Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MANUFACTURING CONTINUOUS FIBER REINFORCED THERMOPLASTIC COMPONENTS WITH LAYERS OF UNIDIRECTIONAL TAPE
Document Type and Number:
WIPO Patent Application WO/2021/127129
Kind Code:
A1
Abstract:
A method of manufacturing continuous fiber reinforced thermoplastic components (130) includes receiving, by a movable die (102), spread dry fiber tows (108). The method also includes receiving, by the movable die and from a polymer extruder (104) fluidically coupled to the movable die, molten polymer (110). The method also includes wetting, by the movable die, the spread fiber tows with the molten polymer. The method also includes maintaining, by the movable die, the wet fiber tows spread as the wet fiber tows exit the die. The method also includes depositing, by the movable die, a layer (131) of the wet fiber tows on a printing surface (114). The movable die is configured to move along the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface.

Inventors:
FAKIRI ABDERRAHIM (SA)
JAZZAR ABDULLATIF (SA)
Application Number:
PCT/US2020/065531
Publication Date:
June 24, 2021
Filing Date:
December 17, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAUDI ARABIAN OIL CO (SA)
ARAMCO AMERICAS (US)
International Classes:
B29C70/38; B29B15/12
Domestic Patent References:
WO2017137233A12017-08-17
WO2016107808A12016-07-07
Foreign References:
US6558146B12003-05-06
US4588538A1986-05-13
US201916717491A2019-12-17
Attorney, Agent or Firm:
BRUCE, Carl E. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method of manufacturing continuous fiber reinforced thermoplastic components, the method comprising: receiving, by a movable die, spread dry fiber tows; receiving, by the movable die and from a polymer extruder fluidically coupled to the movable die, molten polymer; wetting, by the movable die, the spread fiber tows with the molten polymer; maintaining, by the movable die, the wet fiber tows spread as the wet fiber tows exit the die; and depositing, by the movable die, a layer of the wet fiber tows on a printing surface, the movable die configured to move along the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface.

2. The method of claim 1, further comprising changing, by the movable die, a thickness of the layer of the wet fiber tows.

3. The method of claim 2, wherein changing the thickness of the layer of the wet fiber tows comprises changing a size of an outlet of the movable die. 4. The method of claim 1, wherein wetting the spread fiber tows comprises generally uniformly contacting the fiber tows with the molten polymer.

5. The method of claim 1, wherein the movable die comprises an interior channel configured to receive the molten polymer from a polymer extruder fluidically coupled to the movable die, and wherein wetting the fiber tows with the molten polymer comprises wetting the fiber tows at the interior channel before the fiber tows leave the movable die.

6. The method of claim 5, wherein receiving the spread dry fiber tows comprises receiving, at the interior channel, the dry fiber tows where the dry fiber tows meet the molten polymer.

7. The method of claim 6, wherein receiving the dry fiber tows at the interior channel comprises receiving, at a merging point disposed between 10 to 50 millimeters away from an outlet of the movable die, the dry fiber tows, and wherein maintaining the wet fiber tows spread comprises passing the wet and spread fiber tows from the merging point to the outlet of the movable die.

8. The method of claim 5, wherein wetting the fiber tows comprises flowing the molten polymer along the interior channel and passing the fiber tows along the interior channel simultaneously.

9. The method of claim 1, wherein the movable die is coupled to an additive manufacturing actuator system configured to move the movable die, and wherein depositing the layer of the wet fiber tows comprises depositing layers of the wet fiber tows on the printing surface to form a preform object in a semi-consolidated state.

10. A method comprising: receiving, by a movable die, dry fiber tows; wetting, by the movable die, the fiber tows with molten polymer; and depositing, by the movable die, at least one layer of the wet fiber tows on a printing surface, the movable die configured to move along the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface.

11. The method of claim 10, wherein receiving the fiber tows comprises receiving the fiber tows spread from a fiber spreader.

12. The method of claim 11, further comprising, after wetting the fiber tows, maintaining, by the movable die, the wet fiber tows spread as the wet fiber tows move to leave the die.

