Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MELANOCORTIN-4 RECEPTOR BINDING COMPOUNDS AND METHODS OF USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2001/010842
Kind Code:
A2
Abstract:
MC4-R binding compounds of the formula (I): B-Z-E wherein B is an anchor moiety, Z is a central moiety, and E is an MC4-R interacting moiety are discussed. Methods of using the compounds to treat MC4-R associated disorders, such as disorders associated with weight loss, are also discussed.

Inventors:
MAGUIRE MARTIN P (US)
DAI MINGSHI (US)
VOS TRICIA J (US)
Application Number:
PCT/US2000/021327
Publication Date:
February 15, 2001
Filing Date:
August 04, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MILLENNIUM PHARM INC (US)
MAGUIRE MARTIN P (US)
DAI MINGSHI (US)
VOS TRICIA J (US)
International Classes:
C07D295/02; A61K31/136; A61K31/137; A61K31/155; A61K31/166; A61K31/17; A61K31/18; A61K31/275; A61K31/397; A61K31/40; A61K31/4025; A61K31/4035; A61K31/407; A61K31/4164; A61K31/4174; A61K31/4178; A61K31/4188; A61K31/4245; A61K31/436; A61K31/437; A61K31/4375; A61K31/4409; A61K31/4453; A61K31/4468; A61K31/4545; A61K31/4709; A61K31/4725; A61K31/496; A61K31/497; A61K31/498; A61K31/506; A61K31/519; A61K31/5377; A61K31/5415; A61K31/551; A61P1/14; A61P17/00; A61P31/18; A61P35/00; A61P43/00; C07D205/04; C07D207/09; C07D207/12; C07D207/14; C07D209/46; C07D211/22; C07D211/42; C07D211/48; C07D211/58; C07D211/60; C07D211/70; C07D213/74; C07D213/75; C07D215/22; C07D215/46; C07D217/26; C07D233/02; C07D233/06; C07D233/20; C07D233/22; C07D233/50; C07D233/61; C07D235/06; C07D235/18; C07D239/06; C07D239/14; C07D239/42; C07D239/84; C07D239/88; C07D241/20; C07D241/44; C07D265/30; C07D271/10; C07D295/06; C07D295/08; C07D295/12; C07D295/18; C07D295/20; C07D401/12; C07D401/14; C07D403/04; C07D403/10; C07D403/12; C07D405/04; C07D405/12; C07D407/12; C07D409/12; C07D409/14; C07D413/04; C07D417/04; C07D417/06; C07D471/04; C07D471/08; C07D487/04; C07D491/052; C07D495/04; C07D513/04; (IPC1-7): C07D239/00
Domestic Patent References:
WO1997047316A11997-12-18
WO1999064002A11999-12-16
Foreign References:
US5731408A1998-03-24
GB1418053A1975-12-17
Other References:
M. A. BEDNAREK ET AL.: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 261, no. 1, 1999, pages 209-13, XP002159223
C. HASKELL-LUEVANO ET AL.: JOURNAL OF MEDICINAL CHEMISTRY, vol. 40, no. 11, 1997, pages 1738-48, XP002159224
A. KASK ET AL.: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 245, no. 1, 1998, pages 90-3, XP002159225
See also references of EP 1204645A2
Attorney, Agent or Firm:
Hanley, Elizabeth A. (LLP 28 State Street Boston, MA, US)
Download PDF:
Claims:
CLAIMS
1. A method for treating a MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to a mammal, such that the MC4R associated state is treated, wherein said compound is of the formula (I): BZE (I) wherein B is an anchor moiety; Z is a central moiety; and E is a MC4R interacting moiety.
2. A method for treating an MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to a mammal, such that the MC4R associated state is treated, wherein said compound is of the formula (III) : BLiAL2E (III) wherein: B is an anchor moiety; Ll and L2 are linking moieties; A is a cyclic moiety; and E is a MC4R interacting moiety.
3. A method for treating an MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to said mammal, such that the MC4R associated state is treated, wherein said compound is an MC4R antagonist, and is of the formula (III): BLIAL2E (III) wherein B is substituted or unsubstituted biaryl, unsubstituted or substituted heterocyclic, or unsubstituted or substituted phenyl, wherein one or more of said substituents are halogens, alkyl, alkynyl, alkoxy, aryl, amino, cyano, or nitro; L, is a covalent bond, CjCg branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; E is substituted or unsubstituted alkyl, amino, amidino, guanidino, heterocyclic, or aryl, wherein said substituents are amino, arylalkyl, aminoalkyl, alkyl, aryl, alkenyl, or alkynyl; and A is a substituted or unsubstituted phenyl, heteroaryl, cycloalkyl, or biaryl, and pharmaceutically acceptable salts thereof.
4. The method of any one of claims 13, wherein said compound binds to the MC4 R with an ICSO of about 5 uM or less.
5. The method of claim 4, wherein said compound binds to the MC4R with an ICso of about 1 uM or less.
6. The method of claim 5, wherein said compound binds to the MC4R with an IC50 of about 0.5 LM or less.
7. The method of claim 6, wherein said compound binds to the MC4R with an ICso of about 0.1 tM or less.
8. The method of claim 7, wherein said compound binds to the MC4R with an IC50 of about 0.05 uM or less.
9. The method of claim 8, wherein said compound binds to the MC4R with an IC50 of about 0.03 u. M or less.
10. The method of any one of claims 19, wherein said compound is an antagonist of the MC4R.
11. The method of any one of claims 19, wherein said compound is an agonist of the MC4R.
12. The method of any one of claims 111, wherein said effective amount is effective to treat a disorder associated with pigmentation or weight loss.
13. The method of claim 12, wherein said effective amount is effective to treat a disorder associated with weight loss.
14. The method of claim 13, wherein said weight loss is a result of anorexia nervosa, old age, cancer cachexia, HIV cachexia, or weightlessness.
15. The method of any one of claims 114, wherein said mammal is a human.
16. The method of any one of claims 115, wherein B is substituted or unsubstituted alkyl, alkenyl, alkynyl, aryl, or heterocyclic.
17. The method of claim 16, wherein B is aryl.
18. The method of claim 17, wherein B is carbocyclic.
19. The method of claim 18, wherein B is phenyl.
20. The method of claim 19, wherein B is substituted with at least one substituent, wherein each substituent is independently selected from the group consisting of halogens, alkoxy, hydroxy, alkylcarbonyl, cyano, nitro, thiol, alkyl, alkenyl, alkynyl, aryl, arylalkynyl, or arylalkyl.
21. The method of claim 20, wherein B is substituted with at least one halogen.
22. The method of claim 20, wherein B is substituted with at least one alkoxy group.
23. The method of claim 20, wherein B is substituted with at least one alkyl group.
24. The method of claim 16, wherein B comprises more than one aromatic ring.
25. The method of claim 24, wherein B is substituted or unsubstituted naphthyl, fluorene, anthracene, or biphenyl.
26. The method of claim 25, wherein B is substituted or unsubstituted naphthyl.
27. The method of claim 25, wherein B is substituted with one or more substituents selected from the group consisting of halogens, alkoxy, hydroxy, alkylcarbonyl, cyano, nitro, thiol, alkyl, alkenyl, alkynyl, aryl, arylalkynyl, or arylalkyl.
28. The method of claim 16, wherein B comprises a heterocycle.
29. The method of claim 27, wherein B is substituted or unsubstituted furanyl, imidazolyl, benzothiophenyl, benzofuranyl, quinolinyl, isoquinolinyl, benzodiozanyl, benzoxazolyl, benzothiazolyl, methylenedioxyphenyl, ethylenedioxyphenyl, piperidinyl, indolyl, thienyl, pyrimidyl, pyrazinyl, purinyl, or deazapurinyl.
30. The method of any one of claims 229, wherein Li is a covalent bond or a substituted or unsubstituted chain of one to six atoms.
31. The method of claim 30, wherein said chain comprises a carbon atom and at least one other atom selected from the group consisting of carbon, sulfur, oxygen, or nitrogen.
32. The method of claim 31, wherein said chain comprises a sulfur atom.
33. The method of claim 31, wherein said chain comprises an oxygen atom.
34. The method of claim 31, wherein said chain comprises two carbon atoms.
35. The method of any one of claims 234, wherein A is substituted or unsubstituted phenyl, heteroaryl, or bicyclic.
36. The method of claim 35, wherein A is unsubstituted phenyl.
37. The method of claim 36, wherein A is substituted phenyl.
38. The method of claim 37, wherein A is substituted with one or more substituents selected from the group consisting chlorine, fluorine, bromine, iodine, amino, cyano, alkoxy, or alkyl.
39. The method of claim 38, wherein A is substituted with chlorine.
40. The method of claim 38, wherein A is substituted with fluorine.
41. The method of claim 38, wherein said alkyl group is methyl or trifluoromethyl.
42. The method of claim 35, wherein A is heteroaryl and selected from the group consisting of pyrimidyl, pyrazinyl, thienyl, pyrrolyl, imidazolyl, or quinoxalinyl.
43. The method of any one of claims 242, wherein L2 is selected from the group consisting of a covalent bond, a carbonyl moiety, a thiocarbonyl moiety or ClC6 branched or unbranched alkyl, wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms.
44. The method of claim 43, wherein L2 is a covalent bond.
45. The method of any one of claims 142, wherein E is a substituted or unsubstituted amino group, alkyl, cyano, guanidino, amidino, or a heterocyclic moiety.
46. The method of claim 45, wherein E is dialkylamino.
47. The method of claim 45, wherein E is heterocyclic.
48. The method of claim 47, wherein E contains a nitrogen atom.
49. The method of claim 48, wherein E is substituted or unsubstituted piprazinyl, imidoazopyridinyl, pyrolloimidazolyl, pyrrolyl, azetidinyl, azapanyl, diazapanyl, pyrimidinyl, pyridinyl, morpholinyl, or piperidinyl.
50. The method of claim 47, wherein E is multicyclic.
51. The method of claim 50, wherein E is a bridged or fused ring.
52. The method of claim 47, wherein E is of the formula (XIII): wherein r is a covalent bond, CH, CH2, CR', CR1R2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, alkenyl, CHR5, CR'R', or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to A, B, L1, L2, R1, R2, R3, R4, R5, or R6 to form a ring; and R', R2, R3, R4, R5 and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, aryl, hydroxyl, nitro, amino, cyano, optionally linked to form a ringwithR, R, R, R, R, R orR.
53. The method of claim 52, wherein each of r, s and t are CH2.
54. The method of claim 52, wherein R is H, alkyl, benzocarboxy, alkylcarboxy, or arylalkylcarboxy.
55. The method of claim 52, wherein r is a covalent bond.
56. A method for treating an MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to said mammal, such that the MC4R associated state is treated, wherein said compound is an MC4R antagonist, and is of the formula (V): B is substituted or unsubstituted biaryl, unsubstituted or substituted heterocyclic, or unsubstituted or substituted phenyl, wherein one or more of said substituents are halogens, alkyl, alkynyl, alkoxy, aryl, amino, cyano, or nitro; L is a covalent bond, ClC6 branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; E is substituted or unsubstituted alkyl, amino, amidino, guanidino, heterocyclic, or aryl, wherein said substituents are amino, arylalkyl, aminoalkyl, alkyl, aryl, alkenyl, or alkynyl; n is a covalent bond, a carbon atom, a nitrogen atom, heterocyclic, alkyl, cycloalkyl, or aryl; L3 is a covalent bond, ClC6 branched, unbranched or cyclic alkyl, wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms, carbonyl, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, or aminothiocarbonyl; and A is heterocyclic, aryl, alkoxy, amino, alkyl, alkenyl, alkynyl, or hydrogen; and k is 0,1 or 2, and pharmaceutically acceptable salts thereof.
57. The method of claim 56, wherein II is a carbon or nitrogen atom.
58. The method of any one of claims 5657, wherein L3 is aminocarbonyloxy.
59. The method of any one of claims 5658, wherein A is substituted or unsubstituted aryl.
60. The method of claim 59, wherein A is substituted with alkoxy, cyano, halogens, alkyl, aryl, alkenyl, alkynyl, nitro, or an amino group.
61. The method of any one of claims 5660, wherein k is one.
62. The method of any one of claims 5661, wherein L1 and L2 are each CH2.
63. The method of any one of claim 5661, wherein B is heterocyclic.
64. The method of any one of claim 5663, wherein E is heterocyclic or substituted amino.
65. The method of claim 56, wherein II, L2 and L3 together are a single covalent bond.
66. A method for treating an MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to a mammal, such that the MC4R associated state is treated, wherein said compound is an MC4R antagonist, and is of the formula (VI): wherein P1,P2,P3,P4, and P5 are optionally substituted carbon, sulfur, or nitrogen, and wherein one of p I, p2, p3, p4 and P5 may represent a covalent bond; zl, z2, z3, z4, and Z5 are optionally substituted carbon or nitrogen; Ll is a covalent bond, ClC6 branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; and J is an unsubstituted or substituted nitrogen containing heterocycle or a substituted or unsubstituted amino group, and pharmaceutically acceptable salts thereof.
67. The method of claim 66, wherein P, p2, p3, p4, and P5 are each substituted or unsubstituted carbon.
68. The method of claim 67, wherein Pl and p3 are CH.
69. The method of any one of claims 66,67, or 68 wherein p2 and P4 are each CH, CF, CCI, CBr, or CI.
70. The method of any one of claims 6669, wherein Z3 and Z4 are each CH.
71. The method of any one claims 6670, wherein Z'is CH, or covalently linked to Z2 to form a naphthyl ring;.
72. The method of any one of claims 6670, wherein Z is CH, C (C=CH), CCI, CBr, CI, CF, or covalently linked to zl to form a naphthyl ring;.
73. The method of any one of claims 6672, wherein Z5 is CH or Calkoxy.
74. The method of any one of claims 6673, wherein L is a covalent bond.
75. The method of any one of claims 6674, wherein J is substituted or unsubstituted piprazinyl, imidoazopyridinyl, pyrolloimidazolyl, pyrrolyl, azetidinyl, azapanyl, diazapanyl, pyrimidinyl, pyridinyl, morpholinyl, or piperidinyl.
76. The method of claim 66, wherein J is a substituted or unsubstituted fused ring or bridged heterocycle.
77. The method of claim 66, wherein said MC4R binding compound is of the formula (IX): wherein: p2 is CH, CF, CCI, CBr, Calkyl, Calkoxy, CCN, COH, or CI; P3 is CH, CF, CCI, CBr, Calkyl, Calkoxy, CCN, COH, or CI; P4 is CH, CCI, CBr, CF, Calkyl, Calkoxy, CCN, COH, or CI; G'and G2 are each independently CH2, S, or O; r is a covalent bond or CH2; t is CH2, CR3, or CR3R4; s is CH2, CHR5 or CR5R6; R is hydrogen or alkyl; Z'is CH, or covalently linked to Z2 to form a naphthyl ring; z2 is CH, C (C=CH), CCI, CBr, CI, CF, or covalently linked to Z'to form a naphthyl ring; Z5 is CH, or COMe; R3, R4, R5, and R6 are methyl or ethyl, or pharmaceutically acceptable salts thereof.
78. The method of claim 77, wherein Z'is CH, Z2 is CBr and Z5 is COMe.
79. The method of claim 77 or 78, wherein p2 is CH.
80. The method of any one of claims 7779, wherein P4 is CCI or CF.
81. The method of any one of claims 7780, wherein Gl and G2 are each CH2.
82. The method of any one of claims 7780, wherein Gl and G2 together areCH2S orSCH2.
83. The method of any one of claims 7382, wherein Z'and Z2 are linked to form a naphthyl ring.
84. The method of claim 2, wherein said compound is selected from the group consisting of :.
