Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MATERIAL TREATING SYSTEM, MATERIAL TREATING METHOD AND CORRESPONDING GAS SUPPLY
Document Type and Number:
WIPO Patent Application WO/2003/071578
Kind Code:
A2
Abstract:
The invention relates to a material treating system for treating a work piece (3). The material treatment is carried out by supplying a reaction gas and energetic radiation to induce the reaction gas in a surrounding of a section of the work piece to be treated. The radiation is preferably provided by an electron microscope (15). An objective lens (27) of the electron microscope is disposed preferably between a detector (41) thereof and the work piece. A gas supply system (53) of the material treating system is provided with a valve disposed at a distance from the treating section, and a gas volume between the valve and a location of emergence (59) of the reaction gas is small. The gas supply system is further provided with a temperature-adjusted, especially cooled reservoir for receiving a starting material for the reaction gas.

Inventors:
KOOPS HANS W P (DE)
HOFFROGGE PETER (DE)
Application Number:
PCT/EP2003/001923
Publication Date:
August 28, 2003
Filing Date:
February 25, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LEO ELEKTRONENMIKROSKOPIE GMBH (DE)
NAWOTEC GMBH (DE)
KOOPS HANS W P (DE)
HOFFROGGE PETER (DE)
International Classes:
H01J37/18; H01J37/30; H01J37/305; (IPC1-7): H01J37/305; H01J37/301
Domestic Patent References:
WO2002019375A12002-03-07
Foreign References:
US5055696A1991-10-08
US5188705A1993-02-23
US5148024A1992-09-15
US5885354A1999-03-23
US5645897A1997-07-08
Other References:
See also references of EP 1479091A2
Attorney, Agent or Firm:
Schorr, Frank (München, DE)
Download PDF:
Claims:
Patentansprüche
1. Gaszuführungsanordnung mit wenigstens einer Gaszuführung (55) zum Zuführen eines Reaktionsgases zu einem Reak tionsort in einem Materialbearbeitungssystem (1), wobei die Gaszuführung (55) umfasst : ein Rohr (65) mit einem ersten Innenquerschnitt und einen in dem Rohr (65) verschiebbaren Ventilkörper (75), der zwischen einer ersten Stellung, in der ein Gasfluss durch das Rohr (65) freigegeben ist, und einer zweiten Stellung, in der der Gasfluss durch das Rohr (65) im wesentlichen versperrt ist, hin und her verlagerbar ist, gekennzeichnet durch eine Kanüle (57) mit einem an das Rohr (65) gekoppelten Eintrittsende (61) für den Gasfluss und einem Austritts ende (59) für den Gasfluss, wobei die Kanüle (57) in ei nem Bereich ihres Austrittsendes (59) einen zweiten In nenquerschnitt aufweist, der kleiner ist als der erste Innenquerschnitt und wobei ein Volumen (V) eines zusam menhängenden Gasraumes, der wenigstens durch die Kanüle (57), den Innenquerschnitt der Kanüle (57) an deren Austrittsende (59) und den Ventilkörper (75) in dessen zweiter Stellung begrenzt ist, folgende Relation er füllt : V < c * A * 1 wobei A eine Fläche des Innenquerschnitts der Kanü le (57) an deren Austrittsende (59) ist, 1 ein Abstand zwischen dem Austrittsende (59) der Kanüle (57) und dem Ventilkörper (75) in dessen zweiter Stellung ist und c eine Konstante ist mit c < 5, vorzugsweise c < 3 und weiter bevorzugt c < 1,5.
2. Gaszuführungsanordnung nach Anspruch 1, wobei gilt : c < 1,2, vorzugsweise c < 1,1 und weiter bevorzugt c ist im wesentlichen gleich 1.
3. Gaszuführungsanordnung nach Anspruch 1 oder 2, wobei ein Aussendurchmesser der Kanüle (57) kleiner ist als ein Innendurchmesser des Rohres (65).
4. Gaszuführungsanordnung nach einem der Ansprüche 1 bis 3 oder dem Oberbegriff von Anspruch 1, ferner umfassend ein Reservoir (111) zur Aufnahme eines festen oder/und flüssigen Ausgangsmaterials (113) zur Bereitstellung des Reaktionsgases, wobei das Reservoir (111) eine Tem perierungsvorrichtung (117,119) zum Einstellen einer Temperatur des Ausgangsmaterials (113) aufweist.
5. Gaszuführungsanordnung nach Anspruch 4, wobei die Tempe rierungsvorrichtung (117,119), die insbesondere eine Kühlvorrichtung umfasst, dazu ausgebildet ist, die Tem peratur des Ausgangsmaterials (113) niedriger einzustel len, als eine Temperatur der Kanüle (57).
6. Gaszuführungsanordnung nach Anspruch 5, ferner umfassend eine Heizung zum Heizen der Kanüle (57) oder/und des Rohrs (65).
7. Gaszuführungsanordnung nach einem der Ansprüche 4 bis 6, ferner umfassend einen Drucksensor (123) zum Messen ei nes Gasdruckes des Reaktionsgases und eine Steue rung (121) zur Ansteuerung der Temperierungsvorrichtung (119) in Abhängigkeit von dem gemessenen Gasdruck.
8. Gaszuführungsanordnung nach einem der Ansprüche 1 bis 7, wobei wenigstens zwei Gaszuführungen (55) vorgesehen sind und das Reservoir (111) einer ersten der beiden Gaszuführungen (55) ein erstes Ausgangsmaterial (113) enthält und das Reservoir (111) einer zweiten der beiden Gaszuführungen (55) ein von dem ersten Ausgangsmaterial (113) verschiedenes zweites Ausgangsmaterial (113) ent hält, und wobei ein Gasleitwert (L) der Kanüle (57) der ersten Gaszuführung (55) von einem Gasleitwert (L) der Kanüle (57) der zweiten Gaszuführung (55) verschieden ist.
9. Gaszuführungsanordnung nach Anspruch 8, wobei bei einer Temperatur von 20 °C das erste Ausgangsmaterial (113) einen höheren Dampfdruck aufweist als das zweite Aus gangsmaterial (113) und der Gasleitwert (L) der ersten Kanüle (57) kleiner ist als der Gasleitwert (L) der zweiten Kanüle (57).
10. Materialbearbeitungssystem, umfassend : eine Bearbeitungskammer (7), eine Werkstückhalterung (5) zum Haltern eines zu bearbeitenden Werkstücks (3) in der Bearbeitungs kammer (7) derart, dass ein Oberflächenbereich des Werkstücks (3) in einer Objektebene (19) anordenbar ist, ein Elektronenmikroskop (15) mit einer Elektronenquelle (23) zur Erzeugung eines Elektronenstrahls, wenigstens eine Fokussierlinse (27) zum Fokus sieren des Elektronenstrahls auf der Objektebene (19) und wenigstens einen Elektronendetektor (41,39) zum Detektieren von aus einem Bereich der Objektebene (19) austretenden Elektronen und eine Gaszuführungsanordnung (53) zur Zuführung wenigstens eines Reaktionsgases, welches mittels des fokussierten Elektronenstrahls zu einer Reaktion mit dem Werkstück (3) anregbar ist, dadurch gekennzeichnet, dass die Gaszuführungsanordnung (53) die Gaszuführungsanord nung nach einem der Ansprüche 1 bis 9 umfasst.
11. Materialbearbeitungssystem nach Anspruch 10 oder dem Oberbegriff von Anspruch 10, wobei das Elektronenmikro skop (15) wenigstens ein Paar von Druckblenden (121, 131 ; 47a) mit jeweils einer von dem Elektronenstrahl durchsetzten Öffnung (49) umfasst, wobei eine erste der beiden Druckblenden (121 ; 47a) einen Vakuumraum der Be arbeitungskammer (7) von einem ZwischenVakuumraum (123) teilweise separiert und eine zweite der beiden Druckblenden (131) den ZwischenVakuumraum (123) von einem die Elektronenquelle (23) umfassenden Vakuumraum (123,125, 127) teilweise separiert, wobei eine Vakuum pumpanordnung (129) einen ersten Anschluss zum Zwischen Vakuumraum (123) aufweist, und wobei ein erster Elektronendetektor (41) in dem ZwischenVakuumraum (123) angeordnet ist.
12. Materialbearbeitungssystem nach Anspruch 11, wobei eine der Objektebene (19) nächstliegende Fokussierlinse (27) des Elektronenmikroskops (15) zwischen dem ersten De tektor (41) und der Objektebene (19) angeordnet ist.
13. Materialbearbeitungssystem nach Anspruch 11 oder 12, wo bei dem ersten Anschluss eine separate Turbomolekular pumpe (129) zum Abpumpen des ZwischenVakuumraums (123) zugeordnet ist.
14. Materialbearbeitungssystem nach einem der Ansprüche 11 bis 13, wobei eine der Objektebene (19a) am nächsten an geordnete Komponente (141) des Elektronenmikroskops eine den Elektronenstrahl ringförmig umschließende im wesentlichen plane der Objektebene (19a) zuweisende End fläche (143) aufweist.
15. Materialbearbeitungssystem nach Anspruch 14, wobei die der Objektebene (19b) am nächsten angeordnete Komponente (141b) des Elektronenmikroskops als Dichtung (151) zur Anlage an dem Werkstück (3b) ausgebildet ist.
16. Materialbearbeitungssystem nach Anspruch 15, wobei die Werkstückhalterung dazu ausgebildet ist, das Werkstück von der Anlage an der als Dichtung ausgebildeten Kom ponente zu entfernen.
17. Materialbearbeitungssystem nach Anspruch 15, wobei ein Ventil vorgesehen ist, um einen von der Dichtung um schlossenen Gasraum in Verbindung mit dem Vakuumraum der Bearbeitungskammer zu setzen.
18. Materialbearbeitungssystem nach einem der Ansprüche 14 bis 17, wobei die Endfläche (143) der der Objektebene (19a) am nächsten angeordnete Komponente (141) des Elektronenmikroskops (15a) von der Objektebene (19a) einen Abstand (d2) von weniger als 100 jim, vorzugsweise weniger als 50 Mm aufweist.
19. Materialbearbeitungssystem nach einem der Ansprüche 11 bis 18, wobei die Druckblende (47a) zwischen der der Ob jektebene (19a) nächstliegenden Fokussierlinse (27a) des Elektronenmikroskops (15a) und der Objektebene (19a) angeordnet ist.
20. Materialbearbeitungssystem nach einem der Ansprüche 11 bis 19, wobei eine zweiter Elektronendetektor (39) in der Bearbeitungskammer (7) angeordnet ist.
21. Materialbearbeitungssystem nach einem der Ansprüche 11 bis 19, wobei die Vakuumpumpanordnung einen zweiten An schluss (9) zu dem Vakuumraum der Bearbeitungskammer (7) aufweist.
22. Materialbearbeitungssystem nach Anspruch 21, ferner um fassend eine Steuerung (37) zum umschalten der Vakuum pumpanordnung (9,129) zwischen einem ersten und einem zweiten Betriebsmodus, wobei in dem ersten Betriebsmodus die Bearbeitungskammer (7) über den zweiten Anschluss (9) stärker evakuierbar ist als in dem zweiten Be triebsmodus.
23. Materialbearbeitungssystem nach Anspruch 22, wobei dem zweiten Anschluss eine separate Turbomolekularpumpe (9) zugeordnet ist, die in dem zweiten Betriebsmodus ausser Betrieb ist.
24. Materialbearbeitungssystem nach Anspruch 22 oder 23, wo bei ein Gasdruck in der Bearbeitungskammer (7) in dem ersten Betriebsmodus kleiner als etwa 0.05 mbar und in dem zweiten Betriebsmodus größer als 0,1 mbar ist.
25. Materialbearbeitungssystem nach einem der Ansprüche 10 bis 24, ferner umfassend energieauflösenden PhotonenDe tektor (51), insbesondere RöntgenDetektor, zur Detek tion von aus dem Werkstück (3) aufgrund einer Wechsel wirkung mit dem Elektronenstrahl austretenden Photonen.
26. Verfahren zum Bearbeiten eines Werkstücks, umfassend : Aufnehmen eines elektronenmikroskopischen Bildes eines Bereichs des Werkstücks durch Richten eines Elektronenstrahls an eine Vielzahl von Orten innerh alb des Bereichs und registrieren von aus dem Werk stück austretenden Sekundärelektronen in Abhängig keit von den Orten, auf die der Elektronenstrahl ge richtet ist, Festlegen wenigstens eines Ortes innerhalb des Be reichs des Werkstücks, an dem Material des Werk stücks abzutragen ist oder an dem Material an dem Werkstück abzuscheiden ist, Zuführen wenigstens eines Reaktionsgases zu dem Be reich des Werkstücks, Richten des Elektronenstrahls des auf den wenigstens einen bestimmten Ort des Werkstücks, um das wenig stens eine Reaktionsgas zu einer Reaktion mit dem Werkstück anzuregen.
27. Verfahren nach Anspruch 26, wobei das Aufnehmen des elektronenmikroskopischen Bildes nach der Anregung der Reaktion erfolgt und in Abhängigkeit von dem aufgenomme nen Bild wenigstens ein weiterer Ort innerhalb des Be reichs des Werkstücks festgelegt wird, an dem Material von dem Werkstück abzutragen oder an diesem abzuscheiden ist.
28. Verfahren nach Anspruch 26 oder 27, wobei das Verfahren unter Einsatz des Materialbearbeitungssystems nach einem der Ansprüche 10 bis 25 ausgeführt wird.
29. Verfahren nach einem der Ansprüche 26 bis 28, wobei das Werkstück eine Maske zur Verwendung in einem Lithogra pieverfahren, insbesondere eine Photomaske und weiter bevorzugt eine Phasenmaske ist.
Description:
Materialbearbeitungssystem, Materialbearbeitungsverfahren und Gaszuführung hierfür