13. The method of claim 10, wherein the movable die comprises an interior channel and wherein receiving the dry fiber tows comprises receiving the dry fiber tows at the interior channel, and wherein wetting the fiber tows comprises wetting the fiber tows with the molten polymer at the interior channel.

14. The method of claim 13, further comprising, before wetting the fiber tows, receiving, by the movable die and from a polymer extruder fluidically coupled to interior channel of the movable die, molten polymer.

15. An apparatus for manufacturing thermoplastic components, the apparatus comprising: a fiber spreader configured to spread dry fiber tows; a polymer extruder; a printing surface; and a movable die comprising an interior channel fluidically coupled to the polymer extruder to receive molten polymer from the polymer extruder, the movable die configured to receive the spread dry fiber tows from the fiber spreader, the movable die configured to wet, at the interior channel, the fiber tows with the molten polymer, the movable die configured to deposit a layer of the wet fiber tows on the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface.

16. The apparatus of claim 15, further comprising an additive manufacturing actuator system coupled to the movable die, the additive manufacturing actuator system configured to move the movable die along the printing surface to deposit layers of the wet fiber tows on the printing surface to form a preform object in a semi- consolidated state.

17. The apparatus of claim 15, wherein the movable die further comprises an adjustable outlet through which the layer of the wet fiber tows leaves the movable die, the adjustable outlet configured to change a thickness of the layer of the wet fiber tows.

18. The apparatus of claim 17, wherein the movable die comprises a cantilevered lip defining, with a body of the movable die, the adjustable outlet, the cantilevered lip configured to move with respect to the body of the movable die to change a size of the adjustable outlet.

19. The apparatus of claim 17, wherein the interior channel of the movable die further comprises a merging portion, the merging portion of the interior channel configured to receive the dry fiber tows to wet the dry fiber tows with the molten polymer, wherein the merging portion is disposed about 10 to 50 millimeters from the adjustable outlet of the movable die such that the wet fiber tows travel 10 to 50 millimeters along the die before exiting the movable die to help prevent the wet fiber tows from mingling before exciting the movable die.

20. The apparatus of claim 19, wherein the movable die further comprises a distribution manifold upstream of the merging portion, the distribution manifold configured to distribute the molten polymer before the polymer reaches the merging portion.

Description:
MANUFACTURING CONTINUOUS FIBER REINFORCED THFRMOPLASTIC COMPONENTS WITH LAYERS OF

UNIDIRECTIONAL TAPE Claim of Priority

[0001] This application claims priority to U.S. Patent Application No.

16/717,491 filed on December 17, 2019, the entire contents of which are hereby incorporated by reference.

Field of the Disclosure [0002] This disclosure relates to manufacturing plastics, in particular, to methods and equipment for manufacturing thermoplastics

Background of the Disclosure

[0003] Thermoplastic components can be made with continuous reinforced fibers, such as carbon fiber, glass fiber, or aramid fiber. Thermoplastic components exhibit high stiffhess-to-weight ratios and other mechanical properties that make them desirable in multiple applications. Manufacturing thermoplastic components can be costly and time-consuming. Methods and systems for manufacturing thermoplastic components are sought.

Summary [0004] Implementations of the present disclosure include a method of manufacturing continuous fiber reinforced thermoplastic components. The method includes receiving, by a movable die, spread dry fiber tows. The method also includes receiving, by the movable die and from a polymer extruder fluidically coupled to the movable die, molten polymer. The method also include wetting, by the movable die, the spread fiber tows with the molten polymer. The method also includes maintaining, by the movable die, the wet fiber tows spread as the wet fiber tows exit the die. The method also includes depositing, by the movable die, a layer of the wet fiber tows on a printing surface. The movable die is configured to move along the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface. [0005] In some implementations, the method also includes changing, by the movable die, a thickness of the layer of the wet fiber tows. In some implementations, changing the thickness of the layer of the wet fiber tows includes changing a size of an outlet of the movable die. [0006] In some implementations, wetting the spread fiber tows includes generally uniformly contacting the fiber tows with the molten polymer.

[0007] In some implementations, the movable die includes an interior channel configured to receive the molten polymer from a polymer extruder fluidically coupled to the movable die. Wetting the fiber tows with the molten polymer includes wetting the fiber tows at the interior channel before the fiber tows leave the movable die.

