Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MAGNETIC TUNNEL JUNCTIONS
Document Type and Number:
WIPO Patent Application WO/2016/178758
Kind Code:
A1
Abstract:
A magnetic tunnel junction has a conductive first magnetic electrode comprising magnetic recording material. A conductive second magnetic electrode is spaced from the first electrode and comprises magnetic reference material. A non-magnetic tunnel insulator material is between the first and second electrodes. The magnetic recording material of the first electrode comprises a first magnetic region, a second magnetic region spaced from the first magnetic region, and a third magnetic region spaced from the first and second magnetic regions. A first non-magnetic insulator metal oxide-comprising region is between the first and second magnetic regions. A second non-magnetic insulator metal oxide-comprising region is between the second and third magnetic regions. Other embodiments are disclosed.

Inventors:
HARMS JONATHAN D (US)
CHEN WEI (SG)
MURTHY SUNIL S (SG)
KULA WITOLD (US)
Application Number:
PCT/US2016/024219
Publication Date:
November 10, 2016
Filing Date:
March 25, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MICRON TECHNOLOGY INC (US)
International Classes:
H01L43/02; H01L43/08; H01L43/10
Foreign References:
US20110062538A12011-03-17
US20130307097A12013-11-21
US20140145792A12014-05-29
US20140038314A12014-02-06
JP2010034153A2010-02-12
Other References:
See also references of EP 3292570A4
Attorney, Agent or Firm:
MATKIN, Mark S. et al. (601 West Main AvenueSuite 60, Spokane WA, US)
Download PDF:
Claims:
CLAIMS:

1. A magnetic tunnel junction comprising:

a conductive first magnetic electrode comprising magnetic recording material;

a conductive second magnetic electrode spaced from the first electrode and comprising magnetic reference material;

a non-magnetic tunnel insulator material between the first and second electrodes ; and

the magnetic recording material of the first electrode comprising a first magnetic region, a second magnetic region spaced from the first magnetic region, and a third magnetic region spaced from the first and second magnetic regions ; a first non-magnetic insulator metal oxide-comprising region between the first and second magnetic regions; and a second non-magnetic insulator metal oxide- comprising region between the second and third magnetic regions.

2. The magnetic tunnel junction of claim 1 wherein the first and second metal oxide-comprising regions are of the same composition relative one another.

3. The magnetic tunnel junction of claim 1 wherein the first and second metal oxide-comprising regions are of different compositions relative one another.

4. The magnetic tunnel junction of claim 1 wherein the first and second metal oxide-comprising regions have the same minimum thickness relative one another.

5. The magnetic tunnel junction of claim 1 wherein the first and second metal oxide-comprising regions have different minimum thicknesses relative one another.

6. The magnetic tunnel junction of claim 1 wherein the first and second metal oxide-comprising regions are of the same composition relative one another and have the same minimum thickness relative one another.

7. The magnetic tunnel junction of claim 1 wherein the first metal oxide- comprising region is directly against the first and second magnetic regions.

8. The magnetic tunnel junction of claim 1 wherein the second metal oxide-comprising region is directly against the second and third magnetic regions.

9. The magnetic tunnel junction of claim 1 wherein the magnetic recording material of the first electrode comprises at least one more magnetic region spaced from the third magnetic region, and comprising at least one more non-magnetic insulator metal oxide-comprising region between the third magnetic region and the at least one more magnetic region.

10. The magnetic tunnel junction of claim 1 wherein the magnetic recording material of the first electrode comprises multiple more magnetic regions spaced from the third magnetic region and one another, and comprising multiple more non-magnetic insulator metal oxide-comprising regions; one of the multiple more magnetic regions being most-proximate the third magnetic region compared to all others of the multiple more magnetic regions, one of the multiple more metal oxide-comprising regions being between the third magnetic region and said most- proximate magnetic region, all respective other of the multiple metal oxide- comprising regions being between immediately adjacent of the multiple more magnetic regions.

11. The magnetic tunnel junction of claim 1 being SMTJ.

12. The magnetic tunnel junction of claim 1 comprising:

another non-magnetic tunnel insulator material spaced from the second metal oxide-comprising region over the third magnetic region of the magnetic recording material; and

second magnetic reference material over the another non-magnetic tunnel insulator material, the second magnetic reference material comprising magnetic polarizer material proximate the another non-magnetic tunnel insulator material.

13. The magnetic tunnel junction of claim 1 wherein the first electrode is on one electrode side of the tunnel insulator material, and comprising a nonmagnetic insulator material most-distal from the tunnel insulator material of all insulator materials of the magnetic tunnel junction on the one electrode side, the most-distal insulator material being of the same composition as the tunnel insulator material and having a lower maximum thickness than that of the tunnel insulator material.