Die Erfindung betrifft ein Materialbearbeitungssystem, ein Materialbearbeitungsverfahren und eine Gaszuführungsanordnung hierfür, welche insbesondere in Verfahren zur Materialbe- arbeitung durch Materialabscheidung aus Gasen, wie etwa CVD (Chemical Vapor Deposition), oder Materialabtragung unter Zu- führung von Reaktionsgasen einsetzbar sind. Hierbei wird ins- besondere die Gasreaktion, welche zu einer Materialabschei- dung oder zu einem Materialabtrag führt, durch einen Energie- strahl ausgelöst, der auf einen Bereich des zu bearbeitenden Werkstücks gerichtet ist. Der Energiestrahl kann insbesondere einen Elektronenstrahl, einen Photonenstrahl oder einen Ionenstrahl umfassen.

Ein solches herkömmliches System ist aus US 5,055, 696 be- kannt. In diesem werden in eine Bearbeitungskammer, in der das zu bearbeitende Werkstück angeordnet ist, wahlweise meh- rere Reaktionsgase eingeführt, und die Reaktion der Reak- tionsgase mit dem Werkstück wird durch einen fokussierten Ionenstrahl oder Photonenstrahl ausgelöst. Die bearbeiteten Werkstücke umfassen integrierte Schaltkreise und Fotomasken zur Herstellung von integrierten Schaltkreisen.

Das bekannte System hat sich hinsichtlich der Genauigkeit, mit der die Werkstücke bearbeitbar sind, als unzulänglich er- wiesen. Ebenso hat sich gezeigt, dass die in dem System ein- gesetzte Energiestrahlart und Gaszuführung einer Reduzierung der Dimensionen der kleinsten bearbeitbaren Strukturen bei dem System entgegenstehen.

Entsprechend ist es eine Aufgabe der vorliegenden Erfindung, ein Materialbearbeitungssystem, ein Materialbearbeitungsver-

fahren und eine hierbei einsetzbare Gaszuführungsanordnung vorzuschlagen, mit welcher präzisere Arbeiten an dem zu be- arbeitenden Werkstück durchführbar sind.

Unter einem ersten Aspekt geht die Erfindung aus von einer Gaszuführungsanordnung mit wenigstens einer Gaszuführung zum Zuführen eines Reaktionsgases zu einem Reaktionsort in einem Materialbearbeitungssystem. Das Reaktionsgas umfasst insbe- sondere ein sog."Precursor-Gas", welches in der Nähe des Reaktionsorts durch einen Energiestrahl aktivierbar ist, um an dem Reaktionsort zu Materialabscheidung an dem zu bearbei- tenden Werkstück oder zu einem Materialabtrag an dem Werk- stück zu führen. Hierzu ist die Zuführung des Reaktionsgases gezielt zu steuern, d. h. ein Fluss des Reaktionsgases muss anschaltbar und abschaltbar sein. Hierzu umfasst die Gaszu- führung ein Rohr mit einem ersten Innenquerschnitt, in wel- chem ein Ventilkörper zur Steuerung des Gasflusses zwischen einer ersten Stellung, in der er den Gasfluss freigibt, und einer zweiten Stellung, in der er den Gasfluss im wesent- lichen versperrt, hin-und herverlagerbar ist. An das Rohr ist eine im Vergleich zu dem Rohr dünnere Kanüle gekoppelt, um das Reaktionsgas bis in die Nähe des Reaktionsortes zu transportieren.

Die Erfindung zeichnet sich unter diesem Aspekt dadurch aus, dass ein Volumen eines zusammenhängenden Gasraumes, der sich von dem Austrittsende der Kanüle bis zu dem Ventilkörper in dem Rohr erstreckt, wenn der Ventilkörper sich in seiner den Gasfluss versperrenden Stellung befindet, besonders klein ist. Dieses Volumen erfüllt dann insbesondere die Relation V < c * A * l, wobei A die Fläche des Innenquerschnitts der Kanüle an deren Austrittsende ist, 1 ein Abstand zwischen dem Austrittsende der Kanüle und dem Ventilkörper in dessen den Gasfluss versperrenden Stellung ist und c eine Konstante ist, die vorzugsweise kleiner als 5 ist.

Dieser Wahl des Volumens liegt folgende Überlegung zu Grunde : Wenn eine Reaktion des Reaktionsgases mit dem Werkstück bis zu einem gewünschten Ausmaß erfolgt ist, wird das Ventil ge- schlossen, um eine weitere Zuführung des Reaktionsgases zum Reaktionsort zu vermeiden. Es ist dann allerdings in dem Rohr-und Kanülenvolumen zwischen dem Ventilkörper in seiner geschlossenen Stellung und dem Austrittsende der Kanüle noch weiteres Reaktionsgas vorhanden, welches noch einige Zeit lang aus dem Austrittsende der Kanüle austritt und zu weite- ren dann nachteiligen Ablagerungen des Reaktionsgases und zu weiteren Reaktionen desselben mit dem Werkstück führen kann.

Es wurde bereits vorgeschlagen, das Ventil besonders nahe an das Werkstück zu verlagern, um dieses Volumen des Gasraums zwischen Ventilkörper und Austrittsende möglichst zu reduzie- ren. Dann allerdings ist in der Nähe des Reaktionsortes auch Raum für die Anordnung des Ventils vorzusehen, was zu einem erhöhten Abstand zwischen der Werkstückoberfläche und einer Optik zum Richten des Energiestrahls auf das Werkstück führt.

In manchen Anwendungen ist es allerdings wesentlich, einen solchen Abstand zu reduzieren, um einen fein fokussierten Energiestrahl zu erreichen.

Die Erfinder haben erkannt, dass ein solcher geringer Abstand zwischen der Optik und dem Werkstück dann realisierbar ist, wenn das Gas durch eine relativ dünne Kanüle in die Nähe des Reaktionsortes transportiert wird. In einer solchen dünnen Kanüle ist allerdings ein Ventil mit einem bewegbaren Ventil- körper nicht anordnenbar. Die Kanüle ist somit an das Rohr mit dem darin angeordneten verschiebbaren Ventilkörper gekop- pelt, wobei das im Vergleich zur Kanüle wesentlich dickere Rohr entfernt von dem Reaktionsort anordnenbar ist, wo dann ebenfalls der nötige Raum für den im Vergleich zu Kanüle großen Ventilkörper vorhanden ist.

Aufgrund dieser Überlegung ist also ein Gasvolumen zwischen dem Austrittsende der Kanüle und dem Ventilkörper nicht gänz- lich zu vermeiden. Allerdings sieht die Erfindung vor, dieses Volumen möglichst klein auszugestalten, was bei Beachtung der oben angegebenen Relation möglich ist.

Vorzugsweise ist dieses Volumen noch kleiner gewählt, wobei dann insbesondere c < 3, weiterbevorzugt c < 1, 5, insbeson- dere c < 1, 2 und noch stärker bevorzugt c < 1, 1 gilt. Es ist hierbei insbesondere möglich, eine Mehrzahl von verschiedenen Gaszuführungen um den Reaktionsort zu plazieren und für eine jede Gaszuführung eine vergleichsweise schnelle und zeitlich präzise Steuerung des Gasstroms durch Betätigen der jeweili- gen Ventilkörper zu erreichen.

Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung weist die Konstante c einen Wert von im wesentlichen gleich 1, 0 auf, was beispielsweise dann erreichbar ist, wenn der Ventilkörper unmittelbar gegen eine dem Austrittsende der Kanüle entgegengesetzten Stirnende der Kanüle gedrückt wird, um den Gasfluss zu versperren.

Vorzugsweise hat die Kanüle einen Innendurchmesser von 0,3 mm bis 2,0 mm, weiter bevorzugt von 0,5 mm bis 1, 7 mm und noch stärker bevorzugt 0,7 mm bis 1, 5 mm. Entsprechend hat die Ka- nüle bevorzugt einen Außendurchmesser von 0,6 mm bis 2,5 mm, weiter bevorzugt von 0,8 mm bis 2,0 mm und noch stärker be- vorzugt 1, 0 mm bis 1, 8 mm. Eine bevorzugte Länge der Kanüle liegt zwischen 30 mm und 70 mm und besonders bevorzugt zwischen 40 und 60 mm.

Weiterhin ist die Kanüle vorzugsweise derart ausgestaltet, dass ein Innenquerschnitt über eine Gesamtlänge der Kanüle im wesentlichen dem Innenquerschnitt der Austrittsöffnung der Kanüle entspricht, d. h. die Kanüle im Wesentlichen rohrförmig ausgestaltet ist. In einer weiteren, bevorzugten Ausge-

staltung weist die Kanüle eine sich im Bereich der Aus- trittsöffnung verjüngende Form auf, d. h. der Innenquerschnitt im Bereich der Austrittsöffnung ist kleiner als ein Innen- querschnitt in einem Bereich zwischen dem sich verjüngenden Bereich der Austrittsöffnung und dem Eintrittsende, wobei der Grad der Verjüngung derart gewählt ist, dass die oben angege- benen Bedingungen an das Volumen bzw. die Konstante c erfüllt sind. Um ein unerwünschtes Nachströmen von Reaktionsgas zu verhindern, ist es nämlich vorteilhaft, eine sich nur leicht bzw. nicht verjüngende Kanüle einzusetzen, welche einen Rück- stau von Gas durch einen im Verhältnis zur Gesamtkanüle kleinen Innenquerschnitt der Austrittsöffnung verhindert.