[0008] In some implementations, receiving the spread dry fiber tows includes receiving, at the interior channel, the dry fiber tows where the dry fiber tows meet the molten polymer.

[0009] In some implementations, receiving the dry fiber tows at the interior channel includes receiving, at a merging point disposed between 10 to 50 millimeters away from an outlet of the movable die, the dry fiber tows. Maintaining the wet fiber tows spread includes passing the wet and spread fiber tows from the merging point to the outlet of the movable die.

[0010] In some implementations, wetting the fiber tows includes flowing the molten polymer along the interior channel and passing the fiber tows along the interior channel simultaneously.

[0011] In some implementations, the movable die is coupled to an additive manufacturing actuator system configured to move the movable die. Depositing the layer of the wet fiber tows includes depositing layers of the wet fiber tows on the printing surface to form a preform object in a semi-consolidated state.

[0012] Implementations of the present disclosure also include a method that includes receiving, by a movable die, dry fiber tows. The method also includes wetting, by the movable die, the fiber tows with molten polymer. The method also includes depositing, by the movable die, at least one layer of the wet fiber tows on a printing surface. The movable die is configured to move along the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface. [0013] In some implementations, receiving the fiber tows includes receiving the fiber tows spread from a fiber spreader. In some implementations, the method also includes, after wetting the fiber tows, maintaining, by the movable die, the wet fiber tows spread as the wet fiber tows move to leave the die.

[0014] In some implementations, the movable die includes an interior channel.

Receiving the dry fiber tows includes receiving the dry fiber tows at the interior channel, and wetting the fiber tows includes wetting the fiber tows with the molten polymer at the interior channel.

[0015] In some implementations, the method also includes, before wetting the fiber tows, receiving, by the movable die and from a polymer extruder fluidically coupled to interior channel of the movable die, molten polymer. [0016] Implementations of the present disclosure also include an apparatus for manufacturing thermoplastic components. The apparatus includes a fiber spreader configured to spread dry fiber tows, a polymer extruder, a printing surface, and a movable die. The movable die includes an interior channel fluidically coupled to the polymer extruder to receive molten polymer from the polymer extruder. The movable die receives the spread dry fiber tows from the fiber spreader. The movable die wets, at the interior channel, the fiber tows with the molten polymer. The movable die deposits a layer of the wet fiber tows on the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface.

[0017] In some implementations, the apparatus also includes an additive manufacturing actuator system coupled to the movable die. The additive manufacturing actuator system is configured to move the movable die along the printing surface to deposit layers of the wet fiber tows on the printing surface to form a preform object in a semi-consolidated state.

[0018] In some implementations, the movable die further includes an adjustable outlet through which the layer of the wet fiber tows leaves the movable die. The adjustable outlet configured to change a thickness of the layer of the wet fiber tows. In some implementations, the movable die includes a cantilevered lip defining, with a body of the movable die, the adjustable outlet. The cantilevered lip is configured to move with respect to the body of the movable die to change a size of the adjustable outlet. In some implementations, the interior channel of the movable die further includes a merging portion. The merging portion of the interior channel is configured to receive the dry fiber tows to wet the dry fiber tows with the molten polymer. The merging portion is disposed about 10 to 50 millimeters from the adjustable outlet of the movable die such that the wet fiber tows travel 10 to 50 millimeters along the die before exiting the movable die to help prevent the wet fiber tows from mingling before exciting the movable die.

[0019] In some implementations, the movable die further includes a distribution manifold upstream of the merging portion. The distribution manifold distributes the molten polymer before the polymer reaches the merging portion.

Brief Description of the Drawings

[0020] FIG. 1 is a front schematic view of a printing apparatus for manufacturing thermoplastic preforms. [0021] FIG. 2 is a front schematic view of a portion of the printing apparatus of

FIG. 1.

[0022] FIG. 3 is a flow chart of an example method of manufacturing thermoplastic components.

