogen. Ten g of the eεter-substituted macromonomer of Example 4 is then added followed by 0.5 g of silicon tetrachloride. The bottle is capped, agitated by hand, and allowed to cool to room temperature. After 10 minutes and at a temperature of

about 50°, polymerization is indicated by precipitation of solid polymer. After 24 hours at room temperature, the mixture is very hard. It is broken with a hammer and the bottle is cut open for its removal. The lumps are then blended with a 150 ml of water containing 0.1% formic acid in a blender. The powdered product is filtered and waεhed in the filter with 150 ml of 0.1% formic acid followed by three 100 ml waεhingε with distilled water. It iε finally washed with alcohol and dried at 3 torr at 70°. The resulting resin is approximately 10-15% by weight rigid-rod.

EXAMPLE 74

The procedure of Conciatori and Chenevey for the preparation of poly[2,2'-(m-phenylene)-5,5'-bibenzi- midazole] , given in Macromolecular Synthesis ; J. A. Moore, Ed., John Wiley & Sons New York; 1977, Coll. Vol. 1, pp. 235-239 (incorporated herein by this reference), iε followed, except that 38.836 g of DPIP iε uεed along with 15.06 g of the ester-substituted macromonomer of Example 31 (with molecular weight of about 5020) . More specifically, a two-stage polymerization is carried out. For the first stage, a 1 liter, 3 necked flask is charged with 26.784 g (0.125 mol) of purified 3,3'-diamino- benzidine (DAB), 38.836 g (122 mmol) of diphenyl iεophthalate (DPIP), and 15.06 g (3 mmol) of the eεter-εubεtituted macromonomer of Example 31 (with molecular weight of about 5,020). The flaεk iε immerεed in an oil bath and is equipped with a εtirrer, Dean-Stark trap with condenser, and a nitrogen purge throughout the whole system. Degassing of the reactants and εyεtem is done by alternately evacuating with a vacuum pump and filling with nitrogen. A flow of nitrogen of about 100 ml per minute is begun and maintained throughout the reaction.

The reaction is stirred and heating is begun at a rate of about 2° per minute. Reaction commences at about

215° to 225°. Phenol and water collect in the Dean-Stark trap. Aε the temperature increaεeε and reaction proceedε, the mass becomes so stiff that stirring is imposεible. The εtirring should be stopped when the temperature reaches 250° to 255° and about 15 ml of condenεate haε been collected. After the stirrer is stopped, the mass foams and fills the flask about three quarters full. The polymer iε heated to 290° and iε held there for 1.5 hours. About 22 ml of condensate is recovered.

On cooling, the friable prepolymer is removed from the flask and is crushed.

For the second stage of polymerization, the prepolymer is charged into a flask and degasεed in the εame manner as in the first stage. A nitrogen sweep of 60 to 120 ml per minute is used throughout the second stage. After immersion of the reactor in a heating bath, the temperature is raised at a rate of about 1.5° per minute from 220° to 385°. Polymerization is continued at 385° for three hours. After cooling and removal from the flask, a granulated copolymer that iε about 28% by weight rigid-rod iε recovered.

EXAMPLE 75 The procedure of Hart for the preparation of poly(methyl methacrylate)-, given in Macromolecular Synthesis ; J. A. Moore, Ed., John Wiley & Sonε; New York; 1977, Coll. Vol. 1, pp. 23-25 (incorporated herein by thiε reference) , iε followed, except that 1 g of the acrylyl-subεtituted macromonomer of Example 29 iε added aε a comonomer. A three-liter three-necked flaεk iε charged with 1.5 liters of distilled water, 15 grams of Cyanamer A-*379 (a water εoluble modified polyacrylamide reεin available from American Cyanamid Company aε a free-flowing powder), 8.5 gramε of diεodium phosphate (Na 2 HP0 4 ) , and 0.5 gram of monoεodium phoεphate (NaH 2 P0 4 ) . The flaεk is fitted with a thermometer, a condenser, and

a glass stirrer of the half-moon type; the mixture iε warmed to 30-35° and stirred until a clear εolution iε obtained.