85. The method of claim 2, wherein said compound is selected from the group consisting of 2 [2 (4benzyloxybenzylsulfanyl)phenyl]1,4,5, 6tetrahydropyrimidine ; <BR> <BR> <BR> 2 [2 (2iodobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> 2 [2 (2methoxy5nitrobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(naphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(3chlorobenzylsulfanyl)phenyl]1,[2(3chlorobenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (2, 5dimethoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (3bromobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> 2[2(2iodobenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole;[2(2iodobenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole 2[2(2methoxy5nitrobenzylsulfanyl)phenyl]4,5dihydro1Himidazole; 2[2(2methoxy5nitrobenzyloxy)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (2bromobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(3iodobenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (2methoxy5nitrobenzylsulfanyl)phenyl]3a,4,5,6,7,7ahexahydro1 H benzoimidazole; 2 {2[2(2methoxynaphthalen1yl)ethyl]phenyl}1,4,5,6tetrahydropyrimidine; 2 [2 (5bromo2methoxybenzylsulfanyl)phenyl]1,4,5,6,tetrahydropyrimidine; 2 {2[2(2methylnaphthalen1yl)ethyl]phenyl}1,4,5,6tetrahydropyrimidine; 2 {2 [2 (2,3dihydrobenzo [1,4] dioxin5yl)ethyl]phenyl}1,4,5,6 tetrahydropyrimidine; 2[2(2methoxynapthalen1ylmethylsulfanyl)phenyl]1,[2(2methoxynapthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 (2Benzylsulfanylphenyl)1,4,5,6tetrahydropyrimidine; 2(2Pentadecylsulfanylphenyl)1,(2Pentadecylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2(2Cyclohexylmethylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2[2(2Methylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (3Nitrobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [2 (3, 5Dimethoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [2 (4Fluorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (2Chlorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (2Fluorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [2 (2, 4Bistrifluoromethylbenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (3Methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (3, 5Bistrifluoromethylbenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Methoxy5nitrobenzyloxy)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2[2(2Chloro6fluorobenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole;[2(2Chloro6fluorobenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole <BR> <BR> 2(2Benzylsulfanylphenyl)4, 5dihydro1 Himidazole;(2Benzylsulfanylphenyl)4, 5dihydro1 Himidazole 2 [2(2, 6Difluorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(Naphthalen1ylmethoxy)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Methylnaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 1 {2[2(2Chloro6fluorobenzylsulfanyl)phenyl]5, 6dihydro4Hpyrimidin1yl} ethanone; 2 [2 (2Chloro6fluorobenzylsulfanyl)phenyl]3a,4,5,6,7,7ahexahydro1 H benzoimidazole; 2[2(2Iodobenzylsulfanyl)phenyl]3a, 4,5,6,7,7ahexahydro1 Hbenzoimidazole; 2 [2 (2, 5Dimethylbenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 4 [2 (1,4,5,6Tetrahydropyrimidin2yl)phenylsulfanylmethyl]quinoline; <BR> <BR> 2 [2 (2Methoxy5nitrobenzylsulfanyl)pyridin3yl]1,4,5,6tetrahydropyrimidine; 2[2(2Methoxybenzylsulfanyl)phenyl]1,[2(2Methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Cyclopentyloxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (2,3Dihydrobenzo [1,4] dioxin5ylmethylsulfanyl)phenyl]1,4,5,6tetrahydro pyrimidine; 2 [2 (6Methoxy2,3dihydrobenzo [1,4] dioxin5ylmethylsulfanyl)phenyl]1, 4,5,6 tetrahydropyrimidine; 2 [2 (5fluoro2methoxybenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole; 1Methyl2[2(naphthalen1ylmethylsulfanyl)phenyl]1,[2(naphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]4, 5dihydro I Himidazole ;<BR> <BR> 2 [2 (5Bromo2methoxybenzyloxy)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(Naphthalen1yloxymethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(5Bromo2methoxybenzylsulfanyl)phenyl]5,5dimethyl1, 4,5,6tetrahydro pyrimidine; 2[2(5Bromo2methoxybenzylsulfanyl)phenyl]5,5dimethyl4,5dihydro1H imidazole; 2[2(2, 6Dimethoxybenzylsulfanyl)phenyl]1,[2(2, 6Dimethoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Bromo6methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[5Bromo2(5bromo2methoxybenzylsulfanyl)phenyl]4,5dihydro1Himidazole; 2 [5Bromo2(5bromo2methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[4Bromo2(5bromo2methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[2(2Bromo5methoxybenzylsulfanyl)phenyl]1,[2(2Bromo5methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(5Bromo2methoxybenzylsulfanyl)5methylphenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2 (Biphenyl3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> 2 [2 (5Chloro2methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Methoxy5thiophen3ylbenzylsulfanyl)phenyl]1,[2(2Methoxy5thiophen3ylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2(Biphenyl2ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (5Iodo2methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)5fluorophenyl]1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]1,4,5,6tetrahydro pyrimidine; 2 [2 (4, 4'Dimethoxybiphenyl3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydro pyrimidine; 2[2(9HFluoren9ylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (3'Chloro4'fluoro4methoxybiphenyl3ylmethylsulfanyl)phenyl]1,4,5,6 tetrahydropyrimidine; 2[2(1Naphthalen1ylethylsulfanyl)phenyl]1,[2(1Naphthalen1ylethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)5fluorophenyl]4, 5dihydro1 Himidazole; 2(2Benzhydrylsulfanylphenyl)1,(2Benzhydrylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2 [2 (2'Fluoro4"methoxy [1, l' ; 4', 1"] terphenyl3"ylmethylsulfanyl)phenyl]1,4,5,6 tetrahydropyrimidine; 2 (5Bromo2methoxybenzylsulfanyl)benzamidine; 2[4(Naphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(5Ethynyl2methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [2 (5Bromo2cyclopentyloxybenzylsulfanyl)phenyl] 1,4,5,6tetrahydro, pyrimidine; 2[2(5Bromo2ethoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (5Bromo2propoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)benzyl]diethylamine; 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperazine; C{4 [3 (5Bromo2methoxybenzylsulfanyl)quinoxalin2yl]morpholin2yl methylamine; 2[2(2Methoxy5methylbenzylsulfanyl)phenyl]1,[2(2Methoxy5methylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(5Bromo2methoxybenzyloxymethyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)benzyl]dimethylamine;<BR> <BR> <BR> 2 [2 (5Bromo2isopropoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Ethoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Propoxynaphthalen1ylmethylsulfanyl)phenyl]1,[2(2Propoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 4Methoxy3[2(1, 4,5,6tetrahydropyrimidin2yl)phenylsulfanylmethyl] benzonitrile; <BR> <BR> 1 {4Methoxy3[2(1,4,5,6tetrahydropyrimidin2yl)phenylsulfanylmethyl]phenyl} ethanone; <BR> <BR> 2 [2 (Naphthalen1ylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperidine; C {4 [2 (2Methoxynaphthalen1ylmethylsulfanyl)benzyl]morpholin2yl} methylamine; <BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]pyrrolidin3ylamine;<BR> 1[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine;[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine <BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]1,5,6,7,8,8ahexahydro imidazo [1,5a] pyridine; 3 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]5,6,7,7atetrahydro1 H pyrrolo [1,2c] imidazole; 2 [2 (Benzo [b] thiophen3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[3Fluoro2(naphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2(Naphthalen1ylmethylsulfanyl)3(1, 4,5,6tetrahydropyrimidin2yl)phenylamine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3chlorophenyl]1,4,5,6tetrahydro pyrimidine; 2[2(2Methoxyphenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> I12 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]5, 6dihydro4Hpyrimidin Iyl)<BR> <BR> 3methylbutan1one; 1{2[2(5Bromo2methoxybenzylsulfanyl)phenyl]5,6dihydro4Hpyrimidin1yl} 2phenylethanone; 2[3(5Bromo2methoxybenzylsulfanyl)pyridin2yl]1, 4,5,6tetrahydropyrimidine; N [2 (5Bromo2methoxybenzylsulfanyl)phenyl]guanidine; 2[2(2Isopropoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[2(2Cyclopentyloxynaphthalen1ylmethylsulfanyl)phenyl]1,[2(2Cyclopentyloxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; <BR> <BR> <BR> (5Bromo2methoxybenzyl)[2(1,4,5,6tetrahydropyrimidin2yl)phenyl]amine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanylmethyl)phenyl] 1,4,5,6tetrahydro pyrimidine; 2[2(2Methoxynaphthalen1ylsulfanylmethyl)phenyl]1,[2(2Methoxynaphthalen1ylsulfanylmethyl)phenyl]1, 4,5,6tetrahydro pyrimidine; <BR> <BR> <BR> 2 [3 (5Bromo2methoxybenzylsulfanyl)pyrazin2yl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> 2 [3Chloro2 (naphthalen1ylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(6Bromo2methoxynaphthalen1ylmethylsulfanyl)phenyl]1,[2(6Bromo2methoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[3Chloro2(2methoxynaphthalen1ylsulfanylmethyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxyphenylsulfanylmethyl)phenyl]1,4,5,6tetrahydro pyrimidine; <BR> <BR> <BR> 2 [2 (5Bromo2methoxyphenylsulfanylmethyl)3chlorophenyl]1,4,5,6tetrahydro pyrimidine; 2[1(2Naphthalen1ylethyl)1Hpyrrol2yl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> <BR> (5Bromo2methoxybenzyl)methyl [2 (1,4,5,6tetrahydropyrimidin2yl)phenyl] amine; <BR> <BR> <BR> <BR> 2 (5Bromo2methoxybenzylsulfanyl)benzylamine;<BR> <BR> <BR> <BR> <BR> 2 [2 (2Chlorophenylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (2Bromophenylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine; 2(2oTolylsulfanylmethylphenyl)1,(2oTolylsulfanylmethylphenyl)1, 4,5,6tetrahydropyrimidine; <BR> <BR> <BR> <BR> 2 [2 (2, 5Dichlorophenylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 (3Aminopropylamino)6 (5bromo2methoxybenzylsulfanyl)benzonitrile; 2[2(5Bromo2methoxybenzylsulfanyl)benzyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> <BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)benzyl]diethylamine;<BR> <BR> <BR> <BR> <BR> <BR> 4 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]morpholine; 3' (5Bromo2methoxybenzylsulfanyl)3,4,5,6tetrahydro2H [ 1,2'] bipyrazinyl; <BR> <BR> <BR> 2 (5Bromo2methoxybenzylsulfanyl)3piperazin1yl6, 7dihydroquinoxaline;<BR> <BR> <BR> <BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperidine; C{4[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]morpholin2yl} methylamine; <BR> <BR> 1 [3 (5Bromo2methoxybenzylsulfanyl)pyrazin2yl]pyrrolidin3ylamine;<BR> <BR> 1 [3 (5Bromo2methoxybenzylsulfanyl)quinoxalin2yl]pyrrolidin3ylamine;<BR> <BR> 1[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine;[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine C{4 [3 (5Bromo2methoxybenzylsulfanyl)pyrazin2yl]morpholin3yl methylamine; <BR> <BR> 1 [3Fluoro2 (2naphthalen1ylethyl)benzyl]piperazine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]azetidine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]pyrrolidin3ol; [2 (Naphthalen1ylmethylsulfanyl)phenyl]carbamic acid 1azabicyclo [2. 2. 2] oct3yl ester; [2 (2Methylnaphthalen1ylmethylsulfanyl)phenyl]carbamic acid 1aza bicyclo [2.2.2] oct3yl ester; 2piperidin1yl[2(2Methylnaphthalen1ylmethylsulfanyl)phenyl]carbamicacid ethyl ester; {1[2(5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]pyrrolidin2yl} methanol; 4tertButylNnaphthalen1ylmethylN(2piperidin1ylethyl)benzamide; N,NDimethylN'naphthalen2ylmethylN'naphthalen1ylmethylpropane1,3 diamine; N(5Bromo2methoxybenzyl)N',N'dimethylNnaphthalen1ylmethylpropane1,3 diamine; 1Naphthalen1ylmethyl3phenethyl1(2piperidin1ylethyl)thiourea; <BR> <BR> 3 (4Dimethylaminophenyl)1 (3dimethylaminopropyl)1naphthalen1ylmethyl thiourea; 4 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzylamino]piperidine1 carboxylic acid ethyl ester; 2[2(2Naphthalen1ylethyl)phenyl]ethylamine; Naphthalene2sulfonic acid (2dimethylaminoethyl)naphthalen1ylmethylamide; 1[2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]2methoxymethyl pyrrolidine; (2Hexyloxyphenyl)carbamic acid 2piperidin1yl1piperidin1ylmethylethyl ester; 3 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxy]pyrrolidine;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxymethyl]pyrrolidine;<BR> <BR> 2[2(Naphthalen1ylsulfanylmethyl)phenyl]piperidine;[2(Naphthalen1ylsulfanylmethyl)phenyl]piperidine <BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)benzylamino]propan1ol;<BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)benzylamino]3methylbutan1ol;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]pyrrolidin3ol;<BR> <BR> {1[2(5Bromo2methoxybenzylsulfanyl)benzyl]pyrrolidin2yl}methanol; {1[2(Naphthalen1ylsulfanylmethyl)benzyl]piperidin2yl}methanol; 2[2(Naphthalen1ylsulfanylmethyl)pyrrolidin1yl]ethylNpyrrolidine; Npyrrolyl[1(2naphthalen1ylethyl)pyrrolidin2ylmethyl]amine; 1(2Naphthalen1ylethyl)piperidine2carboxylic acid methyl ester; <BR> <BR> (3Bromobenzyl) (lethylpyrrolidin2ylmethyl)naphthalen1ylmethylamine;<BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxy]piperidine;<BR> <BR> (5Bromo2methoxybenzyl) (lethylpyrrolidin2ylmethyl)naphthalen1ylmethyl amine; <BR> <BR> (1Ethylpyrrolidin2ylmethyl)naphthalen2ylmethylnaphthalen1ylmethylamine;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxymethyl]pyrrolidine;<BR> <BR> (3Bromobenzyl) (3imidazol1ylpropyl)naphthalen1ylmethylamine;<BR> <BR> (3Imidazol1ylpropyl)naphthalen2ylmethylnaphthalen1ylmethylamine; [2 (Naphthalenlylmethylsulfanyl)phenyl]carbamic acid 2piperidin1yl1piperidin 1ylmethylethyl ester; [2 (Naphthalen1ylmethylsulfanyl)phenyl]carbamic acid 2dimethylaminoethyl ester; 1 [2 (Naphthalen1ylsulfanylmethyl)benzyl]piperazine; [3(2Methylpiperidin1yl)propyl][2(naphthalen1ylsulfanylmethyl)benzyl] amine; 1 [3Chloro2 (naphthalen1ylsulfanylmethyl)benzyl]piperazine; N,NDimethylN'(2naphthalen1ylethyl)N'naphthalen1ylmethylethane1,2 diamine; {1[2(5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]piperidin2yl}methanol; 1 [2 (2Naphthalen1ylethyl)benzyl]piperazine; [3(2Methylpiperidin1yl)propyl][2(2naphthalen1ylethyl)benzyl]amine; 1 [3Fluoro2 (2naphthalen1ylethyl)benzyl]piperazine; {1[2Chloro2(naphthalen1ylsulfanylmethyl)benzyl]piperidin2yl}methanol; {1[2(5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]piperidin2yl}methanol;<BR> <BR> <BR> {1[2(2Naphthalen1ylethyl)benzyl]piperidin2yl}methanol;<BR> [3(2Methylpiperidin1yl)propyl][2(2naphthalen1ylethyl)benzyl]amine;<BR> <BR> <BR> 1[2(2Naphthalen1ylethyl)benzyl]pyrrolidin3ylamine;[2(2Naphthalen1ylethyl)benzyl]pyrrolidin3ylamine <BR> <BR> 1Phenyl3piperazin1yl5,6,7,8tetrahydroisoquinoline4carbonitrile;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]6ethyl1,4,5,6tetrahydro pyrimidine; 2 [2 (4Methoxybiphenyl3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Methoxy5phenylethynylbenzylsulfanyl)phenyl]1,[2(2Methoxy5phenylethynylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2(2Naphthalen1ylethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[3(2Methoxynaphthalen1ylsulfanylmethyl)thiophen2yl]1, 