Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MATERIAL COMPRISING A STACK WITH A THIN ZINC-BASED OXIDE DIELECTRIC SUBLAYER AND METHOD FOR DEPOSITING SAID MATERIAL
Document Type and Number:
WIPO Patent Application WO/2021/260295
Kind Code:
A1
Abstract:
The invention relates to a material comprising a substrate (30) coated on one face (29) with a stack of thin layers (14) comprising at least one metal functional layer (140) and comprising: - an underlayer of zinc-based oxide, ZnO (129), between 0.3 and 4.4 nm thick; - a dielectric underlayer of silicon-based nitride, Si3N4 (127), between 10.0 and 50.0 nm thick; - an overlayer of zinc-based oxide, ZnO (161), between 2.0 and 10.0 nm thick; - a dielectric overlayer (165); - a capping layer of titanium-based oxide, TiOx (150), located on and in contact with said functional layer (140).

Inventors:
BARRES THOMAS (FR)
GUIMARD DENIS (FR)
ORVEN MATTHIEU (FR)
Application Number:
PCT/FR2021/051081
Publication Date:
December 30, 2021
Filing Date:
June 16, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAINT GOBAIN (FR)
International Classes:
C03C17/36
Foreign References:
EP3319916A12018-05-16
US20170190612A12017-07-06
US20140106088A12014-04-17
EP2699523A12014-02-26
EP3036352A12016-06-29
US20120107587A12012-05-03
Attorney, Agent or Firm:
SAINT-GOBAIN RECHERCHE (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Matériau comprenant un substrat (30) verrier revêtu sur une face (29) d’un empilement de couches minces (14) à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique (140), en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet (120, 160), lesdits revêtements antireflet comportant chacun au moins une couche diélectrique (127, 165), ladite couche fonctionnelle (140) étant disposée entre les deux revêtements antireflet (120, 160), caractérisé en ce que ledit revêtement antireflet (120) sous-jacent, situé sous ladite couche fonctionnelle (140) en direction dudit substrat (30), comporte :

- une sous-couche d’oxyde à base de zinc, ZnO (129) qui est située sous et au contact de ladite couche fonctionnelle (140), avec une épaisseur physique de ladite sous-couche d’oxyde à base de zinc ZnO (129) qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm ; et

- une sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) qui est située sous et au contact de ladite sous-couche d’oxyde à base de zinc, ZnO (129), avec une épaisseur physique de ladite sous-couche diélectrique de nitrure à base de silicium S13N4 (127) qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ; en ce que ledit revêtement antireflet (160) sus-jacent, situé au-dessus ladite couche fonctionnelle (140) à l’opposé dudit substrat (30), comporte :

- une surcouche d’oxyde à base de zinc, ZnO (161 ), avec une épaisseur physique de ladite surcouche d’oxyde à base de zinc, ZnO (161) qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et

- une surcouche diélectrique (165) qui est située sur ladite surcouche d’oxyde à base de zinc, ZnO (161) et, de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 ; et en ce qu'une couche de surblocage d’oxyde à base de titane TiOx (150) est située sur et au contact de ladite couche fonctionnelle (140) et sous ledit revêtement antireflet (160) sus-jacent, avec une épaisseur physique de ladite couche de blocage d’oxyde à base de titane TiOx (150) qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.

2. Matériau selon la revendication 1, dans lequel ladite couche fonctionnelle métallique (140), ou chaque fonctionnelle métallique, présente une épaisseur physique qui est comprise entre 8,0 et 22,0 nm, voire entre 9,0 et 16,0 nm, voire entre 9,5 et 12,4 nm. 3. Matériau selon la revendication 1 ou 2, dans lequel ledit revêtement antireflet (120) sous-jacent, situé sous ladite couche fonctionnelle métallique (140), et/ou ledit revêtement antireflet (160) sus-jacent, situé au- dessus ladite couche fonctionnelle métallique (140), ne comporte aucune couche à l’état métallique. 4. Matériau selon une quelconque des revendications 1 à 3, dans lequel ladite sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) ne comporte pas de zirconium.

5. Matériau selon une quelconque des revendications 1 à 4, dans lequel ladite sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) ne comporte pas d’oxygène.

6. Matériau selon une quelconque des revendications 1 à 5, dans lequel ladite sous-couche d’oxyde à base de zinc, ZnO (129) et/ou ladite surcouche d’oxyde à base de zinc, ZnO (161 ) est constituée d’oxyde de zinc ZnO dopé à l’aluminium. 7. Matériau selon une quelconque des revendications 1 à 6, dans lequel ledit revêtement antireflet (120) situé sous ladite couche fonctionnelle (140) comporte en outre une sous-couche intermédiaire diélectrique (121 ) située entre ladite sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) et ladite face (29), cette sous-couche intermédiaire diélectrique (121 ) étant oxydée et comprenant de préférence : un oxyde mixte de zinc et d’étain ou un oxyde de titane TiOx.

8. Matériau selon une quelconque des revendications 1 à 7, dans lequel ledit revêtement antireflet (160) situé au-dessus de ladite couche fonctionnelle (140) comporte en outre une surcouche intermédiaire diélectrique (163) située entre ladite surcouche d’oxyde à base de zinc, ZnO (161 ) et ladite surcouche diélectrique (165), cette surcouche intermédiaire diélectrique (163) étant oxydée et comprenant de préférence : un oxyde de titane TiOx ou un oxyde mixte de zinc et d’étain.

9. Vitrage multiple comportant un matériau selon l’une quelconque des revendications 1 à 8, et au moins un autre substrat (10), les substrats (10, 30) étant maintenus ensemble par une structure de châssis (90), ledit vitrage réalisant une séparation entre un espace extérieur (ES) et un espace intérieur (IS), dans lequel au moins une lame de gaz intercalaire (15) est disposée entre les deux substrats.