In a one liter beaker are mixed 500 gra ε of diεtilled methyl methacrylate, one gram of the acrylyl-substituted macromonomer of Example 29, and 5 grams of benzoyl peroxide. When the peroxide has been completely dissolved, the solution is added to the flaεk. The half-moon paddle is adjusted to about one-half inch below the top surface, and agitation iε begun at about 400 rpm. The reactor iε flushed lightly with nitrogen gas for one to two minutes to remove atmospheric oxygen. The agitator speed is adjusted to 250 rpm, and the reaction mixture is heated to 76-78°. This temperature is maintained for 2.5 to 3 hours. After the mixture is cooled to room temperature, the polymer is recovered by filtration in a Bύchner funnel. The polymer is washed several times with water and dried at 65° for 5-10 hours. The resulting copolymer is approximately 6% by weight rigid-rod.

EXAMPLE 76

In a flamed 500 ml nitrogen flask equipped with a magnetic stirrer, 8.647g (42.59 mmol) of iεophthaloyl dichloride, lO.OOOg (43.81 mmol) of biεphenol-A, 5.000g

(1.22 mmol) of the chlorocarbonyl-εubstituted macromonomer prepared by reacting the carboxy-terminated macromonomer of Example 65 with thionyl chloride, 100 ml of 1,1,2,2-tetrachloroethane and 15 ml of pyridine are added under nitrogen pressure and heated at 120°C for 20 hours. The copolymer is precipitated in methanol, filtered, redissolved in chloroform, reprecipitated in methanol, filtered, and dried at 80-lC0°C i.vac. The resulting copolymer is approximately 25% by weight rigid-rod.

EXAMPLE 77

The epoxy-terminated macromonomer of Example 62 (45 g) is mixed with the diglycidyl ether of bisphenol-A (EPON 825, commercially available from Shell Chemical Co.) to form Part I of a two-part epoxy. Part II is formed using triethylene tetramine (TETA) as a curing agent. The cured epoxy reεin iε formed by mixing TETA (12.8 g) with Part I (100 g) .

EXAMPLE 78

A mixture conεisting of the ester-functionalized macromonomer of Example 7 (5 g) and poly-ε-caprolactam (95 g) iε heated to about 240°C and mixed until well blended. Under theεe conditionε, the macromonomer iε chemically incorporated into the polyamide via transamination. The resulting copolymer is approximately 5% by weight rigid-rod.

EXAMPLE 79 A mixture consisting of the ester-functionalized macromonomer of Example 7 (5 g) and polyethylene terephthalate (95 g) is heated to about 260°C and mixed until well blended. Under these conditions, the macromonomer is chemically incorporated into the polyester via transeεterification. The reεulting copolymer iε approximately .5% by weight rigid-rod.

EXAMPLE 80

A mixture consisting of the hydroxy-functionalized macromonomer of Example 38 (5 g) , bisphenol-A polycarbonate (95 g) , and lithium stearate (0.05 g) iε heated to about 280°C and mixed until well blended.

Under these conditions, the macromonomer is chemically incorporated into the polycarbonate vi a transesterification. The reεulting copolymer iε approximately 5% by weight rigid-rod.

EXAMPLE 81

A mixture of the ester functionalized macromonomer of Example 4 (0.65 g) , caprolactam (13 g) and 0.5 g of 50% aqueous aminocaproic acid aε the catalyst was heated in a nitrogen purged tube for about 4-6 hours at approximately 280° C in a sand bath and then allowed to cool. The copolymer, which is approximately 5-10% by weight rigid-rod, was obtained as a light yellow powder after crushing, extracting with boiling water for about 8 hours, and vacuum drying at 50° C.

The above descriptions of exemplary embodiments of macromonomers having functional end groups, the rigid-rod polymers, copolymers, and reεins prepared therefrom, and the processes for making same are illustrative of the preεent invention. Because of the variations which will be apparent to those skilled in the art, however, the present invention is not intended to be limited to the particular embodiments described above. The scope of the invention is defined in the following claims.