Unter einem zweiten Aspekt geht die Erfindung aus von einer Gaszuführungsanordnung mit wenigstens einer Gaszuführung, welche einen in einem Rohr verschiebbaren Ventilkörper auf- weist, der zwischen einer ersten Stellung, in der er einen Gasfluss aus dem Rohr heraus freigibt, und einer zweiten Stellung, in der er einen Gasfluss aus dem Rohr heraus im wesentlichen versperrt, verlagerbar ist. In einer bevorzugten Ausgestaltung weist der Ventilkörper einen quadratischen Querschnitt mit abgerundeten Ecken auf, so dass der Ventilkörper mit seinen abgerundeten Ecken an einem Innen- mantel des Rohrs geführt ist, während zwischen einem jeden Paar von abgerundeten Ecken ein Bereich des Ventilkörpers einen vergrößerten Abstand von dem Innenmantel des Rohrs aufweist, um vier Durchtrittsquerschnitte bereitzustellen, durch welche Reaktionsgas den Ventilkörper im Inneren des Rohrs umfließen und dann in der von dem Dichtring entfernten Stellung des Ventilkörpers in die Kanüle eintreten kann.

Ferner ist ein Reservoir zur Aufnahme eines festen oder/und flüssigen Ausgangsmaterials zur Bereitstellung des Reak- tionsgases vorgesehen. Das Reaktionsgas entsteht durch Ver- dampfung, Verdunstung oder Sublimation des flüssigen bzw. festen Ausgangsmaterials.

Die Erfindung zeichnet sich unter diesem Aspekt dadurch aus, dass eine Temperierungsvorrichtung zum Einstellen einer Tem- peratur des Ausgangsmaterials vorgesehen ist.

Diese Ausgestaltung des Reservoirs ist insbesondere in Kombi- nation mit einem Zwei-Stellungs-Ventil vorteilhaft, welches im Unterschied zu einem Dosierventil lediglich eine im wesentlichen vollständig verschlossene und eine im wesent- lichen vollständig geöffnete Stellung aufweist. Es lässt sich dann nämlich der Strom des Reaktionsgases hin zu dem Reak- tionsort durch das Einstellen der Temperatur des Ausgangs- materials dosieren, da der Dampfdruck des Ausgangsmaterials temperaturabhängig ist.

Vorzugsweise werden hierbei Ausgangsmaterialien ausgewählt, welche bei einer Temperatur, die unterhalb einer Raumtempera- tur liegt, einen ausreichenden Dampfdruck aufweisen, um einen Gasfluss von dem Reservoir durch das Ventil hin zum Probenort bereitzustellen. Die Temperierungsvorrichtung umfasst dann vorzugsweise eine Kühlvorrichtung, um für das Ausgangsmate- rial die Temperatur unterhalb der Raumtemperatur einzustel- len, bei der der Dampfdruck des Ausgangsmaterials eine ge- wünschte Größe aufweist. Beispiele für derartige Ausgangs- materialien sind : Pentabutylsilan oder Tetrabutylsilan und Wasserstoffperoxid, welche zusammen einsetzbar sind, um Siliziumdioxid an dem Werkstück abzuscheiden, sowie Cyclo- pentadienyl-Trimethyl-Platin, mit welchem ein Platin-Kohlen- stoff-Verbundwerkstoff auf dem Werkstück abscheidbar ist.

Indem das Reservoir mit dem Ausgangsmaterial auf einer Tempe- ratur gehalten ist, die unterhalb der Temperatur der übrigen Komponenten der Gaszuführungsanordnung liegt, ist weitgehend sichergestellt, dass sich das aus dem Reservoir austretende Reaktionsgas nicht an Wandungen der übrigen Komponenten der Gaszuführungsanordnung niederschlägt.

Alternativ oder ergänzend zu einer Kühlung des Ausgangsmate- rials ist vorzugsweise ebenfalls vorgesehen, andere Kompo- nenten der Gaszuführungsanordnung, wie etwa die Kanüle oder den Ventilkörper oder das Rohr, in dem der Ventilkörper ver- schiebbar gelagert ist, zu heizen.

Um den Dampfdruck des Ausgangsmaterials in dem Reservoir mit erhöhter Genauigkeit auf einen gewünschten Wert einzustellen, ist vorzugsweise ein Drucksensor zur Messung dieses Gasdrucks sowie eine Steuerung vorgesehen, welche in Abhängigkeit von einem von dem Drucksensor bereitgestellten Druckmesssignal die Temperierungsvorrichtung ansteuert, um die Temperatur des Ausgangsmaterials in dem Reservoir zu ändern. Der Drucksensor ist vorzugsweise an einen Gasraum gekoppelt, welcher das Re- servoir, das Rohr, in dem der Ventilkörper verschiebbar ist, und Verbindungsleitungen hierzwischen umfasst.

Unter einem weiteren Aspekt sieht die Erfindung eine Gaszu- führungsanordnung vor, welche wenigstens zwei Gaszuführungen umfasst, um zwei verschiedene Reaktionsgase an den Reaktions- ort zu führen. Entsprechend sind in den Reservoiren der we- nigstens zwei Gaszuführungen verschiedene Ausgangsmaterialien enthalten, welche bei ihren Arbeitstemperaturen bestimmte Gasdrucke aufweisen.

Die Erfindung sieht unter diesem Aspekt vor, dass ein Gas- leitwert der Kanüle einer jeden Gaszuführung an das Ausgangs- material angepasst ist, um bei einem jeweiligen vorliegenden Gasdruck den Gasstrom durch die Kanüle derart einzustellen, dass eine gewünschte Gasmenge aus deren Austrittsende aus- tritt. Insbesondere können dann für verschiedene Gaszufüh- rungen unterschiedliche Gasleitwerte für deren Kanülen vor- gesehen sein. Insbesondere können sich die Kanülen verschie- dener Gaszuführungen hinsichtlich ihres Innenquerschnittes oder/und ihre Länge unterscheiden.

Insbesondere ist hierbei vorgesehen, dass für ein Paar von Ausgangsmaterialien, von denen ein erstes Ausgangsmaterial bei einer bestimmten Temperatur, wie etwa Raumtemperatur, einen höheren Dampfdruck aufweist als ein zweites der beiden Ausgangsmaterialien, der Gasleitwert der Kanüle zum Ausströ- men des ersten Ausgangsmaterials kleiner ist als der entspre- chende Gasleitwert der Kanüle zum Ausströmen des zweiten Ausgangsmaterials.

Insbesondere in Kombination mit der Ausführung, bei der je- weils eine Temperierungsvorrichtung zum Einstellen der Tem- peratur des Ausgangsmaterials vorgesehen ist, ist es hierbei möglich, durch eine entsprechende Anpassung des Gasleitwerts der Kanüle eine Grobeinstellung des Gasflusses vorzunehmen und eine Feineinstellung des Gasflusses durch Einstellen der Temperatur des Ausgangsmaterials zu erreichen.

Unter einem weiteren Aspekt geht die Erfindung aus von einem Materialbearbeitungssystem mit einer Bearbeitungskammer, einer Werkstückhalterung zum Haltern eines zu bearbeitenden Werkstücks in der Bearbeitungskammer und einer Gaszu- führungsanordnung zur Zuführung wenigstens eines Reaktions- gases hin zu einem zu bearbeitenden Bereich des Werkstücks sowie einer Vorrichtung zum Richten eines Energiestrahls auf den zu bearbeitenden Bereich des Werkstücks, um dort das Reaktionsgas zu einer Reaktion mit dem Werkstück anzuregen.

Unter diesem Aspekt sieht die Erfindung vor, als Energie- strahl einen Elektronenstrahl einzusetzen, welcher von einem Elektronenmikroskop erzeugt wird. Mit dem Elektronenmikroskop ist es ebenfalls möglich, elektronenmikroskopische Bilder des Werkstücks aufzunehmen, wobei dies vornehmlich in einem Betriebsmodus geschieht, in dem Reaktionsgas nicht zugeführt wird.

Es wird damit das Elektronenmikroskop zum einen eingesetzt, um elektronenmikroskopische Bilder des zu bearbeitenden Werk- stücks zu gewinnen, und zum anderen dazu, zugeführtes Reak- tionsgas gezielt in solchen Bereichen des Werkstücks zur Reaktion mit diesem anzuregen. Es wird das Elektronenmikro- skop damit für zwei Aufgaben eingesetzt, wobei für beide Auf- gaben die mit dem Elektronenstrahl mögliche hohe Fokussierung des Elektronenstrahls ausgenutzt wird und damit sowohl eine hochauflösende Bildgebung wie auch eine hochauflösende Bearbeitung des Werkstücks erzielbar ist.

Ferner kann auch während des Zuführens des Reaktionsgases ein Signal des Sekundärelektronendetektors des Elektronenmikro- skops dazu verwendet werden, den Materialbearbeitungsprozess zu überwachen, da sich eine Intensität der Sekundärelektronen während des Ablaufs der Reaktion und zunehmender Materialabscheidung bzw. zunehmendem Materialabtrag von dem Werkstück ändern kann.

Insbesondere ist es hierbei möglich, zuerst unter Zuführung von Gas und Richten des Elektronenstrahls an ausgewählte Orte des Werkstücks an diesen Bearbeitungen vorzunehmen und so dann bei abgeschalteter Gaszuführung ein elektronenmikro- skopisches Bild des Werkstücks aufzunehmen und dieses Bild mit einem Sollbild des Werkstücks zu vergleichen. Es können dann die Orte des Werkstücks identifiziert werden, an denen das Bild des Werkstücks von dem Sollbild abweicht, um an diesen Orten in einem nächsten Schritt unter Zuführung von Reaktionsgas weitere Bearbeitungen vorzunehmen.

Der Einsatz des Elektronenmikroskops für die Bildgebung und für die Auslösung der Gasreaktion ist besonders dann vor- teilhaft, wenn das zu bearbeitende Werkstück eine Maske zur Verwendung in einem Lithographieverfahren ist, da dort beson- ders hoch auflösende materialbearbeitende Manipulationen an der Maske vorzunehmen sind. Ganz besonders von Vorteil ist

diese Kombination dann, wenn die Maske eine phasenschiebende Maske (Phasenmaske, PSM) ist. Im Unterschied zu dem her- kömmlich verwendeten Ionstrahl zur Auslösung der Gasreaktion, bei welchem auch Ionen in die Maske implantiert werden, führt der Elektronenstrahl nicht zu Implantationen oder ähnlichen Änderungen des Maskenmaterials. Derartige Implantationen sind nämlich bei Phasenschiebemasken zu vermeiden, da die implantierten Materialien selbst eine phasenschiebende Wirkung auf die in dem späteren Lithographieverfahren eingesetzte Strahlung zur Beleuchtung der Maske haben.

Unter einem weiteren Aspekt geht die Erfindung aus von einem Materialbearbeitungssystem mit einer Bearbeitungskammer, einer Werkstückhalterung zum Haltern eines zu bearbeitenden Werkstücks, einem Elektronenmikroskop und einer Gaszu- führungsanordnung zum Zuführen wenigstens eines Reaktions- gases. Das Elektronenmikroskop umfasst hierbei eine Elektronenquelle zur Erzeugung eines Elektronenstrahls, wenigstens eine Fokussierlinse zum Fokussieren des Elek- tronenstrahls auf einer Objektebene der Elektronenoptik und wenigstens einen Elektronendetektor zum Detektieren von Sekundärelektronen, die in einem Bereich um die Objektebene entstehen.