10. Procédé d’obtention d’un matériau comportant un substrat (30) verrier revêtu sur une face (29) d’un empilement de couches minces (14) à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique (140), en particulier à base d’argent ou d’alliage métallique contenant de l'argent et deux revêtements anti reflet (120, 160), lesdits revêtements antireflet comportant chacun au moins une couche diélectrique (127, 165), ladite couche fonctionnelle (140) étant disposée entre les deux revêtements antireflet (120, 160), ledit procédé comprenant les étapes suivantes, dans l’ordre :

- le dépôt sur une face (29) dudit substrat (30) d’un empilement de couches minces (14) à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique (140), en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet (120, 160), afin de former un matériau selon l’une quelconque des revendications 1 à 8, puis

- le traitement dudit empilement de couches minces (14) à l’aide d’une source produisant un rayonnement et notamment un rayonnement infrarouge.

11. Procédé selon la revendication 10, dans lequel ledit traitement est opéré dans une atmosphère ne comprenant pas d’oxygène.

12. Procédé selon la revendication 10 ou 11, dans lequel ladite sous- couche d’oxyde à base de zinc, ZnO (129) est déposée à partir d’une cible céramique comprenant du ZnO et dans une atmosphère ne comportant pas d’oxygène ou comportant au plus 10,0 % d’oxygène.

Description:
DESCRIPTION

MATERIAU COMPORTANT UN EMPILEMENT A SOUS-COUCHE DIELECTRIQUE FINE D’OXIDE A BASE DE ZINC ET PROCEDE DE DEPOT DE CE MATERIAU

L’invention concerne un matériau comprenant un substrat revêtu sur une face d’un empilement de couches minces à propriétés de réflexion dans l ' infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l ' argent et au moins deux revêtements antireflet, lesdits revêtements antireflet comportant chacun au moins une couche diélectrique, ladite couche fonctionnelle étant disposée entre les deux revêtements antireflet. Dans ce type d’empilement, l’unique, ou chaque, couche fonctionnelle métallique se trouve ainsi disposée entre deux revêtements antireflet comportant chacun en général plusieurs couches qui sont chacune en un matériau diélectrique du type nitrure, et notamment nitrure de silicium ou d’aluminium, ou oxyde. Du point de vu optique, le but de ces revêtements qui encadrent la ou chaque couche fonctionnelle métallique est « d’antirefléter >> cette couche fonctionnelle métallique.

Il est connu de la demande de brevet européen N° EP 718 250 une configuration antérieure dans laquelle d’une part une couche à base d’oxyde de zinc est située juste sous et au contact de la couche fonctionnelle métallique, en direction du substrat, puis une couche à base de nitrure de silicium sous et au contact cette couche à base d’oxyde de zinc et dans laquelle d’autre part une couche à base d’oxyde de zinc est située au-dessus, à l’opposé du substrat, puis une couche diélectrique, par exemple à base de nitrure de silicium, est située sur et au contact de cette couche à base d’oxyde de zinc. Ce document enseigne en particulier que le matériau comprenant cet empilement de couches minces et le substrat sur une face duquel il est situé peut subir un traitement thermique sollicitant, du type bombage, trempe ou recuit, qui conduit à une modification structurelle du substrat sans dégrader les propriétés optiques et thermiques de l’empilement. Il est connu par ailleurs de la demande internationale de brevet N° WO 2010/142926 d’appliquer un traitement par rayonnement après le dépôt d’un empilement comportant une couche fonctionnelle pour diminuer l’émissivité ou améliorer les propriétés optiques de cet empilement, en prévoyant en particulier une couche absorbante en couche terminale de l’empilement. L’utilisation d’une couche terminale absorbante permet d’accroître l’absorption du rayonnement par l’empilement et de diminuer la puissance nécessaire au traitement. Comme la couche terminale s’oxyde lors du traitement et devient transparente, les caractéristiques optiques de l’empilement après traitement sont intéressantes (une transmission lumineuse élevée peut notamment être obtenue).

A la différence du traitement thermique évoqué précédemment, ce traitement par rayonnement de l’empilement ne modifie pas structurellement le substrat.

L’invention repose sur la découverte d’une configuration particulière de couches encadrant une couche fonctionnelle métallique qui permet de diminuer la résistance par carré à épaisseur de couche fonctionnelle identique, voire de diminuer l’épaisseur de couche fonctionnelle pour obtenir des propriétés thermiques améliorées, et cela après un traitement thermique du matériau ou un traitement par rayonnement de l’empilement selon les techniques connues.

Un but de l’invention est ainsi de parvenir à mettre au point un nouveau type d’empilement de couches à une ou plusieurs couches fonctionnelles, empilement qui présente, après traitement thermique du matériau ou traitement de l’empilement par un rayonnement, une faible résistance par carré (et donc une faible émissivité), une transmission lumineuse élevée, ainsi qu’une homogénéité d’aspect, tant en transmission qu’en réflexion.

Dans la configuration particulière selon l’invention, il est proposé d’une part de disposer une couche très fine d’oxyde à base de zinc juste sous et au contact de la couche fonctionnelle métallique, en direction du substrat, puis de disposer, en direction du substrat une couche à base de nitrure de silicium sous et au contact de cette couche très fine d’oxyde à base de zinc et d’autre part de disposer une couche fine d’oxyde à base de zinc juste au-dessus de la couche fonctionnelle métallique, à l’opposé du substrat, puis de disposer une couche diélectrique, par exemple de nitrure à base de silicium, sur (au contact ou non) cette couche fine d’oxyde à base de zinc.