14. A multiple-barrier magnetic tunnel junction comprising:

a conductive first magnetic electrode comprising magnetic recording material;

a conductive second magnetic electrode spaced from the first electrode and comprising first magnetic reference material;

a first non-magnetic tunnel insulator material between the first and second electrodes ;

the magnetic recording material of the first electrode comprising a first magnetic region and a second magnetic region spaced from the first magnetic region, a non-magnetic insulator metal oxide-comprising region between the first and second magnetic regions, the first magnetic region being more proximate the first non-magnetic tunnel insulator material than the second magnetic region;

a second non-magnetic tunnel insulator material spaced from the first nonmagnetic tunnel insulator material over the second magnetic region of the magnetic recording material; and

second magnetic reference material over the second non-magnetic tunnel insulator material, the second magnetic reference material comprising magnetic polarizer material proximate the second non-magnetic tunnel insulator material.

15. The magnetic tunnel junction of claim 14 wherein the first and second non-magnetic tunnel insulator materials are of the same composition relative one another.

16. The magnetic tunnel junction of claim 14 wherein the first and second non-magnetic tunnel insulator materials are of different compositions relative one another.

17. The magnetic tunnel junction of claim 14 wherein the first and second non-magnetic tunnel insulator materials have the same minimum thickness relative one another.

18. The magnetic tunnel junction of claim 14 wherein the second first and second non-magnetic tunnel insulator materials have different minimum thicknesses relative one another.

19. The magnetic tunnel junction of claim 14 wherein the second nonmagnetic tunnel insulator material has a lower minimum thickness than minimum thickness of the first non-magnetic tunnel insulator material.

20. The magnetic tunnel junction of claim 14 wherein the metal oxide- comprising region is directly against the first and second magnetic regions.

21. The magnetic tunnel junction of claim 14 wherein the magnetic recording material of the first electrode comprises at least one more magnetic region spaced from the second magnetic region, and comprising at least one more non-magnetic insulator metal oxide-comprising region between the second magnetic region and the at least one more magnetic region.

22. The magnetic tunnel junction of claim 14 wherein the magnetic recording material of the first electrode comprises multiple more magnetic regions spaced from the second magnetic region and one another, and comprising multiple more non-magnetic insulator metal oxide-comprising regions; one of the multiple more magnetic regions being most-proximate the second magnetic region compared to all others of the multiple more magnetic regions, one of the multiple more metal oxide-comprising regions being between the second magnetic region and said most- proximate magnetic region, all respective other of the multiple metal oxide- comprising regions being between immediately adjacent of the multiple more magnetic regions.

23. The magnetic tunnel junction of claim 14 wherein the first electrode is on one electrode side of the tunnel insulator material, and comprising a nonmagnetic insulator material most-distal from the tunnel insulator material of all insulator materials of the magnetic tunnel junction on the one electrode side, the most-distal insulator material being of the same composition as the tunnel insulator material and having a lower maximum thickness than that of the tunnel insulator material.

24. A magnetic tunnel junction comprising:

a conductive first magnetic electrode comprising magnetic recording material;

a conductive second magnetic electrode spaced from the first electrode and comprising magnetic reference material;

a non-magnetic tunnel insulator material comprising metal oxide between the first and second electrodes;

the magnetic recording material of the first electrode comprising a first magnetic region and a second magnetic region spaced from the first magnetic region, the first magnetic region being more proximate the non-magnetic tunnel insulator material than the second magnetic region;

the first electrode comprising a first non-magnetic insulator metal oxide- comprising region between the first and second magnetic regions ; and

a second non-magnetic insulator metal oxide-comprising region spaced from the first non-magnetic tunnel insulator region over the second magnetic region of the magnetic recording material.

25. The magnetic tunnel junction of claim 24 being SMTJ.

26. The magnetic tunnel junction of claim 24 being DMTJ.

27. The magnetic tunnel junction of claim 24 wherein the non-magnetic tunnel insulator material, the first non-magnetic insulator metal oxide-comprising region, and the second non-magnetic insulator metal oxide-comprising region are of the same composition relative one another.

28. The magnetic tunnel junction of claim 24 wherein the non-magnetic tunnel insulator material, the first non-magnetic insulator metal oxide-comprising region, and the second non-magnetic insulator metal oxide-comprising region collectively comprise at least two different compositions relative one another.

29. The magnetic tunnel junction of claim 28 wherein the non-magnetic tunnel insulator material, the first non-magnetic insulator metal oxide-comprising region, and the second non-magnetic insulator metal oxide-comprising region collectively comprise three different compositions relative one another.