Die Werkstückhalterung ist dabei derart ausgebildet, dass das Werkstück relativ zu dem Elektronenmikroskop derart anordnen- bar ist, dass eine Oberfläche des Werkstücks im wesentlichen in der Objektebene des Elektronenmikroskops anordnenbar ist.

Ferner ist die Gaszuführungsanordnung relativ zu der Werk- stückhalterung derart angeordnet, dass die zugeführten Reak- tionsgase aus der Gaszuführungsanordnung nahe der Objektebene in einem Bereich um den Elektronenstrahl austreten.

Unter diesem Aspekt der Erfindung umfasst das Elektronenmi- kroskop wenigstens zwei Druckblenden mit jeweils einer von dem Elektronenstrahl durchsetzten Öffnung, welche drei Va-

kuumräume teilweise voneinander separieren. Dies ist zum einen der Vakuumraum der Bearbeitungskammer, in der das Werk- stück angeordnet ist, und zum anderen ist dies ein Vakuumraum im Inneren des Elektronenmikroskops, in dem unter anderem die Elektronenquelle angeordnet ist. Ferner ist dies noch ein Zwischen-Vakuumraum, der zwischen dem die Elektronenquelle umfassenden Vakuumraum und dem Vakuumraum der Bearbeitungs- kammer angeordnet ist. Hierdurch ist es möglich, in dem Va- kuumraum der Bearbeitungskammer einen höheren Gasdruck auf- recht zu erhalten als in dem die Elektronenquelle umfassenden Vakuumraum. Die Elektronenquelle benötigt zum Betrieb nämlich ein besonders gutes Vakuum, während der Bearbeitungskammer Reaktionsgase zugeführt werden, was dort zu einem höheren Gasdruck führt. Hierbei ist es ebenfalls möglich, in dem die Elektronenquelle umfassenden Vakuumraum noch weitere durch Druckblenden separierte Vakuumräume vorzusehen, um für die Elektronenquelle selbst ein noch besseres Vakuum bereitzu- stellen.

Vorzugsweise ist hierbei der Elektronendetektor zur Aufnahme der elektronenmikroskopischen Bilder in dem Vakuumraum ange- ordnet. Hierdurch wird eine Schädigung des Detektors durch die meist aggressiven Reaktionsgase, die der Bearbeitungs- kammer zugeführt werden, reduziert.

Vorzugsweise ist dann weiter vorgesehen, dass eine der Ob- jektebene nächstliegende Fokussierlinse des Elektronen- mikroskops zwischen dem Detektor und der Objektebene ange- ordnet ist. Hierdurch ist ein besonders kleiner Abstand zwischen der der Objektebene nächstliegenden Fokussierlinse und der Objektebene möglich, da der Elektronendetektor nicht in einem Raum zwischen der der Objektebene nächstliegenden Fokussierlinse und Objektebene angeordnet werden muss. Dieser geringe Arbeitsabstand ermöglicht eine besonders feine Fokussierung des Elektronenstrahls in der Objektebene.

Vorzugsweise ist eine separate Vakuumpumpe vorgesehen, um den Zwischen-Vakuumraum in einem Bereich neben der Druckblende zu evakuieren. Diese separate Vakuumpumpe ist vorzugsweise eine Turbomolekularpumpe.

Vorteilhafterweise kann vorgesehen sein, einen begrenzten Teilraum zwischem dem Werkstück und dem Elektronenmikroskop von dem möglichen Vakuumraum der Bearbeitungskammer zu sepa- rieren, wobei das wenigstens eine Reaktionsgas dann unmit- telbar diesem so gebildeten Teilraum zugeführt wird. Das zu- geführte Reaktionsgas wird damit in diesem Teilraum relativ zu dem übrigen Raum der Bearbeitungskammer unter einem er- höhten Druck gehalten und strömt nicht ungehindert in das ge- samte Volumen der Bearbeitungskammer ab. Dies ermöglicht einen sparsamen Umgang mit dem Reaktionsgas und weiter eine schnelle Einstellung eines gewünschten Partialdruckes des Reaktionsgases in dem Teilraum.

Vorzugsweise ist zur Bildung eines solchen Teilraums eine der Objektebene am nächsten angeordnete Komponente des Elektro- nenmikroskops derart ausgebildet, dass sie eine den Elektro- nenstrahl ringförmig umschließende im wesentlichen plane und der Objektebene zuweisende Endfläche aufweist.

Diese Endfläche weist vorzugsweise von der Objektebene einen Abstand von weniger als 100 ym, vorzugsweise weniger als 50 ym auf. Hierdurch ist es möglich, ohne Berührung zwischen der Endfläche und dem zu bearbeitenden Werkstück den Teilraum ausreichend gegenüber der übrigen Bearbeitungskammer zu sepa- rieren, so dass innerhalb des Teilraums erhöhte Drücke des wenigstens einen Reaktionsgases aufgebaut werden können.

Alternativ hierzu ist ebenfalls vorgesehen, dass die der Ob- jektebene am nächsten angeordnete Komponente des Elektronen- mikroskops als Dichtung zur Anlage an dem Werkstück ausge- bildet ist.

Unter einer bevorzugten Ausgestaltung der Erfindung ist vor- gesehen, dass die Druckblende selbst zwischen der der Objekt- ebene nächstliegenden Fokussierlinse des Elektronenmikroskops und der Objektebene angeordnet ist. Es müssen bei dieser Aus- gestaltungen die aus der Objektebene austretenden Sekundär- elektronen einen vergleichsweise kurzen Weg unter den schlechten Vakuumbedingungen in dem Teilraum durchlaufen, bevor sie durch die Druckblende in das wesentlich bessere Va- kuum des Zwischen-Vakuumraums und dann des die Elektronen- quelle umfassenden Vakuumraums eintreten und dort von dem Detektor registriert werden.

Zusätzlich kann ferner ein zweiter Elektronendetektor in der Bearbeitungskammer vorgesehen sein, dessen Detektionssignale insbesondere dann erfasst werden, wenn die Vakuumbedingungen in der Bearbeitungskammer so schlecht sind, dass der inner- halb des Zwischen-Vakuumraums angeordnete erste Elektronen- detektor keine zufriedenstellenden Signale liefert.

Das Materialbearbeitungssystem umfasst vorzugsweise eine Steuerung, mit der das System zwischen einem ersten Betriebs- modus und einem zweiten Betriebsmodus umschaltbar ist, wobei in dem ersten Betriebsmodus in der Bearbeitungskammer ein wesentlich geringer Gasdruck herrscht als in dem zweiten Be- triebsmodus. In dem ersten Betriebsmodus wird vorzugsweise kein Reaktionsgas zugeführt, und es werden in diesem Be- triebsmodus auch vorzugsweise die elektronenmikroskopischen Bilder des zu bearbeitenden Werkstücks aufgenommen. In dem zweiten Betriebsmodus wird vorzugsweise Reaktionsgas zu dem Werkstück geführt, um daran eine Materialbearbeitung vorzu- nehmen.

Der Bearbeitungsraum wird vorzugsweise durch eine separate Vakuumpumpe, insbesondere eine Turbomolekularpumpe, abge-

pumpt, wobei diese Pumpe in dem zweiten Betriebsmodus vor- zugsweise ausser Betrieb steht.

Ausführungsformen der Erfindung werden nachfolgend anhand von Figuren erläutert. Hierbei zeigt : Figur 1 eine Ausführungsform eines Materialbearbeitungs- systems mit Gaszuführungsanordnung in schema- tischer Darstellung, Figur 2 die Gaszuführungsanordnung der Figur 1 im Detail, Figur 3 eine Detailansicht zu Figur 2, Figur 4 einen Schnitt entlang Linie IV-IV in Figur 3, Figur 5 eine Variante des in Figur 1 gezeigten Materialbe- arbeitungssystems, Figur 6 eine Detailansicht der Figur 5, Figur 7 eine Variante zu Figur 6, und Figur 8 eine Variante des in Figur 3 dargestellten Teils der Gaszuführungsanordnung, Figur 9 eine Variante der in Figur 2 dargestellten Gaszu- führungsanordnung.

In Figur 1 ist eine Ausführungsform eines erfindungsgemäßen Materialbearbeitungssystems 1 schematisch dargestellt. Dieses dient zur Bearbeitung eines Werkstücks 3, nämlich einer Pha- senmaske. Diese Photomaske ist zur Verwendung in einem Photo- lithographieverfahren vorgesehen und trägt Strukturen, die photographisch auf eine strahlungsempfindliche Schicht

("resist") übertragen werden, mit der ein Halbleitersubstrat ("wafer") beschichtet ist. Bezogen auf die Wellenlänge des zur Übertragung der Strukturen von der Maske auf das Halb- leitersubstrat verwendeten Lichts sind die kritischen Ab- messungen der Strukturen relativ klein, weshalb die Struk- turen auf der Maske nicht lediglich als abwechselnd transpa- rente und absorbierende Strukturen verkörpert sind, sondern auch eine definierte phasenschiebende Wirkung für das zur Ab- bildung verwendete Licht bereitstellen sollen. Entsprechend müssen die Strukturen der Maske 3 vorgegebene Grenzen für ortsabhängige Materialdichten relativ genau einhalten.

Mit dem Materialbearbeitungssystem 1 ist es möglich, derar- tige Strukturen durch Materialabscheidung an ausgewählten Orten zu erzeugen oder auch durch Materialabtrag an ausge- wählten Orten zu entfernen.

Die Materialabscheidung erfolgt hierbei durch Zuführen eines Reaktionsgases ("precursor") in die Nähe des zur Bearbeitung ausgewählten Ortes. Auf den ausgewählten Ort wird gleichzei- tig ein Elektronenstrahl aus Primärelektronen gerichtet, wo- bei die Primärelektronen selbst oder durch diese aus dem Werkstück ausgelöste Rückstreu-oder Sekundärelektronen das Reaktionsgas aktivieren, so dass sich Komponenten des Reakti- onsgases an dem ausgewählten Ort oder in dessen naher Umge- bung ablagern, wodurch die gewünschte Materialabscheidung im Bereich des ausgewählten Ortes erfolgt.

Der Materialabtrag erfolgt auf ähnliche Weise, wobei aller- dings ein anderes Reaktionsgas zugeführt wird, welches durch die Primärelektronen oder die daraus entstehenden Rückstreu- oder Sekundärelektronen derart aktiviert wird, dass es an dem ausgewählten Ort oder dessen naher Umgebung mit dem Material des Werkstücks reagiert und Komponenten desselben in eine gas-oder dampfförmige Verbindung überführt, so dass sich diese von dem Werkstück entfernen und schließlich der ge-

wünschte Materialabtrag im Bereich des ausgewählten Ortes entsteht.

Hierzu ist das Werkstück 3 auf einer Werkstückhalterung 5 fest angebracht. Werkstückhalterung 5 und Werkstück 3 sind in einer Bearbeitungskammer 7 angeordnet, welche mittels einer Turbomolekularpumpe 9 und einer in Figur 1 nicht darge- stellten Vorpumpe evakuierbar ist.

Eine räumliche Position der Werkstückhalterung 5 relativ zur Bearbeitungskammer ist mittels in Figur 1 nicht dargestellten Antrieben in den drei Raumrichtungen x, y, z verlagerbar.