L’invention a ainsi pour objet, dans son acception la plus large, un matériau selon la revendication 1 . Ce matériau comprend un substrat verrier revêtu sur une face d’un empilement de couches minces à propriétés de réflexion dans l ' infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l ' argent et au moins deux revêtements antireflet, lesdits revêtements antireflet comportant chacun au moins une couche diélectrique, ladite couche fonctionnelle étant disposée entre les deux revêtements anti reflet, ledit matériau étant remarquable :

- d’une part en ce que ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle en direction dudit substrat, comporte : - une sous-couche d’oxyde à base de zinc, ZnO, qui est située sous et au contact de ladite couche fonctionnelle, avec une épaisseur physique de ladite sous-couche d’oxyde à base de zinc ZnO qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm ; et - une sous-couche diélectrique de nitrure à base de silicium, S13N4, qui est située sous et au contact de ladite sous-couche d’oxyde à base de zinc ZnO, avec une épaisseur physique de ladite sous-couche de nitrure à base de silicium S13N4 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ; - d’autre part en ce que ledit revêtement antireflet sus-jacent, situé au-dessus ladite couche fonctionnelle à l’opposé dudit substrat, comporte :

- une surcouche d’oxyde à base de zinc, ZnO, avec une épaisseur physique de ladite surcouche d’oxyde à base de zinc ZnO qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et - une surcouche diélectrique qui est située sur ladite surcouche d’oxyde à base de zinc ZnO, et de préférence une surcouche diélectrique de nitrure à base de silicium, S13N 4 ;

- et en outre en ce que une couche de surblocage d’oxyde à base de titane TiO x est située sur et au contact de ladite couche fonctionnelle et sous ledit revêtement antireflet sus-jacent, avec une épaisseur physique de ladite couche de blocage d’oxyde à base de titane TiO x qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.

Ladite sous-couche d’oxyde à base de zinc est la couche très fine évoquée précédemment : elle présente une épaisseur correspondant au minium à une couche mono-moléculaire de ZniOi et une épaisseur maximum de quelques nanomètres seulement. Dans cette couche, de préférence, l’oxyde de zinc n’est ni sous-stœchiométrique, ni sur-stœchiométrique, afin de présenter un coefficient d’absorption le plus bas possible dans le domaine du visible ; cela simplifie la fabrication et la maîtrise des effets du traitement thermique du matériau ou des effets du traitement de l’empilement par un rayonnement.

Ladite sous-couche diélectrique de nitrure à base de silicium est une couche barrière qui empêche la pénétration d’éléments provenant du substrat en direction de la couche fonctionnelle métallique lors du traitement. Ladite couche de surblocage d’oxyde à base de titane TiO x peut en particulier présenter une épaisseur physique qui est comprise entre 0,3 et 4,9 nm, voire entre 0,3 et 3,9 nm, voire entre 0,3 et 2,9 nm ; elle peut par ailleurs présenter une épaisseur physique qui est comprise entre 1,0 et 4,9 nm, voire entre 1,0 et 3,9 nm, voire entre 1,0 et 2,9 nm. Ladite couche de surblocage d’oxyde à base de titane TiO x peut en particulier ne comporter que les deux éléments : titane et oxygène ; cela simplifie la fabrication et la maîtrise des effets du traitement thermique du matériau ou des effets du traitement de l’empilement par un rayonnement.

Ledit empilement peut comporter une seule couche fonctionnelle métallique ou peut comporter deux couches fonctionnelles métalliques, ou trois couches fonctionnelles métalliques, ou quatre couches fonctionnelles métalliques ; les couches fonctionnelles métalliques dont il s’agit ici sont des couches continues.

De préférence, ledit matériau ne comporte pas de couche fonctionnelle métallique discontinue ; en effet, une telle couche fonctionnelle métallique discontinue ne supporte pas un traitement thermique du matériau ou un traitement de l’empilement par un rayonnement sans modification de son état et une telle modification d’état est difficile à maîtriser. De préférence, lorsque l’empilement comporte plusieurs couches fonctionnelles métalliques, chaque couche fonctionnelle est selon l’indication précédente, avec :

- d’une part ledit revêtement antireflet sous-jacent, situé sous et au contact de chaque couche fonctionnelle qui comporte, en direction dudit substrat :

- une sous-couche d’oxyde à base de zinc, ZnO, qui est située sous et au contact de ladite couche fonctionnelle, avec une épaisseur physique de ladite sous-couche d’oxyde à base de zinc ZnO qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm ; et

- une sous-couche diélectrique de nitrure à base de silicium, S13N4, qui est située sous et au contact de ladite sous-couche d’oxyde à base de zinc ZnO, avec une épaisseur physique de ladite sous-couche de nitrure à base de silicium S13N4 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ;

- d’autre part ledit revêtement antireflet sus-jacent, situé au-dessus et au contact de chaque couche fonctionnelle, qui comporte à l’opposé dudit substrat :

- une surcouche d’oxyde à base de zinc, ZnO, avec une épaisseur physique de ladite surcouche d’oxyde à base de zinc ZnO qui est comprise entre

2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et

- une surcouche diélectrique qui est située sur ladite surcouche d’oxyde à base de zinc ZnO, et de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 - et en outre une couche de surblocage d’oxyde à base de titane TiO x qui est située sur et au contact de chaque couche fonctionnelle et sous chaque revêtement antireflet sus-jacent, avec une épaisseur physique de chaque couche de blocage d’oxyde à base de titane TiO x qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm. Pour un empilement à plusieurs couches fonctionnelles métalliques, chaque revêtement antireflet situé entre deux couches fonctionnelles métalliques comporte à la fois une partie antireflet sus-jacent, par rapport à la couche fonctionnelle située en dessous et à la fois une partie antireflet sous- jacent, par rapport à la couche fonctionnelle située au-dessus. Ladite couche fonctionnelle métallique, ou chaque fonctionnelle métallique, présente de préférence une épaisseur physique qui est comprise entre 8,0 et 22,0 nm, voire entre 9,0 et 16,0 nm, voire entre 9,5 et 12,4 nm.