30. The magnetic tunnel junction of claim 24 wherein the first electrode is on one electrode side of the tunnel insulator material, and comprising a nonmagnetic insulator material most-distal from the tunnel insulator material of all insulator materials of the magnetic tunnel junction on the one electrode side, the most-distal insulator material being of the same composition as the tunnel insulator material and having a lower maximum thickness than that of the tunnel insulator material.

Description:
MAGNETIC TUNNEL JUNCTIONS

TECHNICAL FIELD

[0001] Embodiments disclosed herein pertain to magnetic tunnel junctions, to methods of forming a magnetic electrode of a magnetic tunnel junction, and to methods of forming a magnetic tunnel junction.

BACKGROUND

[0002] A magnetic tunnel junction is an integrated circuit component having two conductive magnetic electrodes separated by a thin non-magnetic tunnel insulator material (e.g. , dielectric material). The insulator material is sufficiently thin such that electrons can tunnel from one magnetic electrode to the other through the insulator material under appropriate conditions. At least one of the magnetic electrodes can have its overall magnetization direction switched between two states at a normal operating write or erase current/voltage, and is commonly referred to as the "free" or "recording" electrode. The other magnetic electrode is commonly referred to as the "reference", "fixed" , or "pinned" electrode, and whose overall magnetization direction will not switch upon application of the normal operating write or erase current/voltage. The reference electrode and the recording electrode are electrically coupled to respective conductive nodes. Electrical resistance between those two nodes through the reference electrode, insulator material, and the recording electrode is dependent upon the magnetization direction of the recording electrode relative to that of the reference electrode. Accordingly, a magnetic tunnel junction can be programmed into one of at least two states, and those states can be sensed by measuring current flow through the magnetic tunnel junction. Since magnetic tunnel junctions can be "programmed" between two current-conducting states, they have been proposed for use in memory integrated circuitry. Additionally, magnetic tunnel junctions may be used in logic or other circuitry apart from or in addition to memory.

[0003] The overall magnetization direction of the recording electrode can be switched by a current-induced external magnetic field or by using a spin-polarized current to result in a spin-transfer torque (STT) effect. Charge carriers (such as electrons) have a property known as "spin" which is a small quantity of angular momentum intrinsic to the carrier. An electric current is generally unpolarized (having about 50% " spin-up" and about 50% " spin-down" electrons). A spin- polarized current is one with significantly more electrons of either spin. By passing a current through certain magnetic material (sometimes also referred to as polarizer material), one can produce a spin-polarized current. If a spin-polarized current is directed into a magnetic material, spin angular momentum can be transferred to that material, thereby affecting its magnetization orientation. This can be used to excite oscillations or even flip (i.e. , switch) the orientation/domain direction of the magnetic material if the spin-polarized current is of sufficient magnitude.

[0004] An alloy or other mixture of Co and Fe is one common material proposed for use as a polarizer material and/or as at least part of the magnetic recording material of a recording electrode in a magnetic tunnel junction. A more specific example is Co x Fe y B z where x and y are each 10-80 and z is 0-50, and may be abbreviated as CoFe or CoFeB . MgO is an ideal material for the non-magnetic tunnel insulator. Ideally such materials are each crystalline having a body- centered-cubic (bcc) 001 lattice. Such materials may be deposited using any suitable technique, for example by physical vapor deposition. One technique usable to ultimately produce the bcc 001 lattice in such materials includes initially forming CoFe to be amorphous and upon which MgO-comprising tunnel insulator material is deposited. During and/or after the depositing, the MgO tunnel insulator, the CoFe, and the tunnel insulator ideally individually achieve a uniform bcc 001 lattice structure.

[0005] Boron is commonly deposited as part of the CoFe to assure or provide initial amorphous deposition of the CoFe. Crystallization of the CoFe can occur during or after deposition of the MgO by annealing the substrate at a temperature of at least about 250°C. This will induce the diffusion of B atoms out of the CoFe matrix being formed to allow crystallization into bcc 001 CoFe. Bcc 001 MgO acts as a template during the crystallization of CoFe. However, B in the finished magnetic tunnel junction construction, specifically at the CoFe/MgO interface or inside the MgO lattice, undesirably reduces tunneling magnetoresistance (TMR) of the magnetic tunnel junction. BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Fig. 1 is a diagrammatic sectional view of a substrate fragment comprising a magnetic tunnel junction in accordance with an embodiment of the invention.

[0007] Fig. 2 is a diagrammatic sectional view of a substrate fragment comprising a magnetic tunnel junction in accordance with an embodiment of the invention.

[0008] Fig. 3 is a diagrammatic sectional view of a substrate fragment comprising a magnetic tunnel junction in accordance with an embodiment of the invention.