Detailed Description of the Disclosure [0023] The present disclosure describes printing methods and equipment for manufacturing thermoplastic preforms and components by simultaneously making and printing continuous fiber unidirectional (UD) tape. The equipment includes a movable die that receives continuous fiber tows and wets the fiber tows with molten polymer before depositing layers of the wet fiber tows on a printing surface. The movable die is connected to an additive manufacturing actuator system that moves the die to deposit layers of the wet fiber tows on the printing surface to form two-dimensional thermoplastic components.

[0024] Particular implementations of the subject matter described in this specification can be implemented so as to realize one or more of the following advantages. For example, making UD tape and printing the UD tape to make near-shape thermoplastic preform or components using the printing apparatus of the present disclosure reduces the number of steps required in conventional manufacturing. The method of the present disclosure reduces the number of manufacturing steps by merging the pultrusion, tape laying, lamination, and trimming steps into one step. [0025] FIG. 1 shows a printing apparatus 100 for manufacturing thermoplastic components 130. The thermoplastic components 130 can be, for example, thermoplastic preforms in a semi-consolidated state. By ‘semi-consolidated state’, it is meant that the interlayers of the preform might not be fully bonded. The manufacturing apparatus 100 includes a movable die 102, a polymer extruder 104 fluidically coupled to the movable die 102, one or more fiber spreaders 106, a printing surface 114 (for example, a printing bed), and an additive manufacturing actuator system 120 (for example, a gantry or a multi-axis robotic system) coupled to the die 102. The additive manufacturing actuator system 120 includes one or more actuators 118 (for example, linear actuators) and a processing device 128 (for example, a computer) communicatively coupled to the actuators 118. The processing device 118 has additive manufacturing software to control the actuators 118 to move the die 102 along the printing surface 114 to deposit layers 131 of wet fiber tows 108 on the printing surface 114. The die 102 is moved to deposit layers 131 to form two-dimensional or three-dimensional thermoplastic components 130. For example, the die 102 can print or form preform objects (for example, near-shape laminate) in a semi-consolidated state. Full consolidation can take place in later steps (for example, during the forming step or the over molding step).

[0026] The fiber spreaders 106 spread dry fiber tows or bundles 108 received from a fiber roll 116. The fiber tows 108 can be made, for example, of carbon fiber. The printing apparatus 100 can include two fiber spreaders 106, with the die 102 disposed between the two fiber spreaders 106 to receive the respective spread fiber tows 108. The spread fiber tows 108 enter the die 102 from two opposite sides of the die 102.

The fiber tows 108 enter the die 102 through respective side openings 202 to be wetted with a thermoplastic melted polymer 110 (for example, a matrix material such as polyethylene resin) inside the die 102 and then deposited on the printing surface 114. [0027] The movable die 102 has an interior channel 112 fluidically coupled to the polymer extruder 104 to receive the molten polymer 110 from the polymer extruder 104. The fiber tows 18 enter the interior channel 112 to be wetted with the polymer 110 and then exit the die 102 through an exit 124 or outlet of the die 102. The molten polymer 110 flows along the channel toward the spread fiber tows 108 to wet or impregnate the fiber tows 108 at the interior channel 112. The wet fiber tows 108 form a layer 131 of continuous UD tape that the die 102 lays or deposits on the printing surfacell4. The die 102 forms thermoplastic components 130 with multiple layers 131 of continuous UD tape. For example, the die 102 deposits the first layer and then waits for the layer to dry and stick to the printing surface 114. The dry layer acts as an anchor to pull the subsequent fiber layers during the tape laying process. The die 102 moves along the printing surface 114 to form thermoplastic components 130 of one or more layers 131 of wet fiber tows on the printing bed 114.

[0028] FIG. 2 shows a portion of the movable die 102 with an adjustable outlet 124. The movable die 102 defines the outlet 124 between a cantilevered lip 208 and a body 210 or wall of the die 102 at an end of the die 102. The layer 131 of the wet fiber tows leaves the movable die 102 through the adjustable outlet 124 to land on the printing surface 114. The adjustable outlet 124 can change a thickness ‘f of the layer 131 of the wet fiber tows. For example, the cantilevered lip 208 is moved or flexed by a screw 206 (for example, an adjustable push screw) attached to the die 102. The screw 206 moves the cantilevered lip 208 with respect to the body 210 of the die 102 to change a size of the adjustable outlet 124 to change the thickness ‘f of the layer 131. For example, the screw 206 can push the far end of the cantilevered lip 208 toward the body 210 of the die 102 to narrow the gap between the cantilevered lip 208 and the body 210 of the die 102, or retract to release the cantilevered lip 208 and widen the gap between the cantilevered lip 208 and the body 210 of the die 102.