Mehrere Laserinterferometer 11 sind vorgesehen, um die Posi- tion der Werkstückhalterung 5 relativ zur Bearbeitungskammer 7 zu erfassen.

An einen Vakuummantel 13 der Bearbeitungskammer 7 ist ein Elektronenmikroskop 15 derart angebracht, dass sich dessen optische Achse 17 in z-Richtung erstreckt und eine Objekt- ebene 19 des Elektronenmikroskops 15 innerhalb der Bearbei- tungskammer 7 legt. Die Werkstückhalterung 5 ist innerhalb der Bearbeitungskammer 7 derart positioniert, dass eine Ober- fläche 21 des Werkstücks 3 im wesentlichen in der Objektebene 19 des Elektronenmikroskops 15 angeordnet ist.

Das Elektronenmikroskop 15 umfasst eine elektronen- emittierende Elektronenquelle 23 und eine als Kondensor wirkende Magnetwicklung 25, um aus den emittierten Elektronen einen Elektronenstrahl zu formen, der entlang der Achse 17 nach unten gerichtet ist. Eine Objektivlinse 27 des Elektronenmikroskops 15 umfasst einen oberen Polschuh 29 und einen unteren Polschuh 31, zwischen denen eine Wicklung 32 vorgesehen ist und die zur Achse 17 hin einen Polschuhspalt definieren. Die Objektivlinse 27 fokussiert den Elektronen- strahl in der Objektebene 19.

Ferner sind Ablenkwicklungen 35 vorgesehen, um den Elektro- nenstrahl aus der optischen Achse 17 des Elektronenmikroskops 15 in x-und y-Richtung auszulenken. Ein Strom durch die Ab- lenkwicklungen 35 und damit die Auslenkung des Elektronen- strahls in x-und y-Richtung wird mittels eine Steuerung 37 eingestellt.

Zwischen der Objektivlinse 27 und der Objektebene 19 ist innerhalb der Bearbeitungskammer 7 ein Sekundärelektronende- tektor 39 angeordnet, dessen Detektionssignal von der Steue- rung 37 ausgelesen wird. Zur Aufnahme eines elektronenmikro- skopischen Bildes des Werkstücks 3 in einem in der Objekt- ebene 19 um die Achse 17 gelagerten Bereich steuert die Steuerung 37 die Ablenkwicklungen 35 derart an, dass der Elektronenstrahl diesen Bereich systematisch abtastet, und die von dem Detektor 39 in Abhängigkeit von der Auslenkung registrierten Intensitäten werden von der Steuerung 37 für eine Weiterverarbeitung gespeichert oder an einem Sichtgerät ausgegeben.

Ein weiterer Sekundärelektronendetektor 41, der ebenfalls von der Steuerung 37 ausgelesen wird, ist innerhalb des Elektro- nenmikroskops 15 konzentrisch um dessen Achse 19 angeordnet.

Dieser ist innerhalb eines zur Achse 17 symmetrischen und nach unten konisch sich verjüngenden Strahlrohrs 43 angeord- net, welches zur Objektebene 19 hin in einem sich radial von der Achse wegerstreckenden Kragen 45 auf der Höhe des Endes des unteren Polschuhs 31 endet. Zwischen dem Kragen 45 und der Objektebene 19 ist eine Blende 47 mit einer Bohrung 49 von 5 mm Durchmesser angeordnet. Es sind durch die Steuerung 37 ansteuerbare und in Figur 1 nicht dargestellte Spannungs- quellen vorgesehen, um das Strahlrohr 43 und die Blende 47 auf einstellbare elektrische Potentiale zu legen. In einem Betriebsmodus des Systems 1, bei dem in der Bearbeitungskam- mer 7 relativ gute Vakuumbedingungen mit einem Gasdruck von kleiner 10-3 mbar herrschen, liegt das Strahlrohr 43 auf

einem Potential von 8 kV und die Blende 47 auf Erdpotential.

Damit entsteht zwischen dem Kragen 45 und der Blende 47 ein elektrisches Feld, welches zum einen verzögernd und fokus- sierend auf die Primärelektronen des Elektronenstrahls wirkt und zum anderen Sekundärelektronen, die aus dem Werkstück 3 austreten und sich in einem die Achse 17 umschließenden Raumwinkelbereich bewegen, beschleunigt, so dass sich diese mit erhöhter kinetischer Energie entlang der Achse 17 nach oben bewegen und den Sekundärelektronendetektor 41 treffen und von diesem registriert werden.

In diesem Betriebsmodus ist es vorteilhaft, den Detektor 41 zur Aufnahme der elektronenmikroskopischen Bilder des Werk- stücks 3 einzusetzen und den anderen Sekundärelektronendetek- tor 39 ausser Betrieb zu nehmen, da dann ein für den Betrieb des Detektors 39 notwendiges elektrostatisches Beschleuni- gungsfeld die Fokussierung der Primärelektronen auf das Werk- stück 3 nicht stört.

Ferner kann der in der Bearbeitungskammer 39 angeordnete Sekundärelektronendetektor an einer für den Betrieb desselben nicht optimalen Stelle in der Bearbeitungskammer angeordnet sein, was es allerdings ermöglicht, einen vergleichsweise ge- ringen Abstand zwischen der Blende 47 und der Objektebene 19 vorzusehen. Dies wiederum ermöglicht eine besonders feine Fo- kussierung des Elektronenstrahls in der Objektebene 19 und damit eine besonders hohe Ortsauflösung des Elektronenmikro- skops 15.

In Ergänzung zu den Elektronendetektoren 39 und 41 ist ein energieauflösender Photonendetektor 51 in der Bearbeitungs- kammer angeordnet, welcher Röntgenstrahlung energieaufgelöst registriert, welche aus dem Werkstück 3 im Bereich der Achse 17 austritt. Durch Auswerten der Energiespektren der durch die Primärelektronen in dem Werkstück 3 induzierten Röntgen- strahlung ist es möglich, Aussagen über die Materialzusammen-

setzung des Werkstücks 3 an dem Ort zu treffen, auf den der Elektronenstrahl gerade fokussiert ist.

An dem Vakuummantel 13 der Verarbeitungskammer 7 ist neben dem Elektronenmikroskop 15 noch eine Gaszuführungsanordnung 53 angeflanscht. Diese umfasst mehrere Gaszuführungen 55, welche jeweils eine Kanüle 57 aufweisen, um ein Reaktionsgas in die Bearbeitungskammer zu dem Werkstück 3 hin zu leiten, wozu Austrittsenden 59 der Kanülen 57 etwa 0,5 mm oberhalb der Objektebene 19 und 1 bis 2 mm entfernt von der Achse 17 angeordnet sind.

Die Gaszuführungsanordnung 53 ist in den Figuren 2 bis 4 im Detail dargestellt und umfasst vier symmetrisch um eine Achse 58 angeordnete Gaszuführungen 55, von denen zwei in Figur 2 sichtbar sind.

Die Kanülen 57 haben einen Innendurchmesser von 0,7 mm bis 1,5 mm und einen entsprechenden Aussendurchmesser von 1,0 mm bis 1,8 mm. Ein zu dem in der Nähe der Achse 17 des Elektro- nenmikroskops 15 angeordneten Austrittsende 59 entgegenge- setztes Eintrittsende 61 der Kanüle 57 ist in einer Stirnwand 63 eines runden Rohrs 65 aufgenommen, welches einen Innen- durchmesser von 4 mm aufweist. Im Inneren des Rohres 65 ist ein kreisringförmiger Dichtungsring 71 vorgesehen, welcher sowohl an einer Innenwand 69 des Rohrs 65 als auch an einer Innenfläche 73 der Stirnwand 63 des Rohrs anliegt.

Der Dichtungsring 71 ist Teil eines Ventils 72, welches einen Gasfluss vom Inneren des Rohres 65 in die Kanüle 57 wahlweise versperrt und freigibt. In einer den Gasfluss versperrenden Stellung des Ventils 72 ist ein Ventilkörper 75 mit seiner Stirnfläche gegen den Dichtring 71 gedrückt, wobei eine Be- rührungsfläche zwischen Dichtring 71 und der Stirnseite des Ventilkörpers 75 in Figur 4 mit einer gestrichelten Linie 76 angedeutet ist.

In der den Gasfluss freigebenden Stellung des Ventils 72 ist der Ventilkörper 75 mit Abstand von dem Dichtring 71 angeord- net, wie dies in Figur 3 mit gestrichelten Linien dargestellt ist.

Aus Figur 4 ist ersichtlich, dass der Ventilkörper 75 einen quadratischen Querschnitt mit abgerundeten Ecken aufweist, so dass der Ventilkörper mit seinen abgerundeten Ecken an dem Innenmantel 69 des Rohrs 65 geführt ist, während zwischen einem jeden Paar von abgerundeten Ecken ein Bereich des Ven- tilkörpers 75 einen vergrößerten Abstand von dem Innenmantel 69 des Rohrs 65 aufweist, um vier Durchtrittsquerschnitte 79 bereitzustellen, durch welche das Reaktionsgas den Ventilkör- per 75 im Inneren des Rohrs 65 umfließen und dann in der von dem Dichtring 71 entfernten Stellung des Ventilkörpers 75 in die Kanüle 57 eintreten kann.

Das Ventil 72 wird durch eine Stange 81 betätigt, welche sich koaxial zu dem Rohr 65 erstreckt und an deren einem Ende der Ventilkörper 75 festgemacht ist und an deren anderem Ende ein Kolben 83 festgemacht ist, welcher innerhalb eines Pneuma- tikzylinders 85 verschiebbar gelagert ist.

Der Pneumatikzylinder 85 weist zwei Druckluftanschlüsse 87 auf, an welche wahlweise Druckluft angelegt wird, um den Ventilkörper 75 entweder gegen die Dichtung 71 zu drücken und damit den Gasfluss in die Kanüle zu versperren oder diesen von der Dichtung 71 zu entfernen und damit den Gasfluss in die Kanüle freizugeben. Das Reaktionsgas wird hierbei über einen Anschluss 89, der über ein T-Stück in das Rohr 65 ein- gefügt ist, dem Inneren des Rohrs 65 zugeführt.

Ein Flansch 91 zur Verbindung mit dem Vakuummantel 13 der Be- arbeitungskammer 7 umschließt die Rohre 65 der vier Gaszu- führungen 55. Mit diesem Flansch 91 ist ein Ende eines Fal-

tenbalgs 93 vakuumdicht verbunden, dessen anderes Ende mit einem Flansch 95 vakuumdicht verbunden ist, welchen die Rohre 65 einzeln und vakuumdicht durchsetzen, wobei die Rohre 65 mit diesem Flansch 95 auch mechanisch fest verbunden sind.

Zwischen den Flanschen 91 und 95 erstrecken sich parallel zu dem Faltenbalg 93 mehrere Gewindestangen 97, an denen die Flansche 91 und 95 mittels Muttern 99 fixiert sind. Durch Verdrehen der Muttern 99 lassen sich die Abstände zwischen den Flanschen 91 und 95 ändern und damit die Positionen der Austrittsenden 95 der Kanülen 57 relativ zu der Objektebene 19 und der Achse 17 des Elektronenmikroskops 15 justieren, wenn die Gaszuführungsanordnung 53 an dem Vakuummantel 13 der Bearbeitungskammer 7 festgemacht ist.