[0009] Fig. 4 is a diagrammatic sectional view of a substrate fragment comprising a magnetic tunnel junction in accordance with an embodiment of the invention.

[0010] Fig. 5 is a diagrammatic sectional view of a substrate fragment comprising a magnetic tunnel junction in accordance with an embodiment of the invention.

[0011] Fig. 6 is a diagrammatic sectional view of a substrate fragment comprising a magnetic tunnel junction in accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

[0012] Embodiments of the invention encompass magnetic tunnel junctions.

Example embodiments are initially described with reference to Fig. 1 with respect to a substrate fragment 10, and which may comprise a semiconductor substrate. In the context of this document, the term " semiconductor substrate" or "semiconductive substrate" is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term " substrate" refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. Substrate fragment 10 comprises a base or substrate 1 1 showing various materials having been formed as an elevational stack there-over. Materials may be aside, elevationally inward, or elevationally outward of the Fig. 1 -depicted materials. For example, other partially or wholly fabricated components of integrated circuitry may be provided somewhere about or within fragment 10. Substrate 1 1 may comprise any one or more of conductive (i.e. , electrically herein), semiconductive, or insulative/insulator (i.e. , electrically herein) materials. Regardless, any of the materials, regions, and structures described herein may be homogenous or non-homogenous, and regardless may be continuous or discontinuous over any material which such overlie. Further, unless otherwise stated, each material may be formed using any suitable or yet-to-be-developed technique, with atomic layer deposition, chemical vapor deposition, physical vapor deposition, epitaxial growth, diffusion doping, and ion implanting being examples.

[0013] A magnetic tunnel junction 15 is over substrate 11 , and comprises a conductive first magnetic (i.e. , ferrimagnetic or ferromagnetic herein) electrode 25 comprising magnetic recording material and a conductive second magnetic electrode 27 spaced from first electrode 25 and comprising magnetic reference material. A non-magnetic tunnel insulator material 22 (e.g. , comprising, consisting essentially of, or consisting of MgO) is between the first and second electrodes. Electrodes 25 and 27 individually may contain non-magnetic insulator, semiconductive, and/or conductive material or regions. However, electrodes 25 and 27 when considered individually are characterized as being overall and collectively magnetic and conductive even though the electrode may have one or more regions therein that are intrinsically locally non-magnetic and/or non-conductive. Further, reference to "magnetic" herein does not require a stated magnetic material or region to be magnetic as initially formed, but does require some portion of the stated magnetic material or region to be functionally "magnetic" in a finished circuit construction of the magnetic tunnel junction.

[0014] Example thickness for each of components 25 and 27 is about

20 Angstroms to about 150 Angstroms, and for component 22 about 5 Angstroms to about 25 Angstroms. In this document, "thickness" by itself (no preceding directional adjective) is defined as the mean straight-line distance through a given material or region perpendicularly from a closest surface of an immediately adj acent material of different composition or of an immediately adj acent region. Additionally, the various materials and regions described herein may be of substantially constant thickness or of variable thicknesses. If of variable thickness, thickness refers to average thickness unless otherwise indicated. As used herein, "different composition" only requires those portions of two stated materials or regions that may be directly against one another to be chemically and/or physically different, for example if such materials or regions are not homogenous. If the two stated materials or regions are not directly against one another, "different composition" only requires that those portions of the two stated materials or regions that are closest to one another be chemically and/or physically different if such materials or regions are not homogenous. In this document, a material, region, or structure is "directly against" another when there is at least some physical touching contact of the stated materials, regions, or structures relative one another. In contrast, "over", "on", and "against" not preceded by "directly" encompass "directly against" as well as construction where intervening material(s), region(s), or structure(s) result(s) in no physical touching contact of the stated materials, regions, or structures relative one another.

[0015] The elevational positions of electrodes 25 and 27 may be reversed and/or an orientation other than an elevational stack may be used (e.g. , lateral; diagonal; a combination of one or more of elevational, horizontal, diagonal; etc.). In this document, "elevational", "upper", "lower", "top", and "bottom" are with reference to the vertical direction. "Horizontal" refers to a general direction along a primary surface relative to which the substrate is processed during fabrication, and vertical is a direction generally orthogonal thereto. Further, "vertical" and "horizontal" as used herein are generally perpendicular directions relative one another and independent of orientation of the substrate in three-dimensional space.