4,5,6tetrahydro pyrimidine; 2[2(2,5Dimethoxyphenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(4Methylnaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]4,4dimethyl4,5dihydro 1 Himidazole; 2 [2(5Bromo2methoxybenzylsulfanyl)3fluorophenyl]5,5dimethyl1, 4,5,6 tetrahydropyrimidine; 2[3(Naphthalen1ylsulfanylmethyl)thiophen2yl]1, 4,5,6tetrahydropyrimidine; 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]phenyl}1,4,5,6tetrahydropyrimidine; 2[3Chloro2(2naphthalen1ylethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 {2 [2(5Bromo2methoxyphenyl)ethyl]3fluorophenyl}1, 4,5,6tetrahydro pyrimidine; 2[2(5Bromo2methoxyphenylsulfanylmethyl)3fluorophenyl]1, 4,5,6tetrahydro pyrimidine; 2[2(Naphthalen1ylsulfanylmethyl)phenyl]4, 5dihydro1[2(Naphthalen1ylsulfanylmethyl)phenyl]4, 5dihydro1 Himidazole; 2 [3Fluoro2(naphthalen1ylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[3Bromo2(naphthalen1ylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]3chlorophenyl}1,4,5,6tetrahydro pyrimidine; 2[2(2Methoxy5trifluoromethylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[4(Naphthalen1ylsulfanylmethyl)thiophen3yl]1, 4,5,6tetrahydropyrimidine; 2[2(Naphthalen1ylsulfanylmethyl)thiophen3yl]1, 4,5,6tetrahydropyrimidine; 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]3trifluoromethylphenyl}1,4,5,6 tetrahydropyrimidine; 2[2(2Naphthalen1ylethyl)3trifluoromethylphenyl]1, 4,5,6tetrahydropyrimidine; 2[2(6Fluoronaphthalen1ylmethylsulfanyl)phenyl]1,[2(6Fluoronaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; (I [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperidin2yl)methanol; 2[3Fluoro2(2naphthalen1ylethyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl] [3 (2methylpiperidin1yl) propyl]amine; <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]pyrrolidin3ylamine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]piperazine; 5,5Dimethyl2[2(2naphthalen1ylethyl)phenyl]4, 5dihydro1 Himidazole ; 2[3Fluoro2(2naphthalen1ylethyl)phenyl]5,5dimethyl4,5dihydro1H imidazole; 2 [2 (5Bromo2methoxybenzylsulfanyl)3, 5difluorophenyl]1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3,5difluorophenyl]5,5dimethyl4,5 dihydro1 Himidazole; 3(2Naphthalen1ylethyl)2(1,(2Naphthalen1ylethyl)2(1, 4,5,6tetrahydropyrimidin2yl)phenylamine; <BR> <BR> Amino[2(2naphthalen1ylethyl)phenyl]acetonitrile;[2(2naphthalen1ylethyl)phenyl]acetonitrile <BR> <BR> 1 [2(2Naphthalen1ylethyl)phenyl]ethane1,2diamine; 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]4methyl4, 5dihydro1 H imidazole; 2[2(5Bromo2methoxybenzylsulfanyl)3fluorophenyl]4methyl4,5dihydro1H imidazole; 2 [2 (5Bromo2methoxybenzylsulfanyl)3chlorophenyl]4methyl4, 5dihydro1 H imidazole; 2[2(5Bromo2methoxybenzylsulfanyl)3,4difluorophenyl]1, 4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [3Fluoro2 (naphthalen1ylsulfanylmethyl)phenyl]5,5dimethyl4,5dihydro1 H imidazole; 2{2[2(5Bromo2methoxyphenyl)1methylethyl]phenyl}1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxy benzyl sulfanyl)3fluoro4trifluoromethylphenyl]4,4 dimethyl4,5dihydro1 Himidazole; 2 [2 (5Bromo2methoxybenzyl sulfanyl)3fluoro4trifluoromethylphenyl]5,5 dimethyl1,4,5,6tetrahydropyrimidine; 2[3Methoxy2(2naphthalen1ylethyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3chlorophenyl]1,4,5,6tetrahydro pyrimidin5ol; 2{2 [2 (5Bromo2methoxyphenyl)ethyl]3methoxyphenyl}1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]6ethyl1,4,5,6tetrahydro pyrimidine, and pharmaceutically acceptable salts thereof.
86. The method of any one of claims 5685, wherein said compound binds to the MC4R with an IC50 of about 5 u. M or less.
87. The method of claims 86, wherein said compound binds to the MC4R with an IC50 of about 1 uM or less.
88. The method of claim 87, wherein said compound binds to the MC4R with an ICSO of about 0.5 uM or less.
89. The method of claim 88, wherein said compound binds to the MC4R with an IC50 of about 0.1 pM or less.
90. The method of claim 89, wherein said compound binds to the MC4R with an IC50 of about 0.05 uM or less.
91. The method of claim 90, wherein said compound binds to the MC4R with an ICSO of about 0.03 uM or less.
92. The method of any one of claims 5685, wherein said compound is an antagonist of the MC4R.
93. The method of any one of claims 5685, wherein said compound is an agonist of the MC4R.
94. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2 [2 (2,5dichlorothiophen3ylmethylsulfanyl) phenyl]1,4,5,6tetrahydropyrimidine.
95. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2 [2(2chloro6fluorobenzylsulfanyl)phenyl]1,4, 5,6tetrahydropyrimidine.
96. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 1 (6bromo2chloroquinolin4yl)3 (2 diethylaminoethyl)urea.
97. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2 [2 (2, 6difluorobenzylsulfanyl)phenyl]l, 4,5,6 tetrahydropyrimidine.
98. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 10 [2 (lmethylpiperadin2yl)ethyl]2 methylsulfanyl1 OHphenothiazine.
99. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 1 (4hydroxy1,3,5trimethylpiperadin4yl) ethanone.
100. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2naphthalen1ylmethyl4,5dihydro1 Himidazole.
101. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not (2,6dichlorophenyl)imidazolidin2ylideneamine.
102. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2benzyl4, 5dihydrolHimidazole.
103. The method of any one of claims 193 or 138199 wherein said MC4R binding compound is not 5 (4chlorophenyl)2,5dihydro3Himidazo [2,1a]isoindol5ol.
104. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 4,6dimethyl2piperazin1ylpyrimidine.
105. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2piperazin1ylpyrimidine.
106. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 1pyridin2ylpiperazine.
107. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 2piperazin1yl4trifluoromethyl pyrimidine.
108. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 6piperazin1yl7trifluoromethylthieno [3,2 b] pyridine3carboxylic acid methyl ester.
109. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 5bromo2piperazin1yl)pyrimidine.
110. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 1 (3trifluoromethylpyridin2yl)piperazine.
111. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not 1 (5trifluoromethylpyridin2yl)piperazine.
112. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not piperazine.
113. The method of any one of claims 1,2,3,56,66,77,138 or 139 wherein said MC4R binding compound is not (2Hexyloxyphenyl)carbamic acid 2piperidin1yl 1piperidin1ylmethylethyl ester.
114. An MC4R binding compound of the formula (IX): wherein: p2 is CH, CF, CCI, CBr, Calkyl, Calkoxy, CCN, COH, or CI; P3 is CH, CF, CCI, CBr, Calkyl, Calkoxy, CCN, COH, or CI; P4 is CH, CCI, CBr, CF, Calkyl, Calkoxy, CCN, COH, or CI; G'and G2 are each independently CH2, S, or O; r is a covalent bond or CH2; tis CH CR3 orCR3R4; s is CH2, CHR or CR5R6; R is hydrogen or alkyl; Z'is CH, or covalently linked to Z2 to form a naphthyl ring; Z2 is CH, C (C=CH), CCI, CBr, CI, CF, or covalently linked to Z'to form a naphthyl ring; Z5 is CH, or COMe; R3, R4, R5, and R6 are methyl or ethyl, or pharmaceutically acceptable salts thereof.
115. The compound of claim 94, wherein Z'is CH, Z2 is CBr and Z5 is COMe.
116. The compound of claim 114115, wherein p2 is CH.
117. The compound of claim 114116, wherein P4 is CCI or CF.
118. The compound of claim 114117, wherein Gl and G2 are each CH2.
119. The compound of claim 114117, wherein G1 and G2 together are CH2S or S CH2.
120. The compound of claim 114119, wherein Zl and z2 are linked to form a naphthyl ring.
121. An MC4R binding compound, wherein said compound is selected from the group consisting of :.
122. The MC4R binding compound of any one of claims 114121, wherein said compound is not 2 [2 (2, 5dichlorothiophen3ylmethylsulfanyl)phenyl]l, 4,5,6 tetrahydropyrimidine.
123. The MC4R binding compound of any one of claims 114121, wherein said compound is not 2 [2(2, 6difluorobenzylsulfanyl)phenyl]1, 4,5,6 tetrahydropyrimidine.
124. A pharmaceutical composition for the treatment of a MC4R associated state in a mammal comprising a pharmaceutically acceptable carrier and an effective amount of an MC4R binding compound of the formula (I): BZE (I) wherein B is an anchor moiety; Z is a central moiety; E is a MC4R interacting moiety; and pharmaceutically acceptable salts thereof.
125. A pharmaceutical composition for the treatment of a MC4R associated state in a mammal comprising a pharmaceutically acceptable carrier and an effective amount of an MC4R binding compound of the formula (III): BLIAL2E (III) wherein: B is an anchor moiety; Li and L2 are linking moieties; A is a cyclic moiety; and E is a MC4R interacting moiety.
126. A pharmaceutical composition for the treatment of a MC4R associated state in a mammal comprising a pharmaceutically acceptable carrier and an effective amount of an MC4R binding compound of the formula (III): BLIAL2E (III) wherein B is substituted or unsubstituted biaryl, unsubstituted or substituted heterocyclic, or unsubstituted or substituted phenyl, wherein one or more of said substituents are halogens, alkyl, alkynyl, alkoxy, aryl, amino, cyano, or nitro; L, is a covalent bond, ClC6 branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; E is substituted or unsubstituted alkyl, amino, amidino, guanidino, heterocyclic, or aryl, wherein said substituents are amino, arylalkyl, aminoalkyl, alkyl, aryl, alkenyl, or alkynyl; and A is a substituted or unsubstituted phenyl, heteroaryl, cycloalkyl, or biaryl, and pharmaceutically acceptable salts thereof.
127. The pharmaceutical composition of claim 124126, wherein said MC4R binding compound is an MC4R antagonist.
128. The pharmaceutical composition of any one of claims 124127, wherein said MC4R associated state is associated with pigmentation.
129. The pharmaceutical composition of any one of claims 124127, wherein said MC4R associated state is associated with weight loss.
130. The pharmaceutical composition of claim 129, wherein said weight loss is a result of old age, anorexia nervosa, HIV cachexia or cancer cachexia.
131. The pharmaceutical composition of any one of claims 124130, wherein said mammal is a human.
132. The pharmaceutical composition of any one of claims 124131, wherein said MC4R binding compound is of the formula (IX): wherein: p2 is CH, CF, CCI, CBr, Calkyl, Calkoxy, CCN, or CI; P3 is CH, CF, CCI, CBr, Calkyl, Calkoxy, CCN, or CI; P4 is CH, CCI, CBr, CF, Calkyl, Calkoxy, CCN, or CI; G'and G2 are each independently CH2, S, or O; r is a covalent bond or CH2; t is CH2, CR3, or CR3R4; s is CH2, CHERS or CR5R6; R is hydrogen or alkyl; Zl is CH, or covalently linked to Z2 to form a naphthyl ring; Z2 is CH, C (C=CH), CCI, CBr, CI, CF, or covalently linked to Z'to form a naphthyl ring; Zs is CH, or COMe; R3, R4, R5, and R6 are methyl or ethyl, or pharmaceutically acceptable salts thereof.
133. The pharmaceutical composition of claim 133, wherein said MC4R binding compound is selected from the group consisting of 2 [2 (4benzyloxybenzylsulfanyl) phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2iodobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (2methoxy5nitrobenzylsulfanyl)phenyl]l,4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (naphthalen1ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> 2 [2 (3chlorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> 2 [2 (2, 5dimethoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> 2 [2 (3bromobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2iodobenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole;[2(2iodobenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole 2[2(2methoxy5nitrobenzylsulfanyl)phenyl]4,5dihydro1Himidazole; 2 [2 (2methoxy5nitrobenzyloxy)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2bromobenzylsulfanyl)phenyl]1,[2(2bromobenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(3iodobenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (2methoxy5nitrobenzylsulfanyl)phenyl]3a,4,5,6,7,7ahexahydro1 H benzoimidazole; 2 {2[2(2methoxynaphthalen1yl)ethyl]phenyl}1,4,5,6tetrahydropyrimidine; 2[2(5bromo2methoxybenzylsulfanyl)phenyl]1, 4,5,6,tetrahydropyrimidine; 2 {2[2(2methylnaphthalen1yl)ethyl]phenyl}1,4,5,6tetrahydropyrimidine; 2 {2 [2 (2,3dihydrobenzo [1,4] dioxin5yl)ethyl]phenyl}1,4,5,6 tetrahydropyrimidine; 2[2(2(methoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2(2Benzylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2(2Pentadecylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2(2Cyclohexylmethylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2[2(2Methylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> <BR> <BR> 2 [2 (3Nitrobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (3, 5Dimethoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (4Fluorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (2Chlorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (2Fluorobenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; <BR> <BR> <BR> <BR> 2 [2 (2, 4Bistrifluoromethylbenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (3Methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (3, 5Bistrifluoromethylbenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2 [2 (2Methoxy5nitrobenzyloxy)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Chloro6fluorobenzylsulfanyl)phenyl]4,5dihydro1Himidazole; 2(2Benzylsulfanylphenyl)4,5dihydro1Himidazole; 2[2(2, 6Difluorobenzylsulfanyl)phenyl]1,[2(2, 6Difluorobenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (Naphthalen1ylmethoxy)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Methylnaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> <BR> 1 {2 [2 (2Chloro6fluorobenzylsulfanyl)phenyl]5, 6dihydro4Hpyrimidin1yl} ethanone; 2 [2 (2Chloro6fluorobenzylsulfanyl)phenyl]3a,4,5,6,7,7ahexahydro1 H benzoimidazole; 2[2(2Iodobenzylsulfanyl)phenyl]3a,[2(2Iodobenzylsulfanyl)phenyl]3a, 4,5,6,7,7ahexahydro1 Hbenzoimidazole ; 2[2(2,5Dimethylbenzylsulfanyl)pheny;]1, 4,5,6tetrahydropyrimidine; 4 [2 (1,4,5,6Tetrahydropyrimidin2yl)phenylsulfanylmethyl]quinoline; <BR> <BR> 2 [2 (2Methoxy5nitrobenzylsulfanyl)pyridin3yl]1,4,5,6tetrahydropyrimidine; 2[2(2Methoxybenzylsulfanyl)phenyl]1,[2(2Methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2(2Cyclopentyloxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (2,3Dihydrobenzo [1,4] dioxin5ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2 (6Methoxy2,3dihydrobenzo [1,4] dioxin5ylmethylsulfanyl)phenyl]1, 4,5,6 tetrahydropyrimidine; 2 [2 (5fluoro2methoxybenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole; 1Methyl2[2(naphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole;<BR> <BR> 2 [2 (5Bromo2methoxybenzyloxy)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(Naphthalen1yloxymethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]5, 5dimethyl1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]5,5dimethyl4,5dihydro1 H imidazole; 2[2(2, 6Dimethoxybenzylsulfanyl)phenyl]1,[2(2, 6Dimethoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Bromo6methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [5Bromo2 (5bromo2methoxybenzylsulfanyl)phenyl]4, 5dihydro1 Himidazole; 2[5Bromo2(5bromo2methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[4Bromo2(5bromo2methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[2(2Bromo5methoxybenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)5methylphenyl]1,4,5,6tetrahydro pyrimidine; 2[2(Biphenyl3ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Chloro2methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Methoxy5thiophen3ylbenzylsulfanyl)phenyl]1,[2(2Methoxy5thiophen3ylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2(Biphenyl2ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (5Iodo2methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)5fluorophenyl]1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]1,4,5,6tetrahydro pyrimidine; 2 [2 (4, 4'Dimethoxybiphenyl3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydro pyrimidine; 2[2(9HFluoren9ylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (3'Chloro4'fluoro4methoxybiphenyl3ylmethylsulfanyl)phenyl]1,4,5,6 tetrahydropyrimidine; 2[2(1Naphthalen1ylethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)5fluorophenyl]4, 5dihydro1 Himidazole; 2(2Benzhydrylsulfanylphenyl)1, 4,5,6tetrahydropyrimidine; 2[2(2'Fluoro4"methoxy[1, 1';[2(2'Fluoro4"methoxy[1, 1'; 4', 1"] terphenyl3"ylmethylsulfanyl)phenyl]1,4,5,6 tetrahydropyrimidine; 2 (5Bromo2methoxybenzylsulfanyl)benzamidine; 2 [4 (Naphthalen1ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2 (5Ethynyl2methoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(5Bromo2methoxybenzylsulfanyl)benzyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2cyclopentyloxybenzylsulfanyl)phenyl]1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [2 (5Bromo2ethoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [2 (5Bromo2propoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)benzyl]diethylamine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperazine;<BR> <BR> C {4 [3 (5Bromo2methoxybenzylsulfanyl)quinoxalin2yl]morpholin2yl} methylamine; 2[2(2Methoxy5methylbenzylsulfanyl)phenyl]1,[2(2Methoxy5methylbenzylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxybenzyloxymethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)benzyl]dimethylamine; 2 [2 (5Bromo2isopropoxybenzylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[2(2Ethoxynaphthalen1ylmethylsulfanyl)phenyl]1,[2(2Ethoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Propoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 4Methoxy3[2(1, 4,5,6tetrahydropyrimidin2yl)phenylsulfanylmethyl] benzonitrile; <BR> <BR> 1 {4Methoxy3 [2 ( 1,4,5,6tetrahydropyrimidin2yl)phenylsulfanylmethyl]phenyl} ethanone; 2 [2(Naphthalen1ylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine; <BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperidine;<BR> <BR> C {4 [2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]morpholin2yl} methylamine; <BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]pyrrolidin3ylamine;<BR> 1[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine;[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine 3[2(5Bromo2methoxybenzylsulfanyl)3fluorophenyl]1, 5,6,7,8,8ahexahydro imidazo [1, 5a] pyridine; 3 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]5,6,7,7atetrahydro1 H pyrrolo [1,2c]imidazole; 2 [2 (Benzo [b] thiophen3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2[3Fluoro2(naphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 (Naphthalen1ylmethylsulfanyl)3 ( 1,4,5,6tetrahydropyrimidin2yl)phenylamine;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)3chlorophenyl]1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [2 (2Methoxyphenylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> I12 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]5, 6dihydro4Hpyrimidin Iyl)<BR> <BR> 3methylbutan1one; 1 {2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]5, 6dihydro4Hpyrimidin1yl} 2phenylethanone; 2[3(5Bromo2methoxybenzylsulfanyl)pyridin2yl]1, 4,5,6tetrahydropyrimidine; N [2 (5Bromo2methoxybenzylsulfanyl)phenyl]guanidine; 2[2(2Isopropoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2(2Cyclopentyloxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; (5Bromo2methoxybenzyl) [2 (1,4,5,6tetrahydropyrimidin2yl)phenyl]amine; 2[2(5Bromo2methoxybenzylsulfanylmethyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[2(2Methoxynaphthalen1ylsulfanylmethyl)phenyl]1,[2(2Methoxynaphthalen1ylsulfanylmethyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[3(5Bromo2methoxybenzylsulfanylpyrazin2yl]1, 4,5,6tetrahydropyrimidine; 2[3Chloro2(naphthalen1ylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(6Bromo2methoxynaphthalen1ylmethylsulfanyl)phenyl]1,[2(6Bromo2methoxynaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[3Chloro2(2methoxynaphthalen1ylsulfanylmethyl)phenyl]1, 4,5,6tetrahydro pyrimidine; 2[2(5Bromo2methoxyphenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxyphenylsulfanylmethyl)3chlorophenyl]1,4,5,6tetrahydro pyrimidine; <BR> 2 [1 (2Naphthalen1ylethyl)1 Hpyrrol2yl]1,4,5,6tetrahydropyrimidine;<BR> <BR> (5Bromo2methoxybenzyl)methyl[2(1,4,5,6tetrahydropyrimidin2yl)phenyl] amine; 2 (5Bromo2methoxybenzylsulfanyl)benzylamine; 2[2(2Chlorophenylsulfanylmethyl)phenyl]1,[2(2Chlorophenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(2Bromophenylsulfanylmethyl)phenyl]1,[2(2Bromophenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2(2oTolylsulfanylmethylphenyl)1,(2oTolylsulfanylmethylphenyl)1, 4,5,6tetrahydropyrimidine; 2[2(2,5Dichlorophenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 (3Aminopropylamino)6 (5bromo2methoxybenzylsulfanyl)benzonitrile;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)benzyl]diethylamine;<BR> <BR> 4 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]morpholine;<BR> <BR> 3' (5Bromo2methoxybenzylsulfanyl)3,4,5,6tetrahydro2H[1,2'] bipyrazinyl;<BR> <BR> 2 (5Bromo2methoxybenzylsulfanyl)3piperazin1yl6,7dihydroquinoxaline;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperidine;<BR> <BR> C {4[2(2MethoxynaphthalenIylmethylsulfanyl)benzyl]morpholin2yl} methylamine; 1 [3 (5Bromo2methoxybenzylsulfanyl)pyrazin2yl]pyrrolidin3ylamine; 1[3 (5Bromo2methoxybenzylsulfanyl)quinoxalin2yl]pyrrolidin3ylamine; 1[2(2Methoxynaphthalen1ylmethylsulfanyl)benzyl]pyrrolidin3ylamine; C{4 [3 (5Bromo2methoxybenzylsulfanyl)pyrazin2yl]morpholin3yl} methylamine; <BR> <BR> 1 [3Fluoro2 (2naphthalen1ylethyl)benzyl]piperazine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]azetidine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]pyrrolidin3ol; [2 (Naphthalen1ylmethylsulfanyl)phenyl]carbamic acid 1azabicyclo [2.2.2] oct3yl ester; [2 (2Methylnaphthalen1ylmethylsulfanyl)phenyl]carbamic acid 1aza bicyclo [2.2.2] oct3yl ester; [2 (2Methylnaphthalenlylmethylsulfanyl)phenyl]carbamic acid 2piperidin1yl ethyl ester; {1[2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]pyrrolidin2yl} methanol; 4tertButylNnaphthalen1ylmethylN(2piperidin1ylethyl)benzamide; N,NDimethylN'naphthalen2ylmethylN'naphthalen1ylmethylpropane1,3 diamine; N (5Bromo2methoxybenzyl)N', N'dimethylNnaphthalen1ylmethylpropane1,3 diamine; 1Naphthalen1ylmethyl3phenethyl1 (2piperidin1ylethyl)thiourea; 3(4Dimethylaminophenyl)1(3dimethylaminopropyl)1naphthalen1ylmethyl thiourea; 4[2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzylamino]piperidine1 carboxylic acid ethyl ester; 2[2(2Naphthalen1ylethyl)phenyl]ethylamine; Naphthalene2sulfonic acid (2dimethylaminoethyl)naphthalen1ylmethylamide; 1[2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]2methoxymethyl pyrrolidine; (2Hexyloxyphenyl)carbamic acid 2piperidin1yl1piperidin1ylmethylethyl ester; <BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxy]pyrrolidine;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxymethyl]pyrrolidine; 2[2(Naphthalen1ylsulfanylmethyl)phenyl]piperidine; 3 [2 (5Bromo2methoxybenzylsulfanyl)benzylamino]propan1ol;<BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)benzylamino]3methylbutan1ol;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]pyrrolidin3ol; {1[2(5Bromo2methoxybenzylsulfanyl)benzyl]pyrrolidin2yl}methanol; {1[2(Naphthalen1ylsulfanylmethyl)benzyl]piperidin2yl}methanol; 2[2(Naphthalen1ylsulfanylmethyl)pyrrolidin1yl]ethylNpyrrolidine; Npyrrolyl[l(2naphthalen1ylethyl)pyrrolidin2ylmethyl]amine;[l(2naphthalen1ylethyl)pyrrolidin2ylmethyl]amine 1 (2Naphthalenlylethyl)piperidine2carboxylic acid methyl ester; <BR> <BR> (3Bromobenzyl)(lethylpyrrolidin2ylmethyl)naphthalen1ylmethylamine;<BR> <BR> 3 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxy]piperidine; (5Bromo2methoxybenzyl)(1ethylpyrrolidin2ylmethyl)naphthalen1ylmethyl amine; <BR> <BR> (1Ethylpyrrolidin2ylmethyl)naphthalen2ylmethylnaphthalen1ylmethylamine;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)benzyloxymethyl]pyrrolidine;<BR> (3Bromobenzyl) (3imidazol1ylpropyl)naphthalen1ylmethylamine;<BR> <BR> (3Imidazol1ylpropyl)naphthalen2ylmethylnaphthalen1ylmethylamine; [2 (Naphthalenlylmethylsulfanyl)phenyl]carbamic acid 2piperidin1yl1piperidin 1ylmethylethyl ester; [2 (Naphthalen1ylmethylsulfanyl)phenyl]carbamic acid 2dimethylaminoethyl ester; <BR> <BR> 1 [2 (Naphthalen1ylsulfanylmethyl)benzyl]piperazine;<BR> <BR> [3(2Methylpiperidin1yl)propyl] [2(naphthalen1ylsulfanylmethyl)benzyl] amine; 1 [3Chloro2 (naphthalen1ylsulfanylmethyl)benzyl]piperazine; N, NDimethylN'(2naphthalen1ylethyl)N'naphthalen1ylmethylethane1,2 diamine; <BR> <BR> {1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]piperidin2yl}methanol; 1[2(2Naphthalen1ylethyl)benzyl]piperazine; [3(2Methylpiperidin1yl)propyl][2(2naphthalen1ylethyl)benzyl]amine; 1 [3Fluoro2 (2naphthalen1ylethyl)benzyl]piperazine; {1[3Chloro2(naphthalen1ylsulfanylmethyl)benzyl]pipieridin2yl}methanol; <BR> <BR> {1[2(5Bromo2methoxybenzylSulfanyl)3chlorobenzyl]piperidin2yl}methanol; {1[2(2Naphthalen1ylethyl)benzyl]piperidin2yl}methanol; [3 (2Methylpiperidin1yl)propyl] [2 (2naphthalen1ylethyl)benzyl]amine; 1[2(2Naphthalen1ylethyl)benzyl]pyrrolidin3ylamine;[2(2Naphthalen1ylethyl)benzyl]pyrrolidin3ylamine <BR> <BR> 1Phenyl3piperazin1yl5,6,7,8tetrahydroisoquinoline4carbonitrile;<BR> <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]6ethyl1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [2 (4Methoxybiphenyl3ylmethylsulfanyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 [2(2Methoxy5phenylethynylbenzylsulfanyl)phenyl]1,4,5,6tetrahydro pyrimidine; 2[2(2Naphthalen1ylethyl)phenyl]1,[2(2Naphthalen1ylethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[3(2Methoxynaphthalen1ylsulfanylmethyl)thiophen2yl]1, 4,5,6tetrahydro pyrimidine; 2[2(2, 5Dimethoxyphenylsulfanylmethyl)phenyl]1,[2(2, 5Dimethoxyphenylsulfanylmethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2[2(4Methylnaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]4, 4dimethyl4,5dihydro <BR> 1 Himidazole;<BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)3fluorophenyl]5, 5dimethyl1,4,5,6 tetrahydropyrimidine; 2[3(Naphthalen1ylsulfanylmethyl)thiophen2yl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]phenyl}1,4,5,6tetrahydropyrimidine; 2[3Chloro2(2naphthalen1ylethyl)phenyl]1, 4,5,6tetrahydropyrimidine; 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]3fluorophenyl}1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [2 (5Bromo2methoxyphenylsulfanylmethyl)3fluorophenyl]1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2[2(Naphthalen1ylsulfanylmethyl)phenyl]4, 5dihydro1 Himidazole;[2(Naphthalen1ylsulfanylmethyl)phenyl]4, 5dihydro1 Himidazole <BR> <BR> 2 [3Fluoro2 (naphthalen1ylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [3Bromo2 (naphthalen1ylsulfanylmethyl)phenyl]1,4,5,6tetrahydropyrimidine; 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]3chlorophenyl}1,4,5,6tetrahydro pyrimidine; 2 [2 (2Methoxy5trifluoromethylbenzylsulfanyl)phenyl]1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [4 (NaphthalenIylsulfanylmethyl)thiophen3yl]1,4,5,6tetrahydropyrimidine;<BR> <BR> 2 [2 (Naphthalen1ylsulfanylmethyl)thiophen3yl]1,4,5,6tetrahydropyrimidine; 2 {2 [2 (5Bromo2methoxyphenyl)ethyl]3trifluoromethylphenyl}1,4,5,6 tetrahydropyrimidine; 2[2(2Naphthalen1ylethyl)3trifluoromethylphenyl]1, 4,5,6tetrahydropyrimidine; 2[2(6Fluoronaphthalen1ylmethylsulfanyl)phenyl]1,[2(6Fluoronaphthalen1ylmethylsulfanyl)phenyl]1, 4,5,6tetrahydropyrimidine; <BR> <BR> {1 [2 (5Bromo2methoxybenzylsulfanyl)benzyl]piperidin2yl)methanol;<BR> <BR> 2 [3Fluoro2 (2naphthalen1ylethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> <BR> [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl] [3 (2methylpiperidin1yl)<BR> <BR> <BR> propyl]amine;<BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]pyrrolidin3ylamine;<BR> <BR> 1 [2 (5Bromo2methoxybenzylsulfanyl)3chlorobenzyl]piperazine; 5,5Dimethyl2[2(2naphthalen1ylethyl)phenyl]4,5dihydro1Himidazole; 2[3Fluoro2(2naphthalen1ylethyl)phenyl]5,5dimethyl4,5dihydro1H imidazole; 2[2(5Bromo2methoxybenzylsulfanyl)3,5difluorophenyl]1, 4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)3,5difluorophenyl]5,5dimethyl4,5 dihydro1 Himidazole; 3(2Naphthalen1ylethyl)2(1, 4,5,6tetrahydropyrimidin2yl)phenylamine; Amino [2 (2naphthalen1ylethyl)phenyl]acetonitrile; 1[2(2Naphthalen1ylethyl)phenyl]ethane1,2diamine; 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]4methyl4, 5dihydro1 H imidazole; 2[2(5Bromo2methoxybenzylsulfanyl)3fluorophenyl]4methyl4,5dihydro1H imidazole; <BR> <BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)3chlorophenyl]4methyl4, 5dihydro1 H imidazole; 2 [2 (5Bromo2methoxybenzylsulfanyl)3, 4difluorophenyl]1,4,5,6tetrahydro pyrimidine; <BR> <BR> 2 [3Fluoro2 (naphthalen1ylsulfanylmethyl)phenyl]5,5dimethyl4,5dihydro1 H imidazole; 2 {2 [2(5Bromo2methoxyphenyl)1methylethyl]phenyl}1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxy benzyl sulfanyl)3fluoro4trifluoromethylphenyl]4,4 dimethyl4,5dihydro1 Himidazole; 2 [2 (5Bromo2methoxybenzyl sulfanyl)3fluoro4trifluoromethylphenyl]5,5 dimethyl1,4,5,6tetrahydropyrimidine;<BR> 2 [3Methoxy2 (2naphthalen1ylethyl)phenyl]1,4,5,6tetrahydropyrimidine;<BR> 2 [2 (5Bromo2methoxybenzylsulfanyl)3chlorophenyl]1,4,5,6tetrahydro pyrimidin5ol; 2{2 [2 (5Bromo2methoxyphenyl)ethyl]3methoxyphenyl}1,4,5,6tetrahydro pyrimidine; 2 [2 (5Bromo2methoxybenzylsulfanyl)phenyl]6ethyl1,4,5,6tetrahydro pyrimidine, and pharmaceutically acceptable salts thereof.
134. 132 The pharmaceutical composition of any one of claims 124131, wherein said MC4R binding compound is not 10 [2 (lmethylpiperadin2yl)ethyl]2 methylsulfanyl1 OHphenothiazine.
135. The pharmaceutical composition of any one of claims 124131, wherein said MC4R binding compound is not 2naphthalen1ylmethyl4,5dihydrolHimidazole.
136. The pharmaceutical composition of any one of claims 124131, wherein said MC4R binding compound is not (2,6dichlorophenyl)imidazolidin2ylideneamine.
137. The pharmaceutical composition of any one of claims 124131, wherein said MC4R binding compound is not 2benzyl4,5dihydro1 Himidazole.
138. The pharmaceutical composition of any one of claims 124131, wherein said MC4R binding compound is not 5 (4chlorophenyl)2,5dihydro3Himidazo [2,1a] isoindol5ol.