Die Gewindestangen 97 tragen weiterhin eine Platte 101, an welcher die Druckluftzylinder 85 zur Betätigung der Ventile 72 festgelegt sind. Die Rohre 65 gehen an ihren von der Ka- nüle 57 entfernten Enden jeweils in einen Faltenbalg 103 über, welcher durch eine Platte 105 vakuumdicht abgeschlossen ist. An der Platte 105 ist die Stange 81 zur Verschiebung des Ventilkörpers 75 festgemacht. Die Platte 105 wiederum ist mit dem Kolben 83 in dem Druckluftzylinder 85 über eine Stange 106 gekoppelt. Somit wird durch Betätigen des Druckluftzylin- ders 85 der Faltenbalg gedehnt bzw. zusammengedrückt, was wiederum zu einer Verlagerung des Ventilkörpers 75 in dem Rohr 65 und somit zur Betätigung des Ventils 72 führt.

Wenn das Ventil 72 zu einem bestimmten Zeitpunkt von seinem geöffneten Zustand in seinen den Gasfluss versperrenden Zu- stand überführt wird, so ist es wünschenswert, dass ab diesem Zeitpunkt im wesentlichen kein Reaktionsgas mehr aus dem Aus- trittsende 59 der Kanüle 57 austritt. Allerdings ist zum Zeitpunkt des vollständigen Verschliessens des Ventils 72 in dem Raum zwischen dem Ventilkörper 75 und dem Austrittsende 59 der Kanüle 57 noch ein Rest an Reaktionsgas vorhanden, der nachfolgend noch aus dem Austrittsende 59 der Kanüle 57 aus-

treten wird und damit zu einer weiteren Reaktion mit dem Werkstück 3 führen kann.

Jedoch ist vorgesehen, dass das Volumen des zwischen dem Ven- tilkörper 75 und dem Austrittsende 59 gebildeten Gasraumes vergleichsweise klein ist. Hierbei ist anzumerken, dass ein gewisses Volumen dieses Raumes nicht zu vermeiden ist, da ja das Reaktionsgas mittels der Kanüle 57 zu dem Reaktionsort nahe des Werkstücks 3 geführt wird. Die Kanüle 57 muss einen bestimmten Gasleitwert und damit einen bestimmten Querschnitt mindestens aufweisen, um einen gewünschten Gasstrom hin zu dem Werkstück 3 zu ermöglichen. Hierbei ist es allerdings möglich, dass der Querschnitt der Kanüle 57 kleiner ist als ein Mindestquerschnitt des Ventils 72, wodurch der Vorteil entsteht, dass in der Nähe des Bearbeitungsortes keine groß- volumigen Komponenten wie etwa der Ventilkörper 75 anzuordnen sind.

Das Ventil 72 und dessen Übergang in die Kanüle 57 sind nun so ausgelegt, dass im geschlossenen Zustand des Ventils 72 der Gasraum zwischen dem Ventilkörper 75 und dem Aus- trittsende 59 der Kanüle 57 nicht wesentlich größer ist als das Volumen der Kanüle 57 selbst. Unter Bezugnahme auf Figur 3 setzt sich das Volumen dieses Gasraumes zusammen aus dem Volumen der Kanüle 57 und einem Volumen, das axial einerseits durch die Innenfläche 73 der Stirnwand 63 des Rohrs 65 und andererseits durch die der Kanüle zuweisende Stirnfläche des Ventilkörpers 75 begrenzt ist und welches radial durch den Dichtring 71 begrenzt ist. Der kleine Radius des Dichtrings 71 beträgt etwa 0,5 mm und der Innenradius des Dichtrings 71 beträgt etwa 1,0 mm. Damit hat das Volumen zwischen dem Ventilkörper 75 und der Stirnwand 73 einen Wert von etwa 1,5 mm3. Die Kanüle hat bei einem Innendurchmesser von 1,0 mm und einer Länge von 50 mm ein Volumen von etwa 40 mm3. Ins- gesamt hat das Volumen zwischen dem Austrittsende der Kanüle 59 und der Stirnfläche des Ventilkörpers 75 in der ge-

schlossenen Stellung des Ventils 72 somit ein Volumen von 41,5 mm3. Die in Figur 3 eingetragene Länge 1 ist die Summe aus der Länge der Kanüle und dem kleinen Durchmesser des Dichtrings 71 und beträgt somit etwa 51 mm.

Ein Wert c eines Verhältnisses aus Volumen des Gasraumes ge- teilt durch Querschnitt der kanüle 57 an ihrem Austrittsende <BR> <BR> V<BR> 59 mal Länge 1 (c= ) hat somit einen Wert von etwa 1,05.<BR> <BR> <BR> <BR> <P>A#l Dies bedeutet, dass bei der in Figur 3 gezeigten Realisierung des Ventils 72 und dessen Übergang in die Kanüle 57 das Volumen des Gasraums zwischen Austrittsende der Kanüle 59 und Ventilkörper 75 in seiner den Gasfluss versperrenden Stellung lediglich 1,05 mal größer ist als das durch die Kanüle 57 selbst vorgegebene Volumen. Damit ist eine Zeitdauer, während der nach Schließen des Ventils noch Reaktionsgas in einer nennenswerten Menge aus dem Austrittsende 59 der Kanüle aus- tritt, nahezu minimal.

Die Bereitstellung der Reaktionsgase wird nachfolgend unter Bezugnahme auf Figur 2 weiter erläutert.

Der mit dem Inneren des Rohres 65 in Verbindung stehende Stutzen 89 ist über einen Schlauch 110 mit einem Reservoir 111 verbunden, in dem ein Ausgangsmaterial 113 des Reaktions- gases aufgenommen ist. Einer jeden Gaszuführung 55 ist ein separates Reservoir 111 mit entsprechendem darin enthaltenem Ausgangsmaterial 113 zugeordnet. Das Ausgangsmaterial 113 liegt in dem Reservoir 111 in fester oder flüssiger Form vor.

Das Reaktionsgas entsteht durch Verdunstung, Verdampfung bzw.

Sublimation des Ausgangsmaterials. Bei geschlossenem Ventil 72 bildet sich in dem zusammenhängenden Gasraum von Reservoir 111 bis Ventil 72 ein Partialdruck an Reaktionsgas aus, der im wesentlichen gleich dem Dampfdruck des Ausgangsmaterials 113 ist. Wird nun das Ventil 72 geöffnet, entsteht eine Strömung des Reaktionsgases, so dass dieses bei dem Aus-

trittsende 59 aus der Kanüle 57 austritt. Dieser Gasfluss wird im wesentlichen durch den Gasleitwert 57 der Kanüle limitiert, da der Querschnitt der Kanüle 57 wesentlich ge- ringer ist als Querschnitte der übrigen Komponenten des Gas- leitungssystems, wie etwa der Querschnitt des Rohrs 65, der Querschnitt des Stutzens 89 oder des Schlauches 110.

Der Gasleitwert L [1/sec] einer Röhre mit Durchmesser d [cm] und Länge 1 [cm] lässt sich unter den angestrebten Betriebs- <BR> <BR> 12d<BR> <BR> bedingungen abschätzen zu L=---. Damit beträgt der Gas- leitwert der Kanüle in etwa 2-10-2 1/sec. Wird für den Gas- druck des Ausgangsmaterials 113 ein Wert von 0,1 mbar an- genommen, so ergibt sich für den Gasstrom Q durch die Kanüle in die Bearbeitungskammer 7 ein Wert von 10-3 mbarl/sec. Wird für das effektive Saugvermögen Seff der die Bearbeitungskammer 7 evakuierenden Turbomolekularpumpe 9 ein Wert von 100 1/sec angenommen, so wird sich in der Bearbeitungskammer 7 ein Endvakuum bzw. ein Partialdruck des Reaktionsgases <BR> <BR> Pend =--=10mbareinstellen.<BR> <BR> <BR> <P> Seff In der unmittelbaren Umgebung des Austrittsendes 59 der Ka- nüle 57 wird die Dichte des Reaktionsgases allerdings wesent- lich höher sein als in weiteren von dem Austrittsende 59 ent- fernten Bereichen der Bearbeitungskammer. Deshalb ist das Austrittsende 59 mit einem lediglich geringen Abstand von dem zu bearbeitenden Ort des Werkstücks 3 angeordnet, und der auf das Werkstück 3 gerichtete Elektronenstrahl kann dann das Reaktionsgas zu einer effektiven Reaktion mit dem Werkstück anregen.

Um diese Reaktion möglichst präzise zu steuern, ist es somit notwendig, auch die Menge des aus der Kanüle 57 austretenden Reaktionsgases möglichst präzise einzustellen.

Es hat sich gezeigt, dass herkömmliche Lösungen, die zur Ein- stellung des Gasflusses Dosierventile, wie etwa Nadelventile, einsetzen, nicht zufriedenstellend arbeiten, da ein Dosier- verhalten des Nadelventils sich zeitlich ändert und dadurch die auszuführende Materialbearbeitung an dem Werkstück eine nicht zufriedenstellende Reproduzierbarkeit aufweist. Ent- sprechend ist in der hier gezeigten Ausführungsform als Ven- til 72 nicht ein Dosierventil sondern ein Zweistellungsventil eingesetzt, welches von einer den Gasfluss im wesentlichen versperrenden Stellung in eine den Gasfluss im wesentlichen vollständig freigebenden Stellung überführbar ist. Zwar be- wegt sich der Ventilkörper hierbei kurzzeitig durch Zwischen- stellungen, die den Gasfluss mehr oder weniger freigeben, allerdings ist das Ventil nicht dazu ausgelegt, einen Gas- fluss fein zu dosieren.

In der völlig geöffneten Stellung des Ventils 72 ist der Gasstrom durch die Kanüle 57 somit im wesentlichen durch den Gasleitwert der Kanüle und den Dampfdruck des Ausgangsmate- rials 113 gegeben. Bei gegebener Geometrie der Kanüle 57 liegt auch deren Gasleitwert fest, so dass der Gasdruck des Ausgangsmaterials 113 geändert werden muss, um den Gasstrom durch die Kanüle 57 zu ändern. Hierzu ist an dem Reservoir 111 eine Temperiervorrichtung 115 vorgesehen, wozu an dem Re- servoir 111 mehrere Windungen 117 eines Flüssigkeitskreis- laufes angebracht sind, welcher von einer Wärme/Kältemaschine 119 getrieben ist. Die Wärme/Kältemaschine 119 stellt die Temperatur der den Flüssigkeitskreislauf durchströmenden Flüssigkeit auf einen Wert ein, der von einer Steuerung 121 vorgegeben wird. Die Steuerung 121 liest weiter ein Signal eines Drucksensors 123 aus, welcher den Gasdruck innerhalb des Reservoirs 111 misst. Da dieser Gasdruck im wesentlichen durch den Dampfdruck des Ausgangsmaterials 113 gegeben ist, wird die Steuerung 121 der Wärme/Kältemaschine 119 eine hö- here Temperatur als eine momentane Temperatur vorgeben, um die Temperatur des Ausgangsmaterials 113 zu erhöhen, wenn der

von dem Sensor 123 gemessene Druck geringer ist als ein gewünschter Dampfdruck des Ausgangsmaterials 113. Umgekehrt wird die Steuerung 121 der Wärme/Kältemaschine 119 eine ge- ringere Temperatur vorgeben, wenn der von dem Sensor gemes- sene Druck größer ist als der gewünschte Dampfdruck.

Der Gasleitwert der Kanüle 57 ist hierbei auf das zu verwen- dende Ausgangsmaterial 113 derart abgestimmt, dass zur Ein- stellung des gewünschten Dampfdrucks die Temperatur des Aus- gangsmaterials 113 niedriger einzustellen ist als die Be- triebstemperatur der Vorrichtung bzw. die Raumtemperatur.