Une couche fonctionnelle métallique comporte, de préférence, majoritairement, à au moins 50 % en pourcentage atomique, au moins un des métaux choisi dans la liste : Ag, Au, Cu, Pt ; une, plusieurs, ou chaque, couche fonctionnelle métallique est de préférence en argent.

Par « couche métallique au sens de la présente invention, il faut comprendre que la couche ne comporte pas d’oxygène, ni d’azote.

Comme habituellement, par « couche diélectrique au sens de la présente invention, il faut comprendre que du point de vue de sa nature, la couche est « non métallique , c’est-à-dire qu’elle comporte de l’oxygène ou de l’azote, voire les deux. Dans le contexte de l’invention, ce terme signifie que le matériau de cette couche présente un rapport n/k sur toute la plage de longueur d’onde du visible (de 380 nm à 780 nm) égal ou supérieur à 5.

Il est rappelé que n désigne l’indice de réfraction réel du matériau à une longueur d’onde donnée et le coefficient k représente la partie imaginaire de l’indice de réfraction à une longueur d’onde donnée, ou coefficient d’absorption ; le rapport n/k étant calculé à une longueur d’onde donnée identique pour n et pour k.

Par « au contact on entend au sens de l’invention qu’aucune couche n’est interposée entre les deux couches considérées.

Par « à base de on entend au sens de l’invention que pour la composition de cette couche, les éléments réactifs oxygène, ou azote, ou les deux s’ils sont présents tous les deux, ne sont pas considérés et l’élément non réactif (par exemple le silicium ou le zinc) qui est indiqué comme constituant la base, est présent à plus de 85 % atomique du total des éléments non réactifs dans la couche. Cette expression inclut ainsi ce qu’il est courant de nommer dans la technique considérée du « dopage , alors que l’élément dopant, ou chaque élément dopant, peut être présent en quantité allant jusqu’à 10 % atomique, mais sans que le total de dopant ne dépasse 15 % atomique des éléments non- réactifs.

Dans une variante particulière, ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle, et/ou ledit revêtement antireflet sus- jacent, situé au-dessus ladite couche fonctionnelle, ne comporte aucune couche à l’état métallique. En effet, il n’est pas souhaité qu’une telle couche puisse réagir, et en particulier s’oxyder, lors du traitement.

Dans une variante particulière, ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle, et/ou ledit revêtement antireflet sus- jacent, situé au-dessus ladite couche fonctionnelle, ne comporte aucune couche absorbante ; Par « couche absorbante au sens de la présente invention, il faut comprendre que la couche est un matériau présentant un coefficient k moyen, sur toute la plage de longueur d’onde du visible (de 380 nm à 780 nm), supérieur à 0,5 et présentant une résistivité électrique à l’état massif (telle que connue dans la littérature) qui est supérieure à 10 5 Q.cm. En effet, il n’est pas souhaité qu’une telle couche puisse réagir, et en particulier s’oxyder, lors du traitement.

Il est d’autant plus surprenant d’atteindre les propriétés visées par l’invention pour ces deux variantes précédentes car des propriétés similaires sont parfois obtenues dans l’art antérieur avec ces deux variantes précédentes.

De préférence, ladite sous-couche diélectrique de nitrure à base de silicium S13N4 ne comporte pas de zirconium.

De préférence par ailleurs, ladite sous-couche diélectrique de nitrure à base de silicium S13N4 ne comporte pas d’oxygène.

Ladite sous-couche d’oxyde à base de zinc ZnO et/ou ladite surcouche d’oxyde à base de zinc ZnO est, de préférence, constituée d’oxyde de zinc ZnO dopé à l’aluminium, c’est-à-dire qu’elle ne comporte aucun autre élément que Zn, Al et O. Dans une variante spécifique, ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle, comporte en outre une sous-couche intermédiaire diélectrique située entre ladite sous-couche diélectrique de nitrure à base de silicium S13N4 et ladite face, cette sous-couche intermédiaire diélectrique étant oxydée (c’est-à-dire comportant de l’oxygène) et comprenant de préférence : un oxyde mixte de zinc et d’étain ou un oxyde de titane TiO x . Cette sous-couche intermédiaire diélectrique est de préférence située au contact de la sous-couche diélectrique de nitrure à base de silicium S13N4. Dans une variante spécifique, ledit revêtement antireflet sus-jacent, situé au-dessus de ladite couche fonctionnelle, comporte en outre une surcouche intermédiaire diélectrique située entre ladite surcouche d’oxyde à base de zinc ZnO et ladite surcouche diélectrique, cette surcouche intermédiaire diélectrique étant oxydée et comprenant de préférence : un oxyde de titane TiO x ou un oxyde mixte de zinc et d’étain.

Ladite surcouche diélectrique qui est située sur ladite surcouche d’oxyde à base de zinc ZnO, et qui est de préférence une surcouche diélectrique de nitrure à base de silicium, S1 3 N 4 peut présenter une épaisseur comprise entre 5,0 et 50,0 nm, voire entre 10,0 et 45,0 nm, voire entre 25,0 et 45,0 nm.

La présente invention se rapporte par ailleurs à un vitrage multiple comportant un matériau selon l’invention, et au moins un autre substrat, les substrats étant maintenus ensemble par une structure de châssis, ledit vitrage réalisant une séparation entre un espace extérieur et un espace intérieur, dans lequel au moins une lame de gaz intercalaire est disposée entre les deux substrats.

Chaque substrat peut être clair ou coloré. Un des substrats au moins notamment peut être en verre coloré dans la masse. Le choix du type de coloration va dépendre du niveau de transmission lumineuse et/ou de l’aspect colorimétrique recherchés pour le vitrage une fois sa fabrication achevée.