139. The pharmaceutical composition of claim 124136, wherein said pharmaceutical composition is suitable for oral administration.
140. A method for treating an MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to a mammal such that the MC4R associated state is treated, wherein said compound is of the formula (X): wherein Ar and Ar'are aromatic groups; Rt l is selected independently for each position capable of substitution from the group hydrogen, cyano, halogen, alkyl, amino, or aryloxy; Rl2 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; R is hydrogen, alkenyl, alkynyl, aralkyl, nitro, cyano, alkyl, acyl, carbonyl, or SO2CH3, and may optionally be linked to an R 16 or an R16'group; R16 and Rl6 are each independently selected for each position capable of substitution from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heterocyclic, carbonyl, or acyl, and may optionally be connected through an alkyl chain to Ru3 or another Rl6 or R'group, to form a fused or spiro ring system; X is NR, S, O or a covalent bond; R is hydrogen, alkyl, alkenyl, alkynyl, acyl, heterocyclic, or carbonyl; R and RIS are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, heteroaromatic, halogen, nitro, cyano, amino, or aryl, for each occurrence; w is 0,1,2,3, or 4; eis 0,1,2, or3; f is 0,1,2, or 3, and pharmaceutically acceptable salts thereof.
141. A method for treating an MC4R associated state in a mammal comprising administering an effective amount of a MC4R binding compound to a mammal such that the MC4R associated state is treated, wherein said compound is of the formula (XI) : wherein Ar and Ar'are aromatic groups, as described above; R'1 selected independently for each position capable of substitution from the group hydrogen, halogen, alkyl, amino, cyano, or aryloxy. Rl2 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; X is NR, S, O or a covalent bond; *17 is hydrogen, alkyl, acyl, heterocyclic, or carbonyl; Rl4 and Rl5 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, or aryl, for each occurrence; R20 and R21 are each independently selected from the group consisting of substituted or unsubstituted alkyl, alkenyl, alkynyl, aryl, hydrogen, or carbonyl, and may optionally be linked to form a heterocycle; vis0,1,2,3,4,5, or6; e is 0,1,2, or3; f is 0,1,2, or 3, and pharmaceutically acceptable salts thereof.
142. The method according to claim 138 or 139, wherein Ar is selected from the group consisting of :.
143. The method of claim 140, wherein Ar is.
144. The method of claim 141, wherein Ar is:.
145. The method of claim 141, wherein Ar is:.
146. The method of claim 141, wherein Ar is.
147. The method of claim 138144, wherein R'1 is selected independently for each aromatic position capable of substitution from the group consisting of hydrogen, halogen, alkyl, amino, and benzyloxy.
148. The method according to claim 145, wherein each Rl l is independently hydrogen or halogen.
149. The method according to claim 146, wherein said halogen is fluorine, chlorine, or bromine.
150. The method according to claim 147, wherein said halogen is fluorine.
151. The method according to claim 147, wherein said halogen is chlorine.
152. The method according to claim 147, wherein said halogen is bromine.
153. The method according to claim 146, wherein each Rll is hydrogen.
154. The method according to claim 138151, wherein Ar'is selected from the group consisting of : wherein R19 is hydrogen, alkyl, acyl, aryl, alkenyl, or alkynyl.
155. The method of claim 152, wherein Ar'is.
156. The method of claim 152, wherein Ar'is.
157. The method of claim 153, wherein R12 is in the 3 position.
158. The method of claim 153, wherein Rl2 is in the 6 position.
159. The method according to claims 138156, wherein each R 12 is selected independently for each aromatic position capable of being substituted from the group consisting of hydrogen, alkoxy, halogen, or cyano.
160. The method according to claim 157, wherein each R 12 is hydrogen, halogen, or alkoxy.
161. The method according to claim 158, wherein said alkoxy is CCo alkoxy.
162. The method according to claim 159, wherein said CCI0 alkoxy is is selected from the group consisting of methoxy, ethoxy, npropoxy, ipropoxy, and cyclopentoxy.
163. The method according to claim 160, wherein said ClClo alkoxy is methoxy.
164. The method according to claim 158, wherein said halogen is bromine, fluorine, iodine or chlorine.
165. The method according to claim 162, wherein said halogen is bromine.
166. The method according to claim 162, wherein said halogen is fluorine.
167. The method according to claim 162, wherein said halogen is chlorine.
168. The method according to any one of claims 138165 wherein X is a covalent bond.
169. The method according to any one of claims 138165 wherein X is S.
170. The method according to any one of claims 138165 wherein X is O.
171. The method according to any one of claims 138165 wherein X is Nu 17.
172. The method of claim 169, wherein Ru 7 ils hydrogen, alkyl, or acyl.
173. The method of claim 170, wherein said alkyl is CCI0 alkyl.
174. The method of claim 171, wherein said alkyl is methyl.
175. The method of claim 170, wherein Rl7 is hydrogen.
176. The method of any one of claims 138, or 140173, wherein Rl6 and Ru6 are independently selected for each position from the group consisting of hydrogen and alkyl.
177. The method of claim 174, wherein at least one of R16 and R16'is hydrogen.
178. The method of claim 174, wherein at least one of Rl6 and R16'is at least once Cl Calkyl.
179. The method of claim 176, wherein said C,C, o alkyl is methyl.
180. The method of claim 176, wherein said C1C10 alkyl is ethyl.
181. The method of any one of claims 138, or 140173, wherein at least two of the Rl6 and Ru6 are linked to form a ring.
182. The method of any one of claims 138179, wherein Rl4 and Rl are each independently selected from the group consisting of hydrogen, alkyl and phenyl for each occurence.
183. The method of claim 180, wherein Rl4 and R 15 are hydrogen for each occurence.
184. The method of claim 180 wherein said alkyl is C,C, 0.
185. The method of claim 182, wherein said alkyl is methyl.
186. The method of any one of claims 138, or 140183, wherein said Rl3 group is hydrogen, acyl, alkyl, acyl, carboxy, or SO2CH3.
187. The method of claim 184, wherein Rl3 is hydrogen.
188. The method of claim 184, wherein said Rl3 group is optionally substituted Cl Cl alkyl or acyl.
189. The method of claim 186, wherein said acyl group is ipropylcarbonyl, benzylcarbonyl.
190. The method of claim 186, wherein said alkyl group is C IC 1 o alkyl.
191. The method of claim 188, wherein said alkyl group is methyl.
192. The method of any one of claims 138, or 140189, wherein w is 2.
193. The method of any one of claims 138, or 140189, wherein w is 3.
194. The method of any one of claims 138191, wherein e is 0.
195. The method of any one of claims 138191, wherein e is 1.
196. The method of any one of claims 138193, wherein f is 0.
197. The method of any one of claims 138193, wherein fis 1.
198. The method of any one of claims 138193 wherein f is 2.
199. The method of any one of claims 139173, wherein R20 and R2'are each independently selected from the group consisting of substituted or unsubstituted alkyl, carbonyl, and may optionally be linked to form a heterocycle.
200. The method of claim 197, wherein said heterocycle is piperazinyl or morpholinyl.
201. The method of any one of claims 139173,197 or 198, wherein v is 1,2, or 3.
202. The method of any one of claims 1113 or 138199, wherein the MC4R associated state is not weight loss.
203. A pharmaceutical composition for the treatment of an MC4R associated state in a mammal comprising a pharmaceutically acceptable carrier and an MC4R binding compound such as those shown in any one of the methods claims 1113 or 138199.
204. A pharmaceutical composition for the treatment of a MC4R associated state in a mammal comprising a pharmaceutically acceptable carrier and an effective amount of an MC4R binding compound of the formula (X): wherein Ar and Ar'are aromatic groups; R'1 selected independently for each position capable of substitution from the group hydrogen, cyano, halogen, alkyl, amino, or aryloxy; Rl2 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; Rl3 is hydrogen, alkenyl, alkynyl, aralkyl, nitro, cyano, alkyl, acyl, carbonyl, or SO2CH3, and may optionally be linked to an Rl6 or an Rl6 group; Rl6 and R are each independently selected for each position capable of substitution from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heterocyclic, carbonyl, or acyl, and may optionally be connected through an alkyl chain to Rl3 or another Rl6 or Rl6 group, to form a fused or spiro ring system; X is NR, S, O or a covalent bond; Rl7 is hydrogen, alkyl, alkenyl, alkynyl, acyl, heterocyclic, or carbonyl; R14 and Rl5 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, heteroaromatic, halogen, nitro, cyano, amino, or aryl, for each occurrence; w is 0,1,2,3, or 4; e is 0,1,2, or3; f is 0,1,2, or 3, and pharmaceutically acceptable salts thereof.
205. A pharmaceutical composition for the treatment of a MC4R associated state in a mammal comprising a pharmaceutically acceptable carrier and an effective amount of an MC4R binding compound of the formula (XI): wherein Ar and Ar'are aromatic groups, as described above; R"is selected independently for each position capable of substitution from the group hydrogen, halogen, alkyl, amino, cyano, or aryloxy. Rl2 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; X is NR, S, O or a covalent bond; Rl7 is hydrogen, alkyl, acyl, heterocyclic, or carbonyl; R'and R' are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, or aryl, for each occurrence; R20 and R21 are each independently selected from the group consisting of substituted or unsubstituted alkyl, alkenyl, alkynyl, aryl, hydrogen, or carbonyl, and may optionally be linked to form a heterocycle; vis0, 1,2,3,4,5, or 6; eisO, 1,2, or3; f is 0,1,2, or 3, and pharmaceutically acceptable salts thereof.
206. The MC4R binding compound of the formula (VII): wherein Z', Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; P1,P2,P3, and P4 are CH, N or substituted carbon; and P5 is CJ, wherein J is a moiety of the formula (XIII): 10 15 wherein r is a covalent bond, CH, CH2, CR1, CRIR2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHUS, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to R', R2, R3, R4, R5, or R6 to form one or more rings; and R', R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a R,R1,R2,R3,R4,R5,orR6.ringwith.
207. The MC4R binding compound of the formula (VIII): wherein Z', Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; P', p2, P3, and P4 are CH, N or substituted carbon; and P5 is CJ, wherein J is a moiety of the formula (XIII): wherein r is a covalent bond, CH, CH2, CR', CR1R2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHR5, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to Rl, R2, R3, R4, R5, or R6 to form one or more rings; and R', R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring orR6.withR,R1,R2,R3,R4,R5,.
208. The MC4R binding compound of the formula (XV): wherein Z', Z2, z3, Z4, and Zs are CH, N, or substituted carbon; P', p2, P3, and P4 are CH, N or substituted carbon; and P5 is CJ, wherein J is a moiety of the formula (XIII): wherein r is a covalent bond, CH, CH2, CR1, CR1R2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHUS, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to R', R2, R3, R4, R5, or R6 to form one or more rings; and R', R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R, R', R, R3, R4 R5 orR6.
209. The MC4R binding compound of the formula (XVI): wherein Z', Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; P', p2, P3, and P4 are CH, N or substituted carbon; and P5 is CJ, wherein J is a moiety of the formula (XIII): wherein r is a covalent bond, CH, CH2, CR1, CR1R2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHUS, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to Rl, R2, R3, R4, R5, or R6 to form one or more rings; and Rl, R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R, R1, R2 R3 R4 R5 orR6.
210. The compound of any one of claims 204207, wherein P', p2, P3, and P4 are each substituted or unsubstituted carbon.
211. The compound of claim 208, wherein Pl is CH.
212. The compound of claims 204207, wherein at least one of P2, p3 and P4 is substituted carbon.
213. The compound of any one of claims 204207, wherein P2, P3 and P4 are selected from the group consisting of CH, CF, Cl, CBr, Calkyl, Calkyoxy, or CI.
214. The compound of any one of claims 204207, wherein Z3 and Z4 are each CH.
215. The compound of any one of claims 204207, wherein Z'is CH.
216. The compound of any one of claims 204207, wherein Z'is covalently linked to Z2 to form a naphthyl ring.
217. The compound of any one of claims 204207, wherein Z2 is CH, C (C=CH), CCI, CBr, CI, and CF.
218. The compound of any one of claims 204207, wherein L2 is a covalent bond.
219. The compound of any one of claims 204207, wherein R is H, alkyl, benzocarboxy, alkylcarboxy, or arylalkylcarboxy.
220. The compound of any one of claims 204207, wherein s is CR5R6 and R5 and R6 are each methyl.
221. The compound of any one of claims 204207, wherein r is a covalent bond.
222. The compound of any one of claims 204207, wherein t, r and s are CH2.
223. An MC4R binding compound of the formula (XVIII): wherein Ar and Ar'are aromatic groups; R1 1 is selected independently for each position capable of substitution from the group hydrogen, cyano, alkoxy, nitro, halogen, alkyl, amino, or aryloxy; Rl2 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; R13 is hydrogen, alkenyl, alkynyl, aralkyl, nitro, cyano, alkyl, acyl, carbonyl, or S02CH3, and may optionally be linked to an R16 or an Rl6 group; Rl6 and Rl6 are each independently selected for each position capable of substitution from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyl, cyano, aryl, heterocyclic, carbonyl, or acyl, and may optionally be connected through an alkyl chain to R'3 or another Rl6 or Rl6 group, to form a fused or spiro ring system; X is NR, S, O or a covalent bond; Rl7 is hydrogen, alkyl, or carbonyl; R14 and Rl5 are each independently hydrogen, halogen, or alkyl; wis 1,2,3, or 4; e is 0 or 1; f is 0 or 1, wherein both e and f are not both 0 if X is a covalent bond, and pharmaceutically acceptable salts thereof.
Description:
MELANOCORTIN-4 RECEPTOR BINDING COMPOUNDS AND METHODS OF USE THEREOF Background Melanocortins are known to have a broad array of physiological actions (Nakanishi, et al. Nature (1979) 278: 423-427). Aside from their well known effects on adrenal cortical functions and on melanocytes, melanocortins have been shown to affect behavior, learning, memory, control of the cardiovascular system, analgesia, thermoregulation, and the release of other neurohumoral agents including prolactin, luetinizing hormone, and biogenic amines (De Weid et al. Methods Achiev. Exp. Pathol.