[0016] The magnetic recording material of first electrode 25 comprises a first magnetic region 28 , a second magnetic region 30 spaced from first magnetic region 28 , and a third magnetic region 32 spaced from first magnetic region 28 and second magnetic region 30. Magnetic regions 28 , 30, and 32 may comprise any suitable existing or yet-to-be-developed magnetic material(s). Examples include certain ones and combinations of Co, Fe, Ni, Pd, Pt, B , Ir, and Ru. More specific examples are one or a combination of Fe, CoFe, and CoFeB . In one embodiment, magnetic regions 28 , 30, and 32 are of the same composition relative one another. In one embodiment, magnetic regions 28 , 30, and 32 collectively comprise at least two different compositions relative one another. In one embodiment, magnetic regions 28 , 30, and 32 have the same maximum and/or minimum thicknesses relative one another. In one embodiment, magnetic regions 28 , 30, and 32 have at least two different maximum and/or minimum thicknesses relative one another. Example minimum thicknesses for each of magnetic regions 28 , 30, and 32 are from about 8 Angstroms to about 25 Angstroms, with about 12 Angstroms to about 18 Angstroms being ideal.

[0017] A first non-magnetic insulator metal oxide-comprising region 29 is between first magnetic region 28 and second magnetic region 30. A second non-magnetic insulator metal oxide-comprising region 31 is between second magnetic region 30 and third magnetic region 32. Regions 29 and/or 31 may comprise, consist of, or consist essentially of non-magnetic insulator metal oxide. For clarity in the figures, non-magnetic insulator metal oxide-comprising regions are designated as "MO", where "M" is one or more elemental metals and "O" is of course oxygen, and regardless of stoichiometry or whether comprising one or more non-stoichiometric compositions. Example non-magnetic insulator metal oxides are magnesium oxide, calcium oxide, strontium oxide, yttrium oxide, titanium oxide, hafnium oxide, vanadium oxide, and aluminum oxide. In one embodiment, metal oxide-comprising regions 29 and 31 are of the same composition relative one another. In one embodiment, metal oxide-comprising regions 29 and 31 are of different compositions relative one another. In one embodiment, first metal oxide- comprising region 29 and second metal oxide-comprising region 31 have the same maximum and/or minimum thicknesses relative one another. In one embodiment, first metal oxide-comprising region 29 and second metal oxide-comprising region 31 have different maximum and/or minimum thicknesses relative one another. An example thickness is about 3 Angstroms to about 12 Angstroms, with about 4 Angstroms to about 6 Angstroms being an ideal example. In one embodiment, first metal oxide-comprising region 29 is directly against first magnetic region 28 and/or second magnetic region 30, for example as shown. In one embodiment, second metal oxide-comprising region 31 is directly against second magnetic region 30 and/or third magnetic region 32, for example as shown.

[0018] First electrode 25 may be considered as being on one electrode side of tunnel insulator material 22 (e.g. , a top side as shown) and second electrode 27 may be considered as being on another electrode side of tunnel insulator material 22 (e.g. , a bottom side as shown). In one embodiment, magnetic tunnel junction 15 comprises a non-magnetic insulator material 40 which is most-distal from tunnel insulator material 22 of all insulator materials (e.g. , materials 29, 31 , and 40) on the one electrode side of tunnel insulator material 22. In such example one embodiment, most-distal insulator material 40 is of the same composition as tunnel insulator material 22 and has lower maximum thickness than that of tunnel insulator material 22. Example thickness for non-magnetic insulator material 40 is the same as that described above for non-magnetic insulator metal oxide- comprising regions 29 and 31.

[0019] The magnetic reference material of second conductive magnetic electrode 27 may comprise any suitable existing or yet-to-be-developed magnetic reference material. As examples, such might comprise certain one or more of Co, Ni, Pt, Pd, and Ir, and for example may be in the form of a single homogenous ferromagnetic layer or as a synthetic antiferromagnetic composite employing one or more non-magnetic materials. As a more specific example, the magnetic reference material of second electrode 27 may comprise a suitable magnetic polarizer material (e.g. , Co x Fe y B z , as identified above, at about 8 Angstroms to about 20 Angstroms) directly against tunnel insulator 22 and a synthetic antiferromagnet construction (e.g. , about 20 Angstroms to 100 Angstroms of a Co/Pt/Co composite) further away from tunnel insulator 22 than the magnetic polarizer material.

[0020] Ideally the materials and regions of first electrode 25 and second electrode 27 are crystalline although may be amorphous or include amorphous material and regions. Characterization of a material or region as being "crystalline" where used in this document requires at least 90% by volume of the stated material or region to be crystalline. Characterization of a material or region as being "amorphous" where used in this document requires at least 90% by volume of the stated material to be amorphous.

[0021] In one embodiment, the magnetic recording material of the first electrode comprises at least one more magnetic region spaced from the third magnetic region, and at least one more non-magnetic insulator metal oxide-comprising region between the third magnetic region and the at least one more magnetic region. Figs. 2 and 3 show example such embodiments with respect to magnetic tunnel junctions 15a and 15b with respect to substrates 10a and 10b, respectively. Like numerals from the above-described embodiments have been used where appropriate, with some construction differences being indicated with the suffixes "a" and "b", respectively, or with different numerals.