Zwar ist es möglich, mit der Wärme/Kältemaschine 119 die Temperatur des Ausgangsmaterials 113 auch höher einzustellen als die Betriebs-bzw. Raumtemperatur. Es besteht dann aller- dings die Möglichkeit, dass sich das in dem erwärmten Reser- voir 111 von der Oberfläche des Ausgangsmaterials 113 abdamp- fende bzw. sublimierende Reaktionsgas an im Vergleich hierzu kälteren Wandungen der Gaszuführung 55 niederschlägt. Insbe- sondere im Inneren der Kanüle 57, welche einen definierten Gasleitwert bereitstellen soll, wird ein solcher Niederschlag an Reaktionsgas zu einer Reduzierung des Gasleitwerts und da- mit zu einer schlechten Reproduzierbarkeit der Ergebnisse führen. Ist allerdings, wie vorangehend beschrieben, die Temperatur des Ausgangsmaterials 113 in dem Reservoir 111 niedriger als die Temperatur der übrigen Wandungen der Gaszu- führung 55, so ist eine solche Abscheidung des Reaktionsgases an den Wandungen der Gaszuführung 55 im wesentlichen vermie- den.

Die in Figur 2 gezeigte Gaszuführungsanordnung 53 ist dazu ausgelegt, zwei Reaktionsgase auszustoßen, welche durch den Elektronenstrahl zu einer solchen Reaktion miteinander ange- regt werden, dass sich Platin-Kohlenstoff-Verbundwerkstoff an dem Werkstück 3 in dem Bereich abscheidet, auf den der Elektronenstrahl gerichtet ist. Hierzu ist in dem in Figur 2 linken Reservoir 111 Wasserstoffperoxid als Feststoff bei

einer Temperatur von minus 40 °C enthalten. Bei dieser Temperatur beträgt der Dampfdruck von Wasserstoffperoxid 0, 05 mbar. Das Wasserstoffperoxid wird durch die in Figur 2 obere Kanüle 57 zum Bearbeitungsort hin ausgestoßen. Diese Kanüle 57 weist einen Innendurchmesser von 0,8 mm und eine Länge von 50 mm auf, womit ihr Gasleitwert 1, 6-10-3 1/sec be- trägt. Damit strömt bei geöffnetem Ventil 72 Wasserstoff- peroxid in einer solchen Menge aus dem Austrittsende 59 aus, dass sich auf dem Werkstück etwa 52 Monolagen Wasserstoff- peroxid pro Sekunde abscheiden können.

Das in Figur 2 rechte Reservoir enthält Cyclopentadienyl- Trimethyl-Platin bei einer Temperatur von 20 Grad Celsius, bei der dessen Dampfdruck 0, 05 mbar beträgt. Die in Figur 2 untere Kanüle 57, durch die dieses Gas zum Bearbeitungsort strömt, weist einen Innendurchmesser von 1, 4 mm und ebenfalls eine Länge von 5 mm auf, so dass deren Leitwert 1, 6-10-3 1/sec beträgt. Unter diesen Bedingungen strömt das Gas Cyclopenta- dienyl-Trimethyl-Platin in einer solchen Menge aus der Kanüle aus, dass sich auf dem Werkstück eine Abscheidung von etwa 276 Monolagen pro Sekunde ergeben würde.

Bei aus der Gaszuführungsanordnung 53 ausströmenden Reak- tionsgasen stellt sich innerhalb der Bearbeitungskammer ein Gasdruck ein, der zu groß ist, um darin die Elektronenquelle 23 zu betreiben. Deshalb ist innerhalb des Strahlrohres 43 (vergleiche Figur 1) eine Druckblende 121 angeordnet, welche einen von dem Elektronenstrahl durchsetzten Innendurchmesser von 1 mm aufweist. Die Druckblende 121 separiert den Vakuum- raum des Materialbearbeitungssystems 1 in einen unterhalb der Druckblende 121 angeordneten und die Bearbeitungskammer 7 umfassenden Vakuumraum und einen oberhalb der Druckblende 121 angeordneten Zwischen-Vakuumraum. Der oberhalb der Druck- blende 121 angeordnete Vakuumraum ist weiter unterteilt in Teilvakuumräume 125 und 127, welche separat gepumpt sind. Der Zwischen-Vakuumraum 123 ist durch eine separate

Turbomolekularpumpe 129 gepumpt und nach unten begrenzt durch die Druckblende 121 sowie nach oben durch eine Druckblende 131 mit einem Innendurchmesser von 500 ym.

Der Vakuumraum 125 wird durch eine Ionen-Getter-Pumpe 133 ge- pumpt und ist nach unten durch die Druckblende 131 begrenzt sowie nach oben durch eine weitere Druckblende 135 mit einem Innendurchmesser von 80 ym. Der oberhalb der Druckblende 135 liegende Vakuumraum 127 wird durch eine weitere Ionen-Getter- Pumpe 137 evakuiert und enthält die Elektronenquelle 23 selbst.

Ein durch einen Antrieb 141 betätigter Verschluss 139 ist vorgesehen, um die Druckblende 131 vollständig zu verschlie- ßen. Der Antrieb 141 wird von der Steuerung 37 angesteuert und zwar derart, dass der Verschluss 139 nur dann geöffnet wird, wenn ein von der Steuerung 37 ausgelesener Drucksensor 143 in dem Teilraum 123 einen Druck registriert, der geringer ist als 10-3 mbar.

Dichtungen 145 sind vorgesehen, um die Polschuhe 29 und 31 gegenüber dem Strahlrohr 43 abzudichten, so dass die Wicklung 32 zur Objektivlinse 27 nicht im Vakuum angeordnet sein muss.

Durch die Separierung des Vakuumraums der Bearbeitungskammer 7 von dem die Elektronenquelle 23 umfassenden Vakuumraum, welcher wiederum in Teilräume 123,125, 127 unterteilt ist, ist es möglich, das Elektronenmikroskop auch dann zu betrei- ben, wenn Reaktionsgas in die Bearbeitungskammer 7 geleitet wird. Es ist somit möglich, durch das Elektronenmikroskop 15 einen auf das Werkstück 3 fein fokussierten Elektronenstrahl bereitzustellen, um das Reaktionsgas zur Reaktion mit dem Werkstück 3 an ausgewählten Orten anzuregen.

Ferner ist es möglich, mit dem Elektronenmikroskop 15 elek- tronenmikroskopische Bilder des Werkstücks 3 aufzunehmen und

dadurch den Fortgang der Bearbeitung des Werkstücks zu über- prüfen. Die elektronenmikroskopischen Bilder können jeden- falls dann aufgenommen werden, wenn gerade Reaktionsgas nicht in die Nähe des Bearbeitungsortes geführt wird, wobei dann besonders gute Vakuumbedingungen in der Bearbeitungskammer 7 herrschen. Es ist jedoch auch möglich, elektronenmikroskopi- sche Bilder aufzunehmen, wenn Reaktionsgas aus den Kanülen 59 ausströmt. Man wird dann allerdings die elektronenmikroskopi- schen Bilder mit geringer Intensität des Elektronenstrahls oder mit geringer räumlicher Auflösung aufnehmen, um nicht unnötig Reaktionen des Reaktionsgases mit dem Werkstück aus- zulösen.

Bei manchen Bearbeitungsbedingungen ist es wünschenswert, in der Bearbeitungskammer einen hohen Gasdruck bereitzustellen, um unerwünschte lokale elektrostatische Aufladungen des Werk- stücks 3 zu vermeiden. Die Steuerung 37 schaltet dann das Materialbearbeitungssystem in einen Betriebsmodus um, in dem die die Bearbeitungskammer 7 evakuierende Turbomolekularpumpe 9 ausser Betrieb gesetzt ist. Es wird die Bearbeitungskammer 7 dann lediglich durch eine in der Figur 1 nicht dargestellte Vorpumpe der Turbomolekularpumpe 9 evakuiert, wobei der Gas- druck in der Bearbeitungskammer auf etwa 1 mbar steigen kann.

Nachfolgend werden Varianten der vorangehend anhand der Figu- ren 1 bis 4 erläuterten Ausführungsform dargestellt. Hierbei sind hinsichtlich ihres Aufbaus und ihrer Funktion einander entsprechende Komponenten mit den gleichen Bezugsziffern wie in den Figuren 1 bis 4, zur Unterscheidung jedoch mit einem zusätzlichen Buchstaben versehen. Es wird hierbei auf die ge- samte vorangehende Beschreibung Bezug genommen.

Ein in Figur 5 gezeigtes Materialbearbeitungssystem la um- fasst wiederum eine Bearbeitungskammer 7a, in der ein Werk- stück 3a auf einer Werkstückhalterung 5a derart angeordnet

ist, dass eine Oberfläche 21a des Werkstücks 3a in einer Ob- jektebene eines Elektronenmikroskops 15a liegt.

Ferner ist eine Gaszuführungsanordnung 53a vorgesehen, um mehrere Reaktionsgase nahe einem Bearbeitungsort auszustoßen, welcher in einem Bereich um eine Hauptachse 17a des Elektro- nenmikroskops 15a liegt.

Das Elektronenmikroskop 15a umfasst ebenfalls ein sich nach unten konisch verjüngendes Strahlrohr 43a, welches zum Werk- stück 3a hin in einem sich radial erstreckenden Kragen 45a endet. Zwischen dem Kragen 45a und dem Werkstück 3a ist wie- derum eine Elektrodenblende 47a angeordnet, welche jedoch im Unterschied zu der vorangehend erläuterten Ausführungsform auch als Druckblende zur Separierung von Vakuumräumen dient.

Hierzu weist die Elektrodenblende 47a einen Innendurchmesser von 200 gm auf. Dieser geringe Blendendurchmesser beschränkt zwar das Bildfeld des Elektronenmikroskops, es ergeben sich hierdurch allerdings andere Vorteile.

Die Blendenelektrode 47a erstreckt sich parallel zu der Ober- fläche des Werkstücks 3a mit einem Abstand d von 300 ym. Die Blendenelektrode 47a trägt ferner einen sich mit Abstand um die Hauptachse 17a des Elektronenmikroskops 15a ringförmig erstreckenden Vorsprung 141, der eine zu der Oberfläche des Werkstücks 3a und damit zu der Objektebene 19a hinweisende Planfläche 143 aufweist. Zwischen der Planfläche 143 und der Probenoberfläche bzw. Objektebene 19a besteht ein Abstand d2 von 75 ym. Damit ist zwischen der Blendenelektrode 47a und dem Werkstück ein Vakuumteilraum 143 gebildet, in welchem Kanülen 57a der Gaszuführungsanordnung 53a enden. Hierzu durchsetzen die Kanülen 57a die Blendenelektrode 47a von oben. Der Vakuumteilraum 143 ist gegenüber dem übrigen Vaku- umraum der Bearbeitungskammer 7a durch den Vorsprung 141 ab- gedichtet, wobei allerdings durch den Spalt d2 zwischen der Planfläche 143 und der Oberfläche des Werkstücks 3a eine ge-

wisse Leckrate bereitgestellt ist, wie dies durch Pfeile 147 in Figur 6 angedeutet ist.

Durch die Separierung des Vakuumteilraums 143 ist es möglich, zur Bearbeitung des Werkstücks 3a besonders hohe Par- tialdrücke an Reaktionsgasen bereitzustellen und hierdurch hohe Reaktionsraten zu erzielen. Da der Teilraum 143 im Ver- gleich zu der Bearbeitungskammer 7a klein ist, ermöglicht dies gleichzeitig einen sparsamen Umgang mit den Reaktionsga- sen.