(1991) 15: 167-199; De Weid et al. Physiol. Rev. (1982) 62: 977-1059; Gruber, K. A. et al. Am. J. Physiol. (1989) 257: R681-R694; Murphy et al. Science (1980) 210: 1247- 1249; Murphy et al. Science (1983) 221: 192-193; Ellerkmann, E. et al. Endocrinol.

(1992) 130: 133-138; Versteeg, D. H. G. et al. Life Sci. (1986) 835-840). Peripherally, melanocortins have been identified to have immunomodulatory and neurotrophic properties, and to be involved in events surrounding partition (Cannon, J. G. et al. J.

Immunol. (1986) 137: 2232-2236; Gispen, W. H. Trends Pharm. Sci. (1992) 11: 221-222; Wilson, J. F. Clin. Endocrinol. (1982) 17: 233-242; Clark, D. et al. Nature (1978) 273: 163-164; Silman, R. E. et al. Nature (1976) 260: 716-718). Furthermore, melanocortins are present in a myriad of normal human tissues including the brain, ovary, lung, thyroid, liver, colon, small intestine and pancreas (Tatro, J. B. et al.

Endocrinol. (1987) 121: 1900-1907; Mountjoy, K. G. et al. Science (1992) 257: 1248- 1251; Chhajlani, V. et al., FEBSLett. (1992) 309: 417-420; Gantz, L. et al., J. Biol.

Chem. (1993) 268: 8246-8250; Gantz, L. et al, J Biol. Chem. (1993) 268: 15174-15179).

Recent studies have described an unexpected diversity of subtypes of receptors for the melanocortin peptides and determined that they belong to the superfamily of seven transmembrane G-protein linked cell surface receptors (Mountjoy, K. G. et al., Science (1992), supra; Chhajlani, V. et al., FEBSLett. (1992), supra). Five melanocortin receptor subtypes have been cloned. The melanocortin-1 (MC1) receptor is found in melanoma cells, where it has a role in mediating pigmentation. The melanocortin-2 receptor (MC2-R or ACTH receptor) is found in the adrenal glands where it mediates

the effects of ACTH (adrenocorticotrophic hormone). The melanocortin-3 receptor (MC3-R) is primarily found in the central nervous system (CNS) (Gantz, L. et al., J.

Biol. Chem. (1993) 268: 8246-8250), but its physiological function is still unknown. The melanocortin-4 receptor (MC4-R) has been found in the brain, where it is widely distributed in several areas, including the cortex, thalamus, hypothalamus, brain stem, and spinal cord (Gantz, L. et al. J. Biol. Chem. (1993) 268: 15174-15179; Mountjoy, K. G. et al. Mol. Endocrinol. (1994) 8: 1298-1308). MC4-R has recently been related to weight homeostasis. MC4-R"knock out"mice have been shown to develop obesity (Huszar et al. Cell (1997) 88: 131-141). The feeding behavior leading to the obesity can be inhibited by injection of MSH peptides (Vergoni et al. Neuropeptides (1986) 7: 153- 158; Vergoni et al. Eur. J. Pharmacol. (1990) 179: 347-355; Fan et al. Nature (1997) 385: 165-168). The melanocortin-5 receptor (MC5-R) has a wide peripheral distribution and is believed to participate in the regulation of the exocrine gland function (Chen et al.

Cell (1997) 91: 789-798).

Summary In one aspect, the invention pertains to a method for treating a melanocortin-4 receptor (MC4-R) associated state in a mammal. The method involves administering an effective amount of a MC4-R binding compound to a mammal, such that the MC4-R associated state is treated. The MC4-R binding compound is of the formula (I): . B-Z-E (I) wherein B is an anchor moiety, Z is a central moiety, E is a MC4-R interacting moiety, and pharmaceutically acceptable salts, thereof.

In a further embodiment, the MC4-R binding compound is of the formula (II): B-A-E (II) wherein B is an anchor moiety, A is cyclic moiety, E is a MC4-R interacting moiety, and pharmaceutically acceptable salts, thereof.

In another embodiment, the invention pertains to another method for treating an MC4-R associated state in a mammal, by administering to a mammal an effective amount of a MC4-R binding compound of formula (III): B-LI-A-L2-E (III) wherein B is an anchor moiety, L, and L2 are linking moieties, A is a cyclic moiety, E is a MC4-R interacting moiety, and pharmaceutically acceptable salts thereof.

The invention also pertains to treating MC4-R associated states with an MC4-R binding compound of formula III, wherein B is substituted or unsubstituted biaryl, unsubstituted or substituted heterocyclic, or unsubstituted or substituted phenyl, wherein one or more of said substituents are halogens, alkyl, alkynyl, alkoxy, aryl, amino, cyano, or nitro; Li is a covalent bond, C-Clo branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; E is substituted or unsubstituted alkyl, amino, amidino, guanidino, heterocyclic, or aryl, wherein said substituents are amino, arylalkyl, aminoalkyl, alkyl, aryl, alkenyl, or alkynyl; and A is a substituted or unsubstituted phenyl, heteroaryl, cycloalkyl, or biaryl, and pharmaceutically acceptable salts thereof.

In another embodiment, the invention pertains to a method for treating an MC4- R associated state in a mammal by administering an effective amount of a MC4-R binding compound to a mammal, such that the MC4-R associated state is treated. In this embodiment, the compound is of the formula (IV): ki v) wherein B is substituted or unsubstituted alkyl, cycloalkyl, alkenyl, alkynyl, aryl, or heteroaryl; A is aryl, heteroaryl, biaryl, cycloalkyl, heterocyclic, or cycloalkenyl; L, and L2 are selected from the group consisting of a covalent bond, Cl-C6 branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; r is a covalent bond, CH, CH2, CRI, CRlR2, or H; t is

CH, CH2, CR3, CR3R4, or H; s is CHR5, CR5, CR5R6 or absent (e. g., leaving a non- cyclic diamine); R is H, substituted or unsubstituted alkyl, arylalkyl, or heteroalkyl, and may optionally be linked to A, B, L 1, or L2; Rl, R2, R3, R4, R5, and R6 are each substituted or unsubstituted alkyl, alkenyl, halogen, thiol, or alkoxy, and may optionally be linked to form a carbocyclic or heterocyclic ring. Pharmaceutically acceptable salts of the MC4-R binding compound are also included.

The invention also pertains to methods for treating an MC4-R associated state in a mammal by administering an effective amount of a MC4-R binding compound of the formula(V): wherein B is substituted or unsubstituted biaryl, unsubstituted or substituted heterocyclic, or unsubstituted or substituted phenyl, wherein one or more of said substituents are halogens, alkyl, alkynyl, alkoxy, aryl, amino, cyano, or nitro; Li is a covalent bond, C-Clo branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; E is substituted or unsubstituted alkyl, amino, amidino, guanidino, heterocyclic, or aryl, wherein said substituents are amino, arylalkyl, aminoalkyl, alkyl, aryl, alkenyl, or alkynyl; FI is a covalent bond, a carbon atom, a nitrogen atom, heterocyclic, alkyl, cycloalkyl, or aryl; L3 is a covalent bond, Ci-Cc branched, unbranched or cyclic alkyl, wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms, carbonyl, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, or aminothiocarbonyl; and A is heterocyclic, aryl, alkoxy, amino, alkyl, alkenyl, alkynyl, or hydrogen; and X is 0,1 or 2, and pharmaceutically acceptable salts thereof.

In yet another embodiment, the invention also pertains to a method for treating an MC4-R associated state in a mammal by administering an effective amount of a MC4-R binding compound to a mammal, wherein the compound is an MC4-R antagonist, and is of the formula (VI):

wherein pl, p2, p3, P4, and P5 are optionally substituted carbon, sulfur, or nitrogen, and wherein one of pl, p2, p3, p4 and P5 may represent a covalent bond; Z,, Z2, Z3, Z4, and Z5 are optionally substituted carbon or nitrogen; Li is a covalent bond, C1-C10 branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; and J is an unsubstituted or substituted nitrogen containing heterocycle or a substituted or unsubstituted amino group, and pharmaceutically acceptable salts thereof.

In another embodiment, the MC4-R binding compound is of formula (VII): wherein Zl, Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; and P5areCH,Norsubstitutedcarbon.P1,P2,P3,P4,and In another embodiment, the MC4-R binding compound is of formula (VIII): Zl, Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; and p P2, p3, p4, and P5 are CH, N or substituted carbon.

The invention also pertains to MC4-R binding compound of the formula (IX):

wherein: p2 is CH, CF, CCl CBr, C-alkyl, C-alkoxy, C-CN, C-OH, or CI; P3 is CH, CF, CCl, CBr, C-alkyl, C-alkoxy, C-CN, C-OH, or CI; P4 is CH, CCl, CBr, CF, C-alkyl, C-alkoxy, C-CN, C-OH, or CI; G'and G 2are each independently CH2, S, or O; r is a covalent bond or CH2; t is CH2, CR3, or CR3R4; s is CH2, CHR5 or CR5R6; R is hydrogen or alkyl; Z'is CH, or covalently linked to Z2 to form a naphthyl ring; Z2 is CH, C-(C#CH), CCl, CBr, CI, CF, or covalently linked to Zl to form a naphthyl ring; Z5 is CH, or C-OMe; R3, R4, R5, and R6 are methyl, ethyl, hydroxyl, alkoxy, halogen, cyano, nitro, or amino, or pharmaceutically acceptable salts thereof.

The invention also features a pharmaceutical composition for the treatment of a MC4-R associated state in a mammal. The pharmaceutical compositions contain a pharmaceutically acceptable carrier and a MC4-R binding compound. The compounds are described herein in the context of the description of the method but it should be understood that the invention further pertains to pharmaceutical compositions containing the compounds and the compounds per se. For example, pharmaceutical compositions of

the invention include a pharmaceutically acceptable carrier and an effective amount of at least one MC4-R binding compound of the formula (I): B-Z-E (I) wherein B is an anchor moiety, Z is an central moiety, E is a MC4-R interacting moiety, and pharmaceutically acceptable salts thereof.

Brief Description of the Drawings Figures la and lb are bar graphs showing the effects of MT II (a MC4-R agonist) on food intake in lean mice.

Figure 2 is a graph depicting the effects of treating lean mice with Compound N and MT II on food intake over a six hour period.

Figure 3 is a graph depicting the effects of treating lean mice with Compound O and MT II on food intake over a six hour period.