[0022] Referring to Fig. 2, the magnetic recording material of first electrode 25a comprises another magnetic region 42 spaced from third magnetic region 32, and another non-magnetic insulator metal oxide-comprising region 41 between third magnetic region 32 and the another magnetic region 42. Magnetic region 42 may have any of the attributes described above with respect to magnetic regions 28 , 30, and 32. Non-magnetic insulator metal oxide-comprising region 41 may have any of the attributes described above with respect to metal oxide-comprising regions 29 and 31. Any other attribute(s) or aspect(s) as described above and/or shown in Fig. 1 may be used in the Fig. 2 embodiments.

[0023] Referring to Fig. 3 , magnetic recording material of first electrode 25b has another magnetic region 44 and another non-magnetic insulator metal oxide-comprising region 43, each of which may have the same respective attributes as described above with respect to regions 42 and 41 , respectively. Additional such magnetic regions and non-magnetic insulator metal oxide-comprising regions may be provided (not shown). Any other attribute(s) or aspect(s) as described above and/or shown in Figs. 1 and 2 may be used in the Fig. 3 embodiments.

[0024] An embodiment of the invention comprises the magnetic recording material of the first electrode having multiple more magnetic regions (e.g. , regions 42 and 44) spaced from the third magnetic region (e.g. , region 32) and from one another (e.g. , magnetic regions 42 and 44 being spaced from one another). Such embodiment also comprises multiple more non-magnetic insulator metal oxide-comprising regions (e.g. , regions 41 and 43). One of the multiple more magnetic regions is most-proximate the third magnetic region (e.g. , region 42) compared to all others of the multiple more magnetic regions (e.g. , region 44). One of the multiple metal oxide-comprising regions is between the third magnetic region and the most-proximate magnetic region (e.g. , region 41 ). All respective other of the metal oxide-comprising regions (e.g. , region 43) are between immediately adj acent of the multiple more magnetic regions (e.g. , region 43 being between immediately adjacent of the multiple more magnetic regions 42 and 44). More than the two additional magnetic regions 42 and 44, and non-magnetic insulator metal oxide-comprising regions 41 and 43 , may be added as part of the first electrode.

[0025] The example embodiments of Figs. 1 -3 depict single magnetic tunnel junctions (SMTJs). However, dual magnetic tunnel junctions (DMTJs) or more than dual (two) magnetic tunnel junctions are contemplated. In one embodiment, a magnetic tunnel junction comprises another non-magnetic tunnel insulator material spaced from the second metal oxide-comprising insulator material over the third magnetic region of the magnetic recording material. In such example one embodiment, second magnetic reference material is over the another non-magnetic tunnel insulator material. The second magnetic reference material comprises magnetic polarizer material proximate the another non-magnetic tunnel insulator material. One such example embodiment is shown in Fig. 5, and is described in additional detail below.

[0026] An embodiment of the invention comprises a multiple-barrier magnetic tunnel junction (e.g., DMTJ), for example as shown in Fig. 4 with respect to a magnetic tunnel junction 15c as part of a substrate 10c. Like numerals from the above-described embodiments have been used where appropriate, with some construction differences being indicated with the suffix "c" or with different numerals. Material 22 comprises a first non-magnetic tunnel insulator material that is between first electrode 25c and second electrode 27. Magnetic recording material of first electrode 25c comprises first magnetic region 28 and second magnetic region 30 spaced from first magnetic region 28. Non-magnetic insulator metal oxide-comprising region 29 is between first magnetic region 28 and second magnetic region 30, with first magnetic region 28 being more proximate first non-magnetic tunnel insulator material 22 than second magnetic region 30. Second electrode 27 may be considered as comprising first magnetic reference material.