Un substrat du vitrage, notamment le substrat porteur de l’empilement peut être bombé et/ou trempé après le dépôt de l’empilement. Il est préférable dans une configuration de vitrage multiple que l’empilement soit disposé de manière à être tourné du côté de la lame de gaz intercalaire. Le vitrage peut aussi être un triple vitrage constitué de trois feuilles de verre séparées deux par deux par une lame de gaz. Dans une structure en triple vitrage, le substrat porteur de l’empilement peut être en face 2 et/ou en face 5, lorsque l’on considère que le sens incident de la lumière solaire traverse les faces dans l’ordre croissant de leur numéro. La présente invention se rapporte par ailleurs à un procédé d’obtention, ou de fabrication, d’un matériau comportant un substrat verrier revêtu sur une face d’un empilement de couches minces à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent et deux revêtements anti reflet, lesdits revêtements antireflet comportant chacun au moins une couche diélectrique, ladite couche fonctionnelle étant disposée entre les deux revêtements antireflet, ledit procédé comprenant les étapes suivantes, dans l’ordre : - le dépôt sur une face dudit substrat d’un empilement de couches minces à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet, afin de former un matériau selon l’invention, puis - le traitement dudit empilement de couches minces à l’aide d’une source produisant un rayonnement et notamment un rayonnement infrarouge, afin de traiter l’empilement de couches minces en tant que tel.

Ledit traitement est, de préférence, opéré dans une atmosphère ne comprenant pas d’oxygène. Ladite sous-couche d’oxyde à base de zinc ZnO est, de préférence, déposée à partir d’une cible céramique comprenant du ZnO et dans une atmosphère ne comportant pas d’oxygène ou comportant au plus 10,0 % d’oxygène. Les détails et caractéristiques avantageuses de l’invention ressortent des exemples non limitatifs suivants, illustrés à l’aide des figures ci-jointes :

- [fig. 1] illustre une structure d’un empilement monocouche fonctionnelle selon l’invention, la couche fonctionnelle étant déposée directement sur une sous-couche d’oxyde à base de zinc ZnO et directement sous une couche de surblocage sous-couche d’oxyde à base de zinc ZnO, l’empilement étant illustré pendant le traitement à l’aide d’une source produisant un rayonnement ;

- [fig. 2] illustre une structure d’un empilement bicouche fonctionnelle selon l’invention, chaque couche fonctionnelle étant déposée directement sur une sous-couche d’oxyde à base de zinc ZnO et directement sous couche de surblocage une sous-couche d’oxyde à base de zinc ZnO, l’empilement étant illustré pendant le traitement à l’aide d’une source produisant un rayonnement ;

- [fig. 3] illustre un double vitrage incorporant un empilement selon l’invention ; - [fig. 4] illustre un triple vitrage incorporant deux empilements selon l’invention ;

- [fig. 5] illustre la résistance par carré de certains exemples d’empilements de couches minces en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 et sans aucun traitement ;

- [fig. 6] illustre la résistance par carré des mêmes exemples qu’en figure 5, en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 et après un traitement thermique AHT ou après un traitement par laser ALT ;

- [fig. 7] et [fig. 8] illustrent le facteur solaire de certains exemples de vitrages en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 après un traitement par laser ; et

- [fig. 9] et [fig. 10] illustrent le facteur solaire de certains autres exemples de vitrages en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 après un traitement par laser.

Dans les figures 1 à 4, les proportions entre les épaisseurs des différentes couches ou des différents éléments ne sont pas rigoureusement respectées afin de faciliter leur lecture. La figure 1 illustre une structure d’un empilement 14 monocouche fonctionnelle selon l’invention déposé sur une face 29 d’un substrat 30 verrier, transparent, dans laquelle la couche fonctionnelle 140 unique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent, est disposée entre deux revêtements antireflet, le revêtement antireflet 120 sous-jacent situé en dessous de la couche fonctionnelle 140 en direction du substrat 30 et le revêtement antireflet 160 sus-jacent disposé au-dessus de la couche fonctionnelle 140 à l’opposé du substrat 30. Ces deux revêtements antireflet 120, 160, comportent chacun au moins une couche diélectrique 125, 127, 129 ; 161, 163, 165. En figure 1 : - d’une part le revêtement antireflet 120 situé sous la couche fonctionnelle 140 en direction du substrat 30 comporte :

- une sous-couche d’oxyde à base de zinc, ZnO 129 qui est située sous et au contact de la couche fonctionnelle 140, avec une épaisseur physique de la sous- couche à base d’oxyde de zinc ZnO 129 qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1,0 et 3,0 nm, voire entre 1,5 et 2,4 nm ; et

- une sous-couche diélectrique de nitrure à base de silicium, S13N4 127 qui est située sous et au contact de la sous-couche d’oxyde à base de zinc, ZnO 129, avec une épaisseur physique de la sous-couche diélectrique de nitrure à base de silicium S13N4 127 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ;

- et d’autre part le revêtement antireflet 160 situé au-dessus la couche fonctionnelle 140 à l’opposé du substrat 30 comporte : - une surcouche d’oxyde à base de zinc, ZnO 161, avec une épaisseur physique de la surcouche d’oxyde à base de zinc, ZnO 161 qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et

- une surcouche diélectrique 165 qui est située sur la surcouche d’oxyde à base de zinc, ZnO 161 et, de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 ;

- avec en outre une couche de surblocage d’oxyde à base de titane TiO x 150 qui est située sur et au contact de la couche fonctionnelle 140 et sous le revêtement antireflet 160 sus-jacent, avec une épaisseur physique de la couche de blocage d’oxyde à base de titane TiO x 150 qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.