Detailed Description of the Invention In one aspect, the invention pertains to a method for treating a melanocortin-4 receptor (MC4-R) associated state in a mammal. The method involves administering an effective amount of a MC4-R binding compound to a mammal, such that the MC4-R associated state is treated. The MC4-R binding compound is of the formula (I): B-Z-E (I) wherein B is an anchor moiety, Z is a central moiety, E is a MC4-R interacting moiety, and pharmaceutically acceptable salts thereof.

The term"MC4-R"includes receptors for a-melanocyte stimulating hormone.

The MC4-R is usually found in the brain where it is widely distributed (Mountjoy et al.

Mol. Endocrinol. (1994) 8: 1298-1308). Melanocortins are peptide hormones that play an important role in regulating melanocyte pigmentation as well as memory and

thermoregulation. They consist of various peptides, such as a-melanocyte stimulating hormone, that are cleaved from the polypeptide precursor prooptiomelanocortin (POMC). The effects of melanocortins are mediated via stimulation of adenylate cyclase via the activation of the melanocortin receptors.

The melancortin-4 receptor (MC4-R) is a G-protein coupled receptor (GPCR) expressed in brain tissue. The specific role of the MC4-R protein in vivo was investigated by engineering MC4-R"knock out"mice. The mice were unable to produce functional MC4-R protein, because the endogenous MC4-R gene coding sequence was deleted.

The knock-out mice were produced by using human MC4-r gene sequences to isolate and clone the murine MC4-r gene. A murine MC4-r targeting construct was then generated which was designed to delete the majority of the murine MC4-r coding sequence upon homologous recombination with the endogenous murine MC4-r gene.

Embryonic stem (ES) cells containing the disrupted MC4-r gene were produced, isolated and microinjected into murine blastocysts to yield mice chimeric for cells containing a disrupted MC4-r gene. Offspring of the chimeric mice resulting from germline transmission of the ES genome were obtained and animals heterozygous for the disrupted MC4-R were identified.

To assess the role of MC4-R in vivo, the animals heterozygous for the MC4-r disrupted gene were bred together, producing litters containing wild-type mice, mice heterozygous for the MC4-r mutation and mice homozygous for the MC4-R mutation.

The weight gain of the animals was monitored regularly. Homozygous null MC4-R mutants showed an increase in weight compared to mice heterozygous for MC4-R deletion and wild type mice as early as 25 days of age. By 54-58 days of age, MC4-R deficient mice exhibited, on average, a 55-70% greater weight relative to wild type mice, and an approximately 50% greater weight compared to mice heterozygous for the MC4-R deletion.

The language"MC4-R associated states"includes those states, disorders, or diseases characterized by aberrant or undesirable activity or expression of MC4-Rs. It also includes those states, disorders and diseases associated with MC4-R ligands (e. g., a-melanocyte stimulating hormone). The language also includes prevention of states, disorders and diseases characterized by aberrant or undesirable activity of MC4-Rs or its

ligands. Examples of MC4-R associated states include, but are not limited to, disorders involving pigmentation, weight homeostasis, e. g., weight loss or obesity. This can include the unhealthy decrease in body weight that can occur during an acute inflammatory response or that occurs in a cancer patient as a result of cachexia, radiotherapy or chemotherapy, or to the undesirable decrease in body mass due to simulated or actual weightlessness, such as occurs during space travel.

Other examples of unhealthy decreases occur in some patients during advance stages of illnesses such as AIDS. Physiologically, this may be a result from any one of a number of complex factors, such as loss of appetite and possibly abnormal catabolism.

This cachexia, may be slowed by MC4-R binding compounds. In a preferred embodiment of the invention, the weight loss is a result of old age, anorexia nervosa, or cachexia (e. g., cachexia associated with cancer or HIV).

In one further embodiment, the MC4-R associated state is not weight loss.

The term"mammal"includes organisms which express the MC4-R. Examples of mammals include mice, rats, cows, sheep, pigs, goats, horses, bears, monkeys, dogs, cats and, preferably, humans. Transgenic organisms which express the MC4-R are also included in this definition.

The language"MC4-R binding compound"includes those compounds which interact with the MC4-R resulting in modulation of the activity of the MC4-R. In an embodiment, the MC4-R binding compounds are antagonists of the MC4-R. The term "antagonist"includes compounds which interact with the MC4-R and modulate, e. g., inhibit or decrease, the ability of a second compound, e. g., a-melanocyte stimulating hormone or another MC4-R ligand, to interact with the MC4-R. In another embodiment, the MC4-R binding compounds is an agonist of the MC4-R. The term "agonists"includes compounds which interact with the MCR-4 and modulate, e. g., increase or stimulate, its activity and/or its ability to interact with a second compounds, e. g., a-melanocyte stimulaturing hormone.

MC4-R binding compounds can be identified through both in vitro (e. g., cell and non-cell based) and in vivo methods. These methods are described in detail in Examples 2,3,4, and 5.

The Scincillation Proximity Assay (SPA) is a non-cell based in vitro assay, described in Example 2. It can be used to identify compounds that interact with, e. g.,

bind to MC4-R. Such compounds may act as antagonists or agonists of MC4-R activity and may be used in the treatment of body weight disorders. One example of a qualitative measure of binding affinity of a MC4-R binding compound to MC4-R is its ICSO. Preferably, the MC4-R binding compound binds to the MC4-R with a binding affinity, for example, of about 50M or less, 20 iM or less, 10 uM or less, 5 u. M or less, 2.5 uM or less, or 1 nM or less. In an advantageous embodiment, the ICso of a MC4-R binding compounds is about 0.5 uM or less,, about 0.3 tM or less, about 0.1 uM or less, about 0.08 uM or less, about 0.06 pM or less, about 0.05 nM or less, about 0.04 uM or less, or, preferably, about 0.03 uM or less.

In the SPA, isolated membranes are used to identify compounds that interact with MC4-R. For example, in a typical experiment using isolated membranes, 293 cells may be genetically engineered to express the MC4-R. Membranes are be harvested by standard techniques and used in an in vitro binding assay. 25I-labeled ligand (e. g., l25I- labeled a-MSH, p-MSH, or ACTH) is bound to the membranes and assayed for specific activity; specific binding is determined by comparison with binding assays performed in the presence of excess unlabelled ligand.

To identify MC4-R binding compounds, membranes are incubated with labeled ligand in the presence or absence of test compound. Compounds that bind to the receptor and compete with labeled ligand for binding to the membranes-reduced the signal compared to the vehicle control samples. Preferably, the screens are designed to identify compounds that antagonize the interaction between MC4-R and MC4-R ligands such as a-MSH, (3-MSH and ACTH. In such screens, the MC4-R ligands are labeled and test compounds can be assayed for their ability to antagonize the binding of labeled ligand to MC4-R.

Cell based assay systems can also be used to identify MC4-R binding compounds. An example of a cell based assay system is the cAMP assay described in detail in Example 3. Cell based methods may use cells that endogenously express MC4- R for screening compounds which bind to MC4-R. Alternatively, cell lines, such as 293 cells, COS cells, CHO cells, fibroblasts, and the like, genetically engineered to express the MC4-R can also be used for screening purposes. Preferably, host cells genetically engineered to express a functional receptor that responds to activation by melanocortin peptides can be used as an endpoint in the assay; e. g., as measured by a chemical,

physiological, biological, or phenotypic change, induction of a host cell gene or a reporter gene, change in cAMP levels, adenylyl cyclase activity, host cell G protein activity, extracellular acidification rate, host cell kinase activity, proliferation, differentiation, etc.

To be useful in screening assays, the host cells expressing functional MC4-R should give a significant response to MC4-R ligand, preferably greater than 5-fold induction over background. Host cells should preferably possess a number of characteristics, depending on the readout, to maximize the inductive response by melanocortin peptides, for example, for detecting a strong induction of a CRE reporter gene: (a) a low natural level of cAMP, (b) G proteins capable of interacting with the MC4-R, (c) a high level of adenylyl cyclase, (d) a high level of protein kinase A, (e) a low level of phosphodiesterases, and (f) a high level of cAMP response element binding protein would be advantageous. To increase response to melanocortin peptide, host cells could be engineered to express a greater amount of favorable factors or a lesser amount of unfavorable factors. In addition, alternative pathways for induction of the CRE reporter could be eliminated to reduce basal levels.

In using such cell systems, the cells expressing the melanocortin receptor are exposed to a test compound or to vehicle controls (e. g., placebos). After exposure, the cells can be assayed to measure the expression and/or activity of components of the signal transduction pathway of the melanocortin receptor, or the activity of the signal transduction pathway itself can be assayed. For example, after exposure, cell lysates can be assayed for induction of cAMP. The ability of a test compound to increase levels of cAMP, above those levels seen with cells treated with a vehicle control, indicates that the test compound induces signal transduction mediated by the melanocortin receptor expressed by the host cell. In screening for compounds that may act as antagonists of MC4-R, it is necessary to include ligands that activate the MC4-R, e. g., a-MSH, P-MSH or ACTH, to test for inhibition of signal transduction by the test compound as compared to vehicle controls.

When it is desired to discriminate between the melanocortin receptors and to identify compounds that selectively agonize or antagonize the MC4-R, the assays described above may be conducted using a panel of host cells, each genetically engineered to express one of the melanocortin receptors (MC 1-R through MC5-R).

Expression of the human melanocortin receptors is preferred for drug discovery purposes. To this end, host cells can be genetically engineered to express any of the amino acid sequences shown for melanocortin receptors 1 through 5. The cloning and characterization of each receptor has been described: MC1-R and MC2-R (Mountjoy., 1992, Science 257: 1248-1251; Chhajlani & Wikberg, 1992 FEBS Lett. 309: 417-420); MC3-R (Roselli-Rehfuss et al., 1993, Proc. Natl. Acad. Sci., USA 90: 8856-8860; Gantz et al., 1993, J. Biol. Chem. 268: 8246-8250); MC4-R (Gantz et al., 1993, J. Biol. Chem.

268: 15174-15179; Mountjoy et al., 1994, Mol. Endo. 8: 1298-1308); and MC5-R (Chhajlani et al., 1993, Biochem. Biophys. Res. Commun. 195: 866-873; Gantz et al., 1994, Biochem. Biophys. Res. Commun. 200; 1234-1220), each of which is incorporated by reference herein in its entirety. Thus, each of the foregoing sequences can be utilized to engineer a cell or cell line that expresses one of the melanocortin receptors for use in screening assays described herein. To identify compounds that specifically or selectively regulate MC4-R activity, the activation, or inhibition of MC4- R activation is compared to the effect of the test compound on the other melanocortin receptors. In certain embodiments, it may be advantageous to select compounds of the invention selective for MC4-R, or, alternatively, it may be useful to select compounds which interact with other receptors as well.

In one further embodiment, the MC4-R binding compounds of the invention are more selective for the MC4-R than at least one other MC receptors, for example, more than twice as selective, at least ten times as selective, at least twenty times as selective, at least fifty times as selective, or at least one hundred times as selective.

In one further embodiment, the MC4-R binding compounds of the invention are more selective for the MC4-R than the MC1-R, for example, more than twice as selective, at least ten times as selective, at least twenty times as selective, at least fifty times as selective, or at least one hundred times as selective.

In one further embodiment, the MC4-R binding compounds of the invention are more selective for the MC4-R than the MC3-R, for example, more than twice as selective, at least ten times as selective, at least twenty times as selective, at least fifty times as selective, or at least one hundred times as selective.

In one further embodiment, the MC4-R binding compounds of the invention are more selective for the MC4-R than the MC5-R, for example, more than twice as

selective, at least ten times as selective, at least twenty times as selective, at least fifty times as selective, or at least one hundred times as selective.

In yet another further embodiment, the MC4-R binding compounds of the invention are more selective for the MC4-R receptor than at least one, two or three other MC receptors (such as, for example, MC1-R, MC3-R, or MC5-R). In a further embodiment, the MC4-R binding compounds are more selective for the MC4-R than MC1-R, MC3-R, and MC5-R. In a further embodiment, the MC4-R binding compounds as at least ten times as selective, at least twenty times as selective, at least fifty times as selective, or at least one hundred times as selective for the MC4-R than the MC1-R, MC3-R and the MC5-R.

As stated above, in an embodiment, the MC4-R binding compound includes compounds of the formula (I): B-Z-E (I) wherein B is an anchor moiety, Z is a central moiety, E is a MC4-R interacting moiety, and pharmaceutically acceptable salts thereof.

The language"anchor moiety" ("B") includes moieties which interact with the MC4-R, which may, advantageously, result in the binding of the MC4-R binding compound to the MC4-R. Examples of anchor moieties include substituted or unsubstituted alkyl (e. g., branched, straight chain, or cyclic (e. g., cyclohexane, cyclopentane)), alkenyl, alkynyl, aryl (e. g., substituted or unsubstituted phenyl, naphthyl, biphenyl, anthracenyl, fluorenyl, etc.), heterocyclic (e. g., thienyl, morpholinyl, piprazinyl, piperidinyl, etc.), and multicyclic (e. g., indolyl, benzothioenyl, etc.) moieties.

Other examples of anchor moieties include carbonyl moieties, thiol groups, cyano groups, amino groups, and hydrogen atoms.

In a further embodiment, the anchor moiety ("B") includes substituted or unsubstituted carbocyclic aryl moieties, e. g., phenyl, naphthyl, etc. Examples of substituents include halogens (e. g., fluorine, chlorine, iodine, bromine, etc.), alkoxy (e. g., methoxy, ethoxy, isopropoxy, n-propyloxy, n-butyloxy, pentoxy, cyclopentoxy, arylalkyloxy, etc.) hydroxy, alkylcarbonyl, cyano, nitro, thiol, alkenyl, alkynyl (e. g., ethynyl, etc.), alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, amino (including alkyl amino, dialkylamino,

arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, trifluoromethyl, azido, heterocyclyl, alkylaryl, heteroaryl, alkyl (e. g., unsubstituted (e. g., methyl, ethyl, propyl, butyl, hexyl, etc.) or substituted, e. g., halogen substituted, e. g., trifluoromethyl, trichloromethyl), aryl (e. g., substituted and unsubstituted phenyl, heteroaryl (e. g., thienyl, pyridinyl, etc.), arylalkyl, arylalkenyl, arylalkynyl, or combinations thereof. In yet another further embodiment, the anchor moiety substituent can be substituted itself with one or more halogen, nitro, alkyl, alkenyl, alkynyl, aryl or alkoxy groups, or combinations thereof. In certain embodiments, the aryl moiety is fused to another ring which can be substituted or unsubstituted, carbocyclic or heterocyclic, aromatic or non- aromatic.