[0027] A second non-magnetic tunnel insulator material 100 is spaced from first non-magnetic tunnel insulator material 22 over second magnetic region 30 of the magnetic recording material of first electrode 25c. Second magnetic reference material 55 is over second non-magnetic tunnel insulator material 100, and comprises magnetic polarizer material proximate second non-magnetic tunnel insulator material 100. Second non-magnetic tunnel insulator material 100 may have any of the attributes described above with respect to tunnel insulator 22. Second magnetic reference material 55 may have any of the attributes described above with respect to the (first) magnetic reference material of second electrode 27. In one embodiment, first non-magnetic tunnel insulator material 22 and second non-magnetic tunnel insulator material 100 are of the same composition relative one another. In one embodiment, first non-magnetic tunnel insulator material 22 and second non-magnetic tunnel insulator material 22 are of different compositions relative one another. In one embodiment, the first and second non-magnetic tunnel insulator materials have the same maximum and/or minimum thicknesses relative one another, and in one embodiment have different minimum and/or maximum thicknesses relative one another. In one ideal embodiment, second non-magnetic tunnel insulator material 100 has a lower minimum thickness than minimum thickness of first non-magnetic tunnel insulator material 22. An ideal thickness for second non-magnetic tunnel insulator material 100 is about 7 Angstroms to about 15 Angstroms. In one embodiment, second non-magnetic tunnel insulator material 100 is directly against magnetic region 30. Any other attribute(s) or aspect(s) as described above and/or shown in Figs. 1 -3 may be used in the Fig. 4 embodiments.

[0028] In one embodiment, the magnetic recording material of the first electrode comprises at least one more magnetic region spaced from the second magnetic region, and at least one more non-magnetic insulator metal oxide-comprising region between the second magnetic region and the at least one more magnetic region. Figs. 5 and 6 show example such embodiments with respect to magnetic tunnel junctions 15d and 15e with respect to substrates l Od and l Oe, respectively. Like numerals from the above-described embodiments have been used where appropriate, with some construction differences being indicated with the suffixes "d" and "e", respectively, or with different numerals. [0029] Referring to Fig. 5 , the magnetic recording material of first electrode 25d comprises another magnetic region 32 spaced from second magnetic region 30, and another non-magnetic insulator metal oxide-comprising region 31 between second magnetic region 30 and the another magnetic region 32. Any other attribute(s) or aspect(s) as described above and/or shown in Figs. 1 -4 may be used in the Fig. 5 embodiment.

[0030] Referring to Fig. 6, magnetic recording material of first electrode 25e has another magnetic region 42 and another non-magnetic insulator metal oxide-comprising region 41. Additional such magnetic regions and non-magnetic insulator metal oxide-comprising regions may be provided (not shown). Any other attribute(s) or aspect(s) as described above and/or shown in Figs. 1 -5 may be used in the Fig. 6 embodiments.

[0031] Figs. 4-6 illustrate example DMTJ embodiments, although more than dual (two) tunnel barrier material-functioning layers may be used.

[0032] An embodiment of the invention comprises a magnetic tunnel junction

(e.g. , 15 , 15a, 15b, 15c, 15d, 15e) that comprises a conductive first magnetic electrode (e.g., 25 , 25a, 25b, 25c, 25d, 25e) comprising magnetic recording material. A conductive second magnetic electrode (e.g. , electrode 27) is spaced from the first electrode and comprises magnetic reference material. A non-magnetic tunnel insulator material (e.g. , material 22) is between the first and second electrodes. The non-magnetic tunnel insulator material comprises metal oxide (i.e. , as described above). In one ideal embodiment, the non-magnetic tunnel insulator material comprises, consists essentially of, or consists of MgO. The magnetic recording material of the first electrode comprises a first magnetic region and a second magnetic region spaced from the first magnetic region (e.g. , regions 28 and 30, respectively). The first magnetic region is more proximate the non-magnetic tunnel insulator material than the second magnetic region. The first electrode comprises a first non-magnetic insulator metal oxide-comprising region (e.g. , region 29) between the first and second magnetic regions. A second non-magnetic insulator metal oxide-comprising region is spaced from the first nonmagnetic tunnel insulator material over the second magnetic region of the magnetic recording material. For example in the embodiments of Figs. 1 -3 , any of regions 31 , 41 , and 43 are example such second non-magnetic insulator metal oxide- comprising regions. In the embodiments of Figs. 4-6, any of regions 100, 31 , and 41 are example such second non-magnetic insulator metal oxide-comprising regions.

[0033] In one embodiment, the magnetic tunnel junction is SMTJ (e.g. , any of Figs. 1 , 2, and 3), and in one embodiment is DMTJ (e.g. , any of Figs. 4, 5 , 6).

[0034] In one embodiment, the non-magnetic tunnel insulator material, the first non-magnetic insulator metal oxide-comprising region, and the second nonmagnetic insulator metal oxide-comprising region are of the same composition relative one another. In one embodiment, the non-magnetic tunnel insulator material, the first non-magnetic insulator metal oxide-comprising region, and the second non-magnetic insulator metal oxide-comprising region collectively comprise at least two different compositions relative one another.

[0035] Any other attribute(s) or aspect(s) as described above may be used.