La figure 2 illustre une structure d’un empilement 14 bicouche fonctionnelle selon l’invention déposé sur une face 29 d’un substrat 30 verrier, transparent, dans laquelle les couches fonctionnelles 140, 180, en particulier à base d’argent ou d’alliage métallique contenant de l'argent, sont disposée entre deux revêtements antireflet, le revêtement antireflet 120 sous-jacent situé en dessous de la couche fonctionnelle 140 la plus proche de la face 29 du substrat 30, le revêtement antireflet 160 intermédiaire est située entre les deux couches fonctionnelles et le revêtement antireflet 200 sus-jacent disposé au-dessus de la couche fonctionnelle 180 la plus éloignée de la face 29 du substrat 30. Ces trois revêtements antireflet 120, 160, 200 comportent chacun au moins une couche diélectrique 127, 129 ; 161, 167, 169 ; 201, 205. Sur cette figure 2 :

- d’une part le revêtement antireflet situé sous et au contact de chaque couche fonctionnelle 140, 180 comporte, en direction du substrat : - une sous-couche d’oxyde à base de zinc, ZnO, 129, 169 qui est située sous et au contact de la couche fonctionnelle, avec une épaisseur physique de la sous-couche d’oxyde à base de zinc ZnO qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm ; et

- une sous-couche diélectrique de nitrure à base de silicium, S13N4, 127, 167, qui est située sous et au contact de la sous-couche d’oxyde à base de zinc ZnO, respectivement 129, 169, avec une épaisseur physique de la sous-couche de nitrure à base de silicium S13N4 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ;

- d’autre part le revêtement antireflet situé au-dessus et au contact de chaque couche fonctionnelle 140, 180 comporte à l’opposé du substrat :

- une surcouche d’oxyde à base de zinc, ZnO, 161 , 201 , avec une épaisseur physique de la surcouche d’oxyde à base de zinc ZnO qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et

- une surcouche diélectrique 205 qui est située sur la surcouche d’oxyde à base de zinc ZnO, 201 et de préférence cette surcouche diélectrique est de nitrure à base de silicium ,SÎ3N4

- avec en outre une couche de surblocage d’oxyde à base de titane TiO x 150, 190 qui est située sur et au contact de chaque couche fonctionnelle 140, 180 et sous chaque revêtement antireflet 160, 200 sus-jacent, avec une épaisseur physique de la couche de blocage d’oxyde à base de titane TiO x 150, 190 qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.

La couche fonctionnelle 140 est située directement sur le revêtement antireflet 120 sous-jacent et indirectement sous le revêtement antireflet 160, 200 sus-jacent : il n’y a pas de revêtement de sous-blocage situé entre le revêtement antireflet 120 sous-jacent et la couche fonctionnelle 140 mais il y a un revêtement de sur-blocage située entre la couche fonctionnelle 140 et le revêtement antireflet 160, comprenant ici la couche de surblocage d’oxyde à base de titane TiO x 150, 190. Il en est de préférence de même pour les autres couches fonctionnelles éventuellement présentes : chacune est au contact direct du revêtement antireflet situé directement dessous et une couche de surblocage est interposée entre elle et le revêtement antireflet situé au-dessus.

Le revêtement antireflet 160 situé au-dessus de l’unique couche fonctionnelle métallique en figure 1 (ou qui est situé au-dessus de la couche fonctionnelle métallique la plus éloignée du substrat lorsqu’il y a plusieurs couches fonctionnelles métalliques) peut se terminer par une couche de protection terminale (non illustrée), appelée « overcoat en anglais, qui est la couche de l’empilement qui est la plus éloignée de la face 29. Un tel empilement de couches minces peut être utilisé dans un vitrage multiple 100 réalisant une séparation entre un espace extérieur ES et un espace intérieur IS ; ce vitrage peut présenter une structure :

- de double vitrage, comme illustré en figure 3 : ce vitrage est alors constitué de deux substrats 10, 30 qui sont maintenus ensemble par une structure de châssis 90 et qui sont séparés l’un de l’autre par une lame de gaz intercalaire 15 ; ou

- de triple vitrage, comme illustré en figure 4 : ce vitrage est alors constitué de trois substrats 10, 20, 30, séparée deux par deux par une lame de gaz intermédiaire 15, 25, le tout étant maintenu ensemble par une structure de châssis 90.

Dans les figures 3 et 4, le sens incident de la lumière solaire entrant dans le bâtiment est illustré par la double flèche, à gauche.

En figure 3, l’empilement 14 de couches minces peut être positionné en face 3 (sur la feuille la plus à l’intérieur du bâtiment en considérant le sens incident de la lumière solaire entrant dans le bâtiment et sur sa face tournée vers la lame de gaz), c’est-à-dire sur une face intérieure 29 du substrat 30 en contact avec la lame de gaz intercalaire 15, l’autre face 31 du substrat 30 étant en contact avec l’espace intérieur IS.

Toutefois, il peut aussi être envisagé que dans cette structure de double vitrage, l’un des substrats présente une structure feuilletée.

En figure 4, il y a deux empilements de couches minces, de préférence identiques :

- un empilement 14 de couches minces est positionné en face 2 (sur la feuille la plus à l’extérieur du bâtiment en considérant le sens incident de la lumière solaire entrant dans le bâtiment et sur sa face tournée vers la lame de gaz), c’est-à-dire sur une face intérieure 11 du substrat 10 en contact avec la lame de gaz intercalaire 15, l’autre face 9 du substrat 10 étant en contact avec l’espace extérieur ES ; - et un empilement 26 de couches minces est positionné en face 5 (sur la feuille la plus à l’intérieur du bâtiment en considérant le sens incident de la lumière solaire entrant dans le bâtiment et sur sa face tournée vers la lame de gaz), c’est-à-dire sur une face intérieure 29 du substrat 30 en contact avec la lame de gaz intercalaire 25, l’autre face 31 du substrat 30 étant en contact avec l’espace intérieur IS.