[0029] The die 102 can also include a distribution manifold 204 upstream of the outlet 124. By upstream, it is meant that the distribution manifold 204 is disposed in an opposite direction or location, with respect to the outlet 124, from the direction in which the molten polymer 110 flows. The distribution manifold 204 is disposed between a first portion 112a of the interior channel 112 and a second portion 112b of the interior channel 112. The first portion 112a of the interior channel 112 can have a circular cross- section and the second portion 112b of the channel 112 can have a rectangular cross- section (or another flat cross-section) to spread or distribute the molten polymer 110 before reaching the spread dry fiber tows 108 to uniformly contact and wet the fiber tows 108.

[0030] Referring back to FIG. 1, the interior channel 112 of the die 102 has a merging point ’P’ (for example, a merging portion or station) where the dry fiber tows 108 meet the molten polymer 110. The channel 112 can receive the dry fiber tows 108 at the merging point ‘P’ to wet the fiber tows 108 with the molten polymer 110. The wet fiber tows 108 are preferably kept spread when disposed on the printing surface 114 to form quality products. To help prevent the wet fiber tows from mingling before exciting the die 102, the merging point ‘P’ is disposed about 10 to 50 millimeters from the adjustable outlet 124 of the die 102 such that the wet fiber tows travel a length of about 10 to 50 millimeters (preferably between 10 to 25 millimeters) along the die before exiting the die 102. Such a short travel distance allows the wet fibers to remain spread when deposited on the printing surface 114. In some implementations, the adjustable outlet 124 of the die 102 can adjust the thickness of the layer 131 to help prevent the fibers from mingling before being deposited on the printing surface 114.

[0031] FIG. 3 shows an example method of manufacturing thermoplastic components (for example, the thermoplastic component 130 of FIG. 1). The method includes receiving, by a movable die, spread dry fiber tows (305). The method also includes receiving, by the movable die and from a polymer extruder fluidically coupled to the movable die, molten polymer (310). The method also includes wetting, by the movable die, the spread fiber tows with the molten polymer (315). The method also includes maintaining, by the movable die, the wet fiber tows spread as the wet fiber tows exit the die (320). The method also includes depositing, by the movable die, a layer of the wet fiber tows on a printing surface, where the movable die is configured to move along the printing surface to form a thermoplastic component of one or more layers of fiber tows on the printing surface (325).

[0032] Although the following detailed description contains many specific details for purposes of illustration, it is understood that one of ordinary skill in the art will appreciate that many examples, variations and alterations to the following details are within the scope and spirit of the disclosure. Accordingly, the exemplary implementations described in the present disclosure and provided in the appended figures are set forth without any loss of generality, and without imposing limitations on the claimed implementations. [0033] Although the present implementations have been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereupon without departing from the principle and scope of the disclosure. Accordingly, the scope of the present disclosure should be determined by the following claims and their appropriate legal equivalents. [0034] The singular forms "a", "an" and "the" include plural referents, unless the context clearly dictates otherwise.

[0035] As used in the present disclosure and in the appended claims, the words

"comprise," "has," and "include" and all grammatical variations thereof are each intended to have an open, non-limiting meaning that does not exclude additional elements or steps.

[0036] As used in the present disclosure, terms such as "first" and "second" are arbitrarily assigned and are merely intended to differentiate between two or more components of an apparatus. It is to be understood that the words "first" and "second" serve no other purpose and are not part of the name or description of the component, nor do they necessarily define a relative location or position of the component. Furthermore, it is to be understood that that the mere use of the term "first" and "second" does not require that there be any "third" component, although that possibility is contemplated under the scope of the present disclosure.