[0036] As a specific example for magnetic tunnel junction 15 , second electrode 27 includes 50 Angstroms of Ru directly against substrate 1 1 , 24 Angstroms of a CoPt superlattice-like multilayer directly against the Ru, 4 Angstroms of Ru directly against the CoPt superlattice-like multilayer, 12 Angstroms of a CoPt superlattice-like multilayer directly against the Ru, 4 Angstroms of Co directly against the Ru, 2 Angstroms of Ta directly against the Co, and 8 Angstroms of Co x Fe y B z directly against the Ta, with the Co x Fe y B z functioning primarily as magnetic polarizer material. Tunnel insulator 22 is 15 Angstroms of MgO. Magnetic region 28 includes 8 Angstroms of Co 2 oFe 5 oB 3o (molar quantities as initially deposited, not necessarily in final construction) directly against tunnel insulator 22. Such further includes 10 Angstroms of Co2oFe 6 oB 2 o (molar quantities as initially deposited, not necessarily in final construction) directly against the Co 2 oFe 5 oB3o, and which is of variable thickness. Region 29 is 6 Angstroms of MgO directly against the Co2oFe 6 oB 2 o of first magnetic region 28. Second magnetic region 30 is 9 Angstroms of Fe directly against region 29 and 3 Angstroms of Co 2 oFe 6 oB2o (molar quantities as initially deposited, not necessarily in final construction) directly against the Fe. Region 31 is 6 Angstroms of MgO directly against second magnetic region 30. Third magnetic region 32 is a repeat of second magnetic region 30. Material 40 is 5 Angstroms of MgO directly against third magnetic region 32. [0037] A specific example Fig. 2 construction is the same as described immediately-above for Fig. 1 moving upward from substrate 1 1 through region 29. Region 30 is 10 Angstroms of Fe directly against region 29, and 3 Angstroms of Co 2 oFe 6 oB 2 o directly against the Fe. Region 30 is 6 Angstroms of MgO. Region 32 is a repeat of region 30. Region 41 is a repeat of region 31. Region 42 is a repeat of region 30, and material 40 is the same as in Fig. 1.

[0038] The immediately above examples can be extrapolated to the example

Figs. 3-6 embodiments.

[0039] One key performance metric of a magnetic tunnel junction is the ratio

E b I c , where E b is the energy barrier of the magnetic recording material in ergs and I c is the critical switching current in amperes. Providing multiple MO layers within the magnetic recording material may increase the number of perpendicular magnetic anisotropy generating interfaces which allows for increased E b while maintaining similar or only slightly higher I c , thus improving the E b /I c ratio.

Conclusion

[0040] In some embodiments, a magnetic tunnel junction comprises a conductive first magnetic electrode comprising magnetic recording material. A conductive second magnetic electrode is spaced from the first electrode and comprises magnetic reference material. A non-magnetic tunnel insulator material is between the first and second electrodes. The magnetic recording material of the first electrode comprises a first magnetic region, a second magnetic region spaced from the first magnetic region, and a third magnetic region spaced from the first and second magnetic regions. A first non-magnetic insulator metal oxide- comprising region is between the first and second magnetic regions. A second nonmagnetic insulator metal oxide-comprising region is between the second and third magnetic regions.

[0041] In some embodiments, a magnetic tunnel junction comprises a conductive first magnetic electrode comprising magnetic recording material. A conductive second magnetic electrode is spaced from the first electrode and comprises first magnetic reference material. A first non-magnetic tunnel insulator material is between the first and second electrodes. The magnetic recording material of the first electrode comprises a first magnetic region and a second magnetic region spaced from the first magnetic region. A non-magnetic insulator metal oxide-comprising region is between the first and second magnetic regions. The first magnetic region is more proximate the first non-magnetic tunnel insulator material than the second magnetic region. A second non-magnetic tunnel insulator material is spaced from the first non-magnetic tunnel insulator material over the second magnetic region of the magnetic recording material. Second magnetic reference material is over the second non-magnetic tunnel insulator material. The second magnetic reference material comprises magnetic polarizer material proximate the second non-magnetic tunnel insulator material.

[0042] In some embodiments, a magnetic tunnel junction comprises a conductive first magnetic electrode comprising magnetic recording material. A conductive second magnetic electrode is spaced from the first electrode and comprises magnetic reference material. A non-magnetic tunnel insulator material comprising metal oxide is between the first and second electrodes. The magnetic recording material of the first electrode comprises a first magnetic region and a second magnetic region spaced from the first magnetic region. The first magnetic region is more proximate the non-magnetic tunnel insulator material than the second magnetic region. The first electrode comprises a first non-magnetic insulator metal oxide-comprising region between the first and second magnetic regions. A second non-magnetic insulator metal oxide-comprising region is spaced from the first non-magnetic tunnel insulator region over the second magnetic region of the magnetic recording material.

[0043] In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.