Une première série d’exemples a été réalisée sur la base de la structure d’empilement illustrée en figure 1 avec, en partant de la surface 29, uniquement les couches suivantes, dans cet ordre : - une sous-couche diélectrique de nitrure à base de silicium, S1 3 N 4 127 d’une épaisseur physique de 20 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92 % en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 1 ,5.10 3 mbar ; - une sous-couche d’oxyde à base de zinc, ZnO 129, d’une épaisseur physique variable, variant de 1 ,0 nm à plus de 7,0 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 %, dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ; - une couche fonctionnelle métallique 140 à base d’argent, et plus précisément ici en argent, d’une épaisseur physique de 12 nm, déposée à partir d’une cible métallique en argent, dans une atmosphère d’argon et sous une pression de 8.10 3 mbar ;

- une couche de surblocage d’oxyde à base de titane TiO x 150 qui est située sur la couche fonctionnelle 140, d’une épaisseur physique de 0,7 nm, déposée à partir d’une cible en dioxyde de titane dans une atmosphère à 5 % d’oxygène sur le total d’oxygène et d’argon et sous une pression de 2.10 3 mbar ;

- une surcouche d’oxyde à base de zinc, ZnO 161 , d’une épaisseur physique de 5 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 %>, dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ;

- une surcouche diélectrique 165 de nitrure à base de silicium, S1 3 N 4 , d’une épaisseur physique de 30 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92 % en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 2.10 3 mbar.

La figure 5 illustre en ordonnée la résistance par carré, Rsq, en ohms par carré des empilements ainsi déposés en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc, ZnO 129 en abscisse, cette résistance par carrée étant mesurée immédiatement après le dépôt des empilements, c’est-à-dire sans aucun traitement thermique. Cette courbe montre qu’il y a, a priori, aucun intérêt à utiliser une sous-couche d’oxyde à base de zinc ZnO 129 présentant une épaisseur inférieure à 5 nm car la résistance par carré de l’empilement tend à être plus élevée dans cette gamme d’épaisseur.

La figure 6 illustre en ordonnée la résistance par carré, Rsq, en ohms par carré de ces empilements en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc, ZnO 129 en abscisse, cette résistance par carrée étant mesurée après l’un ou l’autre de ces traitements :

- soit un traitement thermique de recuit, consistant en un chauffage à une température de 650 °C pendant 10 minutes puis un refroidissement en laissant simplement l’échantillon dans une ambiance à 20° C, afin de simuler une trempe ; les mesures sont illustrées par la courbe du haut, AHT ;

- soit un traitement de laser consistant ici en un défilement du substrat 30 à une vitesse de 4 m/min sous une ligne laser 20 de 0,08 mm de large, 11 ,6 mm de long et de puissance totale de 433 W avec la ligne laser orientée perpendiculairement à la face 29 et en direction de l’empilement 14, c’est-à- dire en disposant la ligne laser au-dessus de l’empilement, comme visible en figure 1 (la flèche noire droite illustrant l’orientation de la lumière émise) ; les mesures sont illustrées par la courbe du bas, ALT.

La comparaison entre la courbe en haut, AHT, et la courbe en bas, ALT, montre que, à l’exception de quelques artéfacts, la résistance par carré est encore plus faible après un traitement laser qu’après un traitement thermique de trempe, pour une épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 entre 1 ,0 et 5,0 nm. Il y a même une zone particulièrement favorable, avec une résistance par carré particulièrement faible, pour une épaisseur de sous- couche d’oxyde à base de zinc ZnO 129 entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm. L’amélioration est comprise entre 5 et 10 % par rapport au traitement thermique de trempe.

Une telle situation permet dans une première approche d’augmenter le facteur solaire à épaisseur de couche fonctionnelle constante, voire dans une seconde approche de diminuer l’épaisseur de la couche fonctionnelle pour augmenter encore plus le facteur solaire sans modifier la résistance par carrée précédemment obtenue.

Pour confirmer cet effet, une seconde série d’exemples a été réalisée sur la base de la structure d’empilement illustrée en figure 1 avec, en partant de la surface 29, uniquement les couches suivantes, dans cet ordre :

- une sous-couche diélectrique de nitrure à base de silicium, S1 3 N 4 127 d’une épaisseur physique de 43,2 nm à 37,3 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92% en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 1 ,5.10 3 mbar ;

- une sous-couche d’oxyde à base de zinc ZnO 129, d’une épaisseur physique variable, variant de 1 ,0 nm à 6,0 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 % , dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ;

- une couche fonctionnelle métallique 140 à base d’argent, et même précisément ici en argent, d’une épaisseur physique de 12 nm, déposée à partir d’une cible métallique en argent, dans une atmosphère d’argon et sous une pression de 8.10 3 mbar ; - une couche de surblocage d’oxyde à base de titane TiO x 150 qui est située sur la couche fonctionnelle 140, d’une épaisseur physique de 0,7 nm, déposée à partir d’une cible en dioxyde de titane dans une atmosphère à 5 % d’oxygène sur le total d’oxygène et d’argon et sous une pression de 2.10 3 mbar

- une surcouche d’oxyde à base de zinc ZnO 161 , d’une épaisseur physique de 5 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 %, dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ;

- une surcouche diélectrique 165 de nitrure à base de silicium, S1 3 N 4 , d’une épaisseur physique de 31 ,0 nm à 30,6 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92% en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 2.10 3 mbar.

Le tableau de la figure 7 récapitule les épaisseurs des couches 127, 129 et 165 des cinq exemples de cette seconde série.

Tous ces exemples ont fait l’objet du même traitement par laser que précédemment, puis ont été monté en triple vitrage dans une structure du type de celle illustrée en figure 4. Il s’agit pour ces exemples d’une configuration : 4-16 (Ar 90%)-4-16 (Ar 90%)-4, c’est-à-dire qu’elle est constituée de trois feuilles de verre transparent de 4 mm, réalisant chacune un substrat 10, 20, 30, séparées deux par deux par une lame de gaz intermédiaire 15, 25 à 90 % d’argon et 10 % d’air d’une épaisseur chacune de 16 mm, le tout étant maintenus ensemble par une structure de châssis 90.