In Figur 7 ist eine Variante der in den Figuren 5 und 6 ge- zeigten Ausführungsform schematisch dargestellt. Hierbei trägt eine Blendenelektrode 47b an ihrem zu der Objektebene hin axial vorstehenden Vorsprung 141b einen Dichtring 151 aus dem Material"Viton"oder einem anderen geeigneten Elasto- mermaterial, welcher zur Anlage an dem Werkstück ausgelegt ist. Das Material des Dichtrings 151 ist derart gewählt, dass eine Verlagerung des Werkstücks 3a relativ zu der Blendene- lektrode 47b das Werkstück 3b nicht beschädigt.

Der Teilraum 143 kann evakuiert werden, indem die Werkstück- halterung samt dem darauf montierten Werkstück 3b abgesenkt wird, so dass zwischen dem Dichtring 151 und der Oberfläche 21b des Werkstücks 3b ein ausreichender Abstand bereit- gestellt ist, um ein Ausströmen des Gases in dem Teilraum 143 zu ermöglichen. Alternativ hierzu ist es auch möglich, an der Blendenelektrode 47b einen Saugstutzen 171 anzubringen, der sich von der Blendenelektrode 47 in Richtung von der Ob- jektebene 19b weg erstreckt und durch ein schaltbares Ventil 173 verschlossen ist, welches in geöffnetem Zustand den Teil- raum 143 mit dem Vakuumraum der Bearbeitungskammer verbindet und in seinem geschlossenen Zustand diese beiden Vakuumräume voneinander separiert.

Figur 8 zeigt eine Variante eines Ventils einer Gaszufüh- rungsanordnung. Im Unterschied zu dem in Figur 3 gezeigten Ventil dichtet ein Ventilkörper 75c eines in Figur 8 gezeig- ten Ventils 72c unmittelbar gegen ein Eintrittsende 61c einer Kanüle 57c ab. Hierzu ist der aus einem Elastomermaterial ge- fertigte Ventilkörper 75c in eine Halterung 161 eingebettet, welche mit einer Stange 81c zur Betätigung des Ventils 72c verbunden ist. Die Kanüle 57c steht mit ihrem Eintrittsende 61c durch eine Stirnwand 63c eines Rohres 65c ins Innere des Rohres 65c vor, so dass eine Stirnseite des Eintrittsendes 61c der Kanüle 57c in direktem Kontakt mit dem Ventilkörper 75c kommen kann, um einen Gasfluss aus dem Inneren des Rohres 65c in die Kanüle 57c zu verschließen.

V Bei dieser Ausführung des Ventils 72c weist eine Größe c= A A. 1 einen Wert von 1,0 auf, wobei A ein Innenquerschnitt der Kanüle 57c, 1 ein Abstand zwischen dem Ventilkörper 75c und dem Austrittsende 59c der Kanüle 57c und V ein Volumen zwischen dem Austrittsende 59c und dem Ventilkörper 75c ist. Es ist mit dieser Ausführungsform ein nach dem Ver- schließen des Ventils 72c zu entleerendes Restgasvolumen auf ein Minimum reduziert, so dass eine Reaktion des Reaktionsga- ses mit dem Werkstück nach Verschließen des Ventils 72c wei- testgehend reduziert ist.

Figur 9 zeigt eine Variante der in Figur 2 dargestellten Gas- versorgungsanordnung, wobei hier die Gaszuführung in das Rohr, an dem die Kanüle gehalten ist, abgewandelt ist.

Bei einer in Figur 9 gezeigten Gaszuführungsanordnung 53c wird das zuzuführende Reaktionsgas über einen Stutzen 89c einem Rohr 65c zugeführt, in welchem eine Stange 81c zur Be- tätigung eines in Figur 9 nicht gezeigten Ventilkörpers ge- halten ist. Das Rohr 65c durchsetzt einen Flansch 95c und ist an diesem mechanisch festgehalten.

Ein Ende des Rohres 65 ist mit einem Faltenbalg 103c vakuum- dicht verbunden, und dieser schließt über ein Rohrzwischen- stück 181 vakuumdicht an einen Querträger 183 an, wobei die Verbindung zwischen dem Rohrzwischenstück 181 und dem Quer- träger 183 beispielsweise durch Schweißen erfolgen kann. An dem Querträger 183 ist innerhalb des Rohres 65c koaxial zu diesem die dem Ventilkörper betätigende Stange 81c ebenfalls durch Schweißen festgemacht. Der Querträger 183 ist an einem Zylinder 85c einer Kolbenzylindereinheit befestigt, deren Kolben 83c über eine Stange 106c mit dem Flansch 95c gekop- pelt ist. Durch Zuführung von Druckluft über Anschlüsse 87c an die Kolbenzylindereinheit kann der Kolben 83c innerhalb des Zylinders 85c verlagert werden, was gleichfalls zu einer Verlagerung der Stange 81c innerhalb des Rohrs 81c führt, da der Faltenbalg 113 komprimierbar ist.

Auf der von dem Rohrzwischenstück 181 abgewandten Seite des Querträgers 183 ist der Anschluss 89c für das zuzuführende Gas ebenfalls vakuumdicht angeschlossen. Der Querträger ist von Öffnungen 185 durchsetzt, so dass das Gas von dem An- schlussstutzen 89c in das Innere des Rohres 85c übertreten kann.

Bei der im Zusammenhang mit Figur 2 beschriebenen Tempe- rierungsvorrichtung sind eine Mehrzahl von Windungen von einer Kühlflüssigkeit oder Wärmeflüssigkeit durchströmt, und diese übertragen die Kälte bzw. Wärme direkt auf das Innere des Reservoirs. Es ist jedoch auch möglich, hier beispiels-

weise Peltier-Elemente zwischenzuschalten, um noch tiefere Temperaturen innerhalb des Reservoirs zu erreichen.

Ein Einsatz des vorangehend beschriebenen Materialbear- beitungssystems kann wie folgt erfolgen. Diese wird hierbei für die Bearbeitung eines Werkstücks, insbesondere die Re- paratur einer Photomaske, vorgesehen. Das Verfahren ist dabei vorzugsweise mittels eines Steuerrechners zum Steuern der Be- standteile des Materialbearbeitungssystems voll auto- matisiert. Eine Defekte aufweisende Photomaske wird zunächst mittels herkömmlicher optischer oder korpuskularstrahl- optischer Geräte, beispielsweise eines AIMS-Gerätes, abge- tastet, um so die Koordinaten der Maskendefekte zu ermitteln.

Die diese Koordinaten enthaltenden Daten werden in den Steuerrechner eingegeben und mittels Eingangs-Übersetzern des Steuerrechners in ein für das Materialbearbeitungssystem ge- eignetes Datenformat im Steurrechner konvertiert. Die zu be- arbeitende Photomaske wird manuell, halbautomatisch oder automatisch in die Bearbeitungskammer des Materialbear- beitungssystems eingeführt. Besonders bevorzugt wird die zu bearbeitende Photomaske in einem für den Maskentransport üblicherweise verwendeten Behältnis, wie zum Beispiel einer sogenannten"SMIF Box", mittels eines rechnergesteurten Maskenladers an eine Eingangsstation des Bearbeitungssystem herangebracht, in die Eingangstation eingeführt und aus dem Behältnis entfernt, um dort entweder gleich in die Bear- beitungskammer des Materialbearbeitungssystems überführt oder zur Weiterverarbeitung in einer Ausgangsstation des Material- bearbeitungssystems abgelegt zu werden. Befindet sich die Photomaske in der Bearbeitungskammer, können die Defekt- stellen der Photomaske anhand der Defektkoordinaten durch Verschieben der die Photomaske halternden Werkstückhalterung aufgesucht, d. h. in den Bereich des Elektronenstrahls ge- bracht werden, wobei die Position des Werkstücks relativ zu dem Elektronenmikroskop mit Hilfe der Laserinterferometer kontrolliert wird. Mit dem Elektronenstrahl wird die Ober-

fläche des Werkstücks dann abgetastet, um ein hochaufgelöstes Bild der gerade zu bearbeitenden Defektstelle zu gewinnen.

Weiterhin kann mit Hilfe des energiedispersiven Röntgen- detektionssystems (EDX-System) eine Charakterisierung der Materialien, insbesondere eine Elementanalyse, an der Ober- fläche der Defektstellen der Photomaske erfolgen. Abbildung und/oder EDX-Analyse können dabei manuell, halb-oder voll- automatisch durchgeführt werden. Anhand der durch elektro- nenoptische Abbildung und/oder EDX-Analyse ermittelten Daten und Vergleich dieser Daten mit im Steuerrechner verfügbaren Soll-Daten wird eine zu reparierende Defekt-Größe von dem Steuerrechner ermittelt. Die zur Reparatur der Defekt-Größe notwendigen Schritte werden von dem Steuerrechner durch Zu- ordnung der Defektgröße zu einem in dem Steuerrechner ge- speicherten Reparaturvorgang und Reparaturparametern ermit- telt. Die zur Reparatur der Defektstelle notwendigen Schritte und Parameter des Reparaturvorgangs, insbesondere Auswahl der zuzuführenden Gase, zeitliche Steuerung der Gaszufuhr, Richten des Elektronenstrahls mit einem vorbestimmten Energiewert auf die zu bearbeitende Defektstelle der Photo- maske, werden von dem Steuerrechner vorzugsweise auto- matisiert durchgeführt. Nach Beenden der Elektronenstrahl-in- duzierten chemischen Reaktion an der Defektstelle der Photo- maske wird die bearbeitete Defektstelle erneut elektronen- optisch abgetastet und abgebildet. Mittels des Steuerrechners wird die erhaltene Abbildung mit der Soll-Abbildung ver- glichen und, bei einem vorbestimmten Grad an Abweichung der Abbildungen, weitere Reparaturschritte durchgeführt oder aber die Photomaskenreparatur beendet, woraufhin die reparierte Photomaske als Endprodukt des Verfahrens zur weiteren Ver- wendung bereitgestellt wird.

Eine bevorzugte Anwendung der des vorangehend beschriebenen Systems und Verfahrens liegt in der Bearbeitung und Reparatur von Photomasken für Lithographieverfahren. Wie bereits er- wähnt, kann die Photomaske eine phasenschiebende Maske sein.

Es ist jedoch auch daran gedacht, binäre Masken zu bear- beiten, bei denen die Strukturen beispielsweise durch Chrom enthaltende Bereiche gebildet sind, welche auf einem Glas- substrat oder SiO2-Substrat abgeschieden sind. Diese Masken können hierbei auch sog."Proximity-Korrekturen"aufweisen, d. h. besonders kleine Strukturen, welche mit Hilfe des Elektronenmikroskops auflösbar sind.

Allerdings können auch andere Werkstücke mit dem System bearbeitet werden, wie etwa mikro-mechanische Bauteile oder ähnliches.

Es ist ebenfalls daran gedacht, die vorangehend erläuterte Gaszuführung nicht nur in Kombination mit einem Elektronen- mikroskop einzusetzen, sondern diese auch in Kombination mit anderen Energiestrahlen, wie beispielsweise Ionenstrahlen oder Photonenstrahlen, zu verwenden.

Ferner kann die vorangehend beschriebene Technik, bei der das Reservoir für das Ausgangsmaterial gekühlt ist, auch bei Gas- versorgungen eingesetzt werden, welche nicht mit einer Kanüle arbeiten oder welche nicht ein Zweistellungsventil, sondern beispielsweise ein Dosierventil, aufweisen.