Les deux substrats 10, 30 extérieurs de ce triple vitrage sont revêtus, chacun, sur sa face intérieure 11 , 29 tournée vers la lame de gaz intermédiaire 15, 25, d’un revêtement isolant 14, 26 constitué de l’empilement monocouche fonctionnelle décrit ci-avant : les empilements monocouche fonctionnelle sont ainsi en faces dites « face 2 et « face 5 ).

Le substrat 20 central de ce triple vitrage, celui dont les deux faces 19, 21 sont en contact respectivement avec les lames de gaz intermédiaire 15 et

25, n’est revêtu d’aucun revêtement sur aucune de ces faces.

La dernière ligne du tableau de la figure 7, ainsi que la figure 8 illustrent l’évolution, en ordonnée en figure 8, du facteur solaire, g, en pourcent, en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc ZnO 129 en abscisse, ce facteur solaire étant mesurée immédiatement après le traitement laser des deux substrats 10, 30, puis leur intégration pour former le triple vitrage. Le facteur solaire est ainsi amélioré lorsque la sous- couche d’oxyde à base de zinc ZnO 129 est entre 0, 3 et 5,0 nm. Le facteur solaire est particulièrement favorable pour une épaisseur de cette sous-couche d’oxyde à base de zinc ZnO 129 entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm.

Il a été mesuré que pour une épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 de 5,0 nm et une épaisseur de la couche fonctionnelle 140 de 10,0 nm pour les deux empilements 14, 26, la résistance par carré est de 3,78 ohms par carré et le facteur solaire du triple vitrage de 56,9 %

Il a été constaté avec surprise que pour une épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 de 1 ,0 nm et une épaisseur de la couche fonctionnelle 140 de 10,0 nm pour les deux empilements 14, 26, la résistance par carré est descendue à 3,59 ohms par carré et le facteur solaire du triple vitrage est monté à 57,2 %.

En baissant l’épaisseur de la couche fonctionnelle 140 des deux empilements 14, 26 de 12,0 à 9,6 nm et en conservant l’épaisseur de sous- couche d’oxyde à base de zinc ZnO 129 à 1 ,0 nm, il a été ainsi possible de réaliser deux empilements présentant sensiblement la même résistance par carré qu’avec 5,0 nm pour la sous-couche d’oxyde à base de zinc ZnO 129 et 12,0 nm pour la couche fonctionnelle 140 (3,80 ohms par carré). Toutefois, pour une résistance par carré conservée, il a alors été constaté que le triple vitrage présentait un facteur solaire bien supérieur, à 58,2 %.

Une troisième série d’exemples a ensuite été réalisée sur la base de la seconde série d’exemple avec une épaisseur de couche fonctionnelle plus élevée, de 15,0 nm, en conservant la couche de surblocage d’oxyde à base de titane TiO x 150 d’une épaisseur physique de 0,7 nm et la surcouche d’oxyde à base de zinc ZnO 161 , d’une épaisseur physique de 5,0 nm.

Le tableau de la figure 9 récapitule les épaisseurs des couches 127, 129 et 165 des cinq exemples de cette troisième série.

La dernière ligne du tableau de la figure 9, ainsi que la figure 10 illustrent l’évolution, en ordonnée en figure 8, du facteur solaire, g, en pourcent, en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc ZnO 129 en abscisse, ce facteur solaire étant mesurée immédiatement après le traitement laser des deux substrats 10, 30, puis leur intégration pour former le triple vitrage. Le facteur solaire est ainsi amélioré lorsque la sous- couche d’oxyde à base de zinc ZnO 129 est entre 0,3 et 5,0 nm. Le facteur solaire est particulièrement favorable pour une épaisseur de cette sous-couche d’oxyde à base de zinc ZnO 129 entre 1,0 et 3,0 nm, voire entre 1,5 et 2,4 nm.

Comme pour la série précédente, en baissant l’épaisseur de la couche fonctionnelle 140 des deux empilements 14, 26 de 15,0 à 14,4 nm et en conservant l’épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 à 1,0 nm, il a été ainsi possible de réaliser deux empilements présentant sensiblement la même résistance par carré qu’avec 5,0 nm pour la sous-couche d’oxyde à base de zinc ZnO 129 et 15,0 nm pour la couche fonctionnelle 140 (2,15 ohms par carré). Toutefois, pour une résistance par carré conservée, il a alors été constaté que le triple vitrage présentait un facteur solaire bien supérieur, à 57,6 %.

Les exemples présentent tous une bonne résistance mécanique au test EBT, tant sans traitement thermique qu’après traitement laser.

Dans une variante, il est possible que le revêtement antireflet 120 situé sous une couche fonctionnelle 140 comporte en outre une sous-couche intermédiaire diélectrique 125 située entre la sous-couche diélectrique de nitrure à base de silicium, S13N4 I27 et la face 29, cette sous-couche intermédiaire diélectrique 125 étant de préférence oxydée et comprenant de préférence un oxyde mixte de zinc et d’étain.

Dans une variante, il est possible que le revêtement antireflet 160 situé au-dessus d’une couche fonctionnelle 140 comporte en outre une surcouche intermédiaire diélectrique 163 située entre la surcouche d’oxyde à base de zinc, ZnO 161 et la surcouche diélectrique 165 qui est située au-dessus, cette surcouche intermédiaire diélectrique 163 étant de préférence oxydée et comprenant de préférence un oxyde de titane.

La présente invention est décrite dans ce qui précède à titre d’exemple. Il est entendu que l’homme du métier est à même de réaliser différentes variantes de l’invention sans pour autant sortir du cadre du brevet tel que défini par les revendications.