In a further embodiment, the anchor moiety is substituted with at least one halogen, alkoxy group, or alkyl (e. g., substituted or unsubstituted) group. Examples of halogen substituted phenyl anchor moieties include o-iodophenyl, m-iodophenyl, o- bromophenyl, m-bromophenyl, o-chlorophenyl, m-chlorophenyl, o-fluorophenyl, m- fluorophenyl, p-fluorophenyl, m-nitrophenyl, or o-methoxy. The anchor moiety may also comprise more than one substituent, e. g. two halogens, e. g., two fluorines, a fluorine and a chlorine. Other examples of anchor moieties include 2-methoxy-5- bromophenyl, 2-methoxy-5-fluorophenyl, 2-methoxy-5-iodophenyl, 2-methoxy-5- fluorophenyl, 2-ethoxy-5-bromophenyl, 2-methoxy-6-bromophenyl, 3-methoxy-6- bromophenyl, 2-isopropyl-5-bromophenyl, 2-n-propyl-5-bromophenyl, and 2- cyclopentyloxy-5-bromophenyl.

Other examples of anchor moieties include, but are not limited to, 2-methoxy-5- cyanophenyl, 2-chloro-5-chlorophenyl, 2-methoxy-6-methoxyphenyl, 2-methoxy-5- nitrophenyl, 2-methoxy-5-phenyl phenyl, 2-methoxy-5-3'-thiofuranyl phenyl, 2- methoxy-5-methylcarbonyl phenyl, 3,5-dimethyloxy phenyl, 2-methoxyphenyl, 2,5- dimethoxy phenyl, 2-fluoro-6-chlorophenyl, and 3-chloro-4-fluorophenyl.

In another further embodiment, the anchor moiety includes substituted and unsubstituted heterocycles. Examples of such heterocycles include, but are not limited to, furanyl, imidazolyl, benzothiophenyl, benzofuranyl, quinolinyl, isoquinolinyl, benzodiozanyl, benzoxazolyl, benzothiazolyl, methylenedioxyphenyl,

ethylenedioxyphenyl, indolyl, thienyl, pyrimidyl, pyrazinyl, purinyl, deazapurinyl, morpholine, piprazine, piperidine, thiomorpholine, and thioazolidine. Examples of substituents include alkyl (e. g., substituted or unsubstituted, branched straight chain or cyclic, e. g., methyl, ethyl, propyl, butyl, pentyl, etc.), alkenyl, alkynyl, halogens (e. g., fluorine, chlorine, bromine, iodine, etc.), hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl, alkylaryl, aryl and heteroaryl groups.

In another further embodiment, the anchor moiety ("B") is a substituted or unsubstituted fused aryl or biaryl moiety. Biaryl moieties include moieties with two or more aromatic rings, which may be fused or connected through one or more covalent bonds. Examples include biphenyl, fluorene, anthracenyl, benzoquinazolinyl, and naphthyl. Examples of substituents of biaryl moieties include alkyl (e. g., substituted and unsubstituted, branched or straight chain, methyl, ethyl, propyl, butyl, pentyl, etc.), alkoxy (e. g., methoxy, ethoxy, propoxy, butoxy, pentoxy, cyclopentoxy, etc.), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, an aromatic heteroaromatic moiety, halogens (e. g., fluorine,. chlorine, bromine, iodine, etc.), combinations thereof and other groups which allow the MC4-R binding compound to perform its intended function. Biaryl moieties also include moieties which comprise one or more heterocycles, such as, benzothiofuranyl, benzothienyl, quinolinyl, benzothiophenyl, benzofuranyl, isoquinolinyl, benzodiozanyl, benzoxazolyl, benzothiazolyl, methylenedioxyphenyl, ethylenedioxyphenyl, and indolyl. Examples of

biaryl anchor moieties include naphthyl, 2-methoxynaphthyl, 2-methoxy-5-phenyl phenyl, 2-ethoxynaphthyl, 2-methoxy-5-thiofuranyl phenyl, 2-methyl naphthyl, 2-n- propyl naphthyl, benxothiofuranyl, 2-phenyl phenyl, 2-methoxy-5-4'methoxy-phenyl phenyl; 2-methoxy-5- (3'-fluoro-4'-phenyl) phenyl phenyl; 2-cyclopentoxynaphthyl; quinolinyl; and 2-methoxy-5- (3'-chloro-4'fluoro) phenyl phenyl.

Furthermore, the anchor moiety can be multicyclic and comprise a combination of one or more aromatic, non-aromatic, heterocyclic, and heteroaryl rings, which can be fused, bridged, or linked together through covalent bonds. The multicyclic anchor moiety may also be substituted with substituents such as alkyl (e. g., substituted or unsubstituted, branched straight chain or cyclic, e. g., methyl, ethyl, propyl, butyl, pentyl, etc.), alkenyl, alkynyl, halogens (e. g., fluorine, chlorine, bromine, iodine, etc.), hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl, alkylaryl, aryl and heteroaryl groups.

The term"central moiety" ("Z") includes moieties which covalently attach the anchor moiety to the MC4-R interacting moiety. Examples of central moieties include cyclic moieties, optionally substituted amines (e. g., tertiary amino, aminoalkylamino, dialkylaminoalkylamino, aminocarbonylamino, aminocarbonylamino; arylaminocarbonylamino groups; arylaminothiocarbonylamino), optionally substituted alkyl groups (e. g., carbon atoms with substituted or unsubstituted alkyl, aryl (e. g., phenyl, naphthyl), heterocyclic moieties (e. g., morpholinyl, piprazinyl, etc.), and carbonyl groups, etc. Examples of substituents of the central moiety include, for example, alkyl (e. g., straight, branched or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl), alkenyl (ethenyl, propenyl, butenyl, etc.), alkynyl (e. g., ethynyl, propynyl, etc.), halogen (e. g., chlorine, fluorine, iodine, bromine), hydroxyl, alkoxy (e. g., methoxy, ethoxy, trifluoromethoxy, trichloromethoxy, propoxy, butoxy, cyclopropoxy, etc.), alkylcarbonyloxy,

arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, arylalkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl (e. g., morpholinyl, piprazinyl, etc.), arylalkyl, alkylaryl and aryl (e. g., substituted or unsubstituted phenyl (e. g., alkyl, halogen, alkoxy substituted), naphthyl, anthracene, etc.) and heteroaryl moieties. Furthermore, the central moiety may further comprise one or more linking moieties. For example, the linking moieties may covalently link the cyclic moiety to the anchor moiety and/or the MC4-R interacting moiety.

The term"central moiety"also includes moieties of the formula (XII): wherein II is a covalent bond, a carbon atom, a nitrogen atom, heterocyclic, alkyl, carbocyclic, or aryl; L3 is a covalent bond, Ci-Ce branched, unbranched or cyclic alkyl (wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms), carbonyl, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, or aminothiocarbonyl moiety A is substituted or unsubstituted heterocyclic, aryl, alkoxy, amino, alkyl, alkenyl, alkynyl, or hydrogen; and ?, is 0,1 or 2.

In a further embodiment, rI is a carbon or nitrogen atom. In other embodiments, fI is alkyl, carbocyclic, heterocyclic (e. g., piprazinyl, morphonlinyl, piperidinyl, etc.).

In another further embodiment, A is heterocyclic (e. g., non-aromatic, e. g., substituted or unsubstituted, bridged, fused, or monocyclic, morpholinyl, piperidinyl,

azetidinyl, piprazinyl, etc. or aromatic, e. g., pyridinyl, pyrimidinyl, pyrrolyl, etc.), aryl e. g., phenyl, naphthyl) or amino (e. g., substituted or unsubstituted, e. g., alkylamino, dialkyl amino, etc.).

The language"cyclic moiety"includes heterocyclic and carbocyclic groups, such as substituted or unsubstituted phenyl, heteroaryl, or biaryl moieties. Examples of cyclic moieties include those without aromaticity (e. g., cyclohexane, cyclopentane, etc.) and those with aromaticity, e. g. moieties that have at least one aromatic ring. Cyclic moieties may include one or more heteroatoms. Examples include phenyl, pyrrole, furan, thiophene, imidazole, benzoxazole, benzothiazole, triazole, tetrazole, pyrazole, pyridine, pyrazine, pyridazine, pyrimidine, naphthyl, quinolyl, indolyl, and the like. The cyclic moiety can be substituted at one or more ring positions with such substituents such as, for example, alkyl (e. g., substituted or unsubstituted methyl, ethyl, propyl, butyl), alkenyl (ethenyl, propenyl, butenyl, etc.), alkynyl (e. g., ethynyl, propynyl, etc.), halogen (e. g., chlorine, fluorine, iodine, bromine), hydroxyl, alkoxy (e. g., methoxy, ethoxy, trifluoromethoxy, trichloromethoxy, propoxy, butoxy, cyclopropoxy, etc.), aryloxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl, alkylaryl, and aryl (e. g., substituted or unsubstituted phenyl, naphthyl) and heteroaryl moieties. The cyclic moiety can also be fused or bridged with alicyclic or heterocyclic rings which are not aromatic so as to form a polycycle (e. g., tetralin, or fluorene).

In an embodiment, the cyclic moiety of the present invention is substituted or unsubstituted phenyl, heteroaryl, or biaryl. The language"cyclic moiety"also includes non-aromatic cyclic moieties, such as, substituted or unsubstituted cyclic alkanes, (e. g., cyclohexane, and cyclopentane), cyclic alkenes (e. g., cyclohexene), and substituted or unsubstituted heterocycles (e. g., thiofuran, pyrimidine, pyrazine, pyrrole, imidazole, quinoxaline, etc.). The language"cyclic moiety"comprises not only the heterocyclic or carbocyclic moieties, but also may additionally include moieties which further comprise

linking moieties, such as Li and L2 which, for example, may link the anchor moiety to the carbocyclic or heterocyclic cyclic portion of the cyclic moiety. Furthermore, linking moieties may also link the heterocyclic or carbocyclic cyclic moiety to the MC4-R interacting moiety. Examples of cyclic moieties include unsubstituted phenyl, halogenated phenyl (e. g., fluoro, bromo, chloro and iodo phenyl), alkyl substituted phenyl (e. g., methyl, ethyl, propyl, etc.), amino substituted phenyl, heteroaryls (e. g., thiofuran, pyridine, quinoxaline, pyrazine, pyrrole, etc.).

The language"MC4-R interacting moiety" ("E") includes moieties which permit the MC4-R binding compound to perform its intended function, e. g., interact with the MC4-R. Examples of MC4-R interacting moieties include substituted or unsubstituted alkyl (e. g., substituted with amino, cyano, nitro, hydroxy, etc.), aryl (e. g., phenyl, heteroaryl), amino (e. g., 3-aminopropylamino, dimethyl amino, diethyl amino), amidino, guanidino, carbocyclic and heterocyclic moieties. The language"MC4-R interacting moiety"is not intended to suggest that this moiety is the active pharmacophore of the molecule, responsible for the pharmacological, binding or other properties of the MC4-R binding compound.

In one embodiment, the MC4-R interacting moiety is cyclic, e. g., aryl, alkyl, biaryl, polycyclic, heteroaromatic, or heterocyclic. Examples of heterocyclic MC4-R interacting moieties include heterocycles which contain nitrogen atoms, such as, substituted and unsubstituted pyridinyl, pyrrolyl, piprazinyl, imidoazopyridinyl, pyrolloimidazolyl, pyrrolyl, azetidinyl, azapanyl, pyrimidinyl, pyridinyl, morpholinyl, diazapanyl, and piperidinyl moieties. The MC4-R interacting moiety may be bicyclic, polycyclic, bridged or a fused ring system. Examples of fused and bridged heterocycles include:

The substituent R includes substituted and unsubstituted alkyl (e. g., methyl, ethyl, etc.), benzocarbonyl, alkylcarbonyl, arylalkylcarbonyl, and other groups which allow the MC4-R interacting moiety to perform its intended function.

The MC4-R interacting moiety can be substituted with substituents such as, but not limited to, halogens (e. g., fluorine, chlorine, bromine, iodine, etc.), alkyl (e. g., substituted or unsubstituted, branched straight chain or cyclic, e. g., methyl, ethyl, propyl, butyl, pentyl, etc.), alkenyl, alkynyl, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, aminoalkyl, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl, alkylaryl, aryl, heteroaryl moieties and combinations thereof.

In another embodiment, the MC4-R interacting moiety is not cyclic, e. g., the MC4-R interacting moiety is alkyl, unsubstituted amino, alkylamino, dialkylamino, amidino, guanidino, etc. Examples of alkyl MC4-R interacting moieties include straight and branched chain alkyls such as n-butyl, n-pentyl, and n-hexyl.

In another embodiment, the MC4-R interacting moiety contains one or more nitrogen atoms, e. g., pyridinyl, pyrrolyl, pyrazinyl, imidazolyl, quinoxalinyl, or pyrimidinyl. In a further embodiment, the MC4-R interacting moiety is of the formula (XIII): wherein r is a covalent bond, CH, CH2, CRI, CRtR2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHR5, COR6, or absent;

R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to A, B, Li, L2, R', R2, R3, R4, R5, or R6 to form one or more rings; R', R2, R3, R4, R5, and R6 are each substituted or unsubstituted alkyl, alkenyl, alkynyl, heterocyclic, halogen, thiol, hydroxyl, nitro, amino, cyano, or alkoxy, and may optionally be linked to form a carbocyclic or heterocyclic ring. The carbocyclic ring that is formed through the linkage of R, R', R2, R3, R4, R5, or R6 may be bridged, fused, or spiro.

In one embodiment, the MC4-R interacting moiety is represented by the formula (XIV) below, when s is absent: For example, in another further embodiment, the MC4-R interacting moiety may be bicyclic, e. g., biheterocyclic, for example, quinoxalinyl. The language"linked to form a ring"refers to moieties covalently connected through a chain of atoms (e. g., carbon atoms and/or heteroatoms). The chain of atoms can comprise any number of atoms, which allow the MC4-R binding moiety to perform its intended function. In a further embodiment, the chain of atoms is selected such that a ring with three, four, five, six, seven, or eight members are formed. The ring that can be formed may be spiro (e. g., connected through the same carbon atom), fused (connected through adjacent carbon atoms), or bridged (e. g., connected through carbon atoms which are neither identical nor adjacent). In an embodiment, R and t are linked, e. g., to for a bicyclic moiety. Examples of bicyclic moieties include, but are not limited to, imidazopyridinyl, pyrolloimidazolyl, cyclopentaimidazolyl, pyridopyrimidinyl, etc.

In a further embodiment R is H, alkyl, benzocarboxy, alkylcarboxy, or arylalkylcarboxy. In another further embodiment, s is CRsR6 and R5 and R6 are each methyl. In another further embodiment, r is a covalent bond, and at least one of t and s are CH2. In another, t, r, and s are each CH2. In another, r is a covalent bond, and t and s are linked through a 4 carbon chain. In another further embodiment, at least one R group is OH.

Examples of MC4-R interacting moieties include, but are not limited to, the followingstructures:

In another embodiment, the invention pertains to a method for treating an MC4- R associated state in a mammal, by administering an effective amount of a MC4-R binding compound to a mammal, such that the MC4-R associated state is treated.

Examples of MC4-R binding compounds include compounds comprising the formula (II) : B-A-E (II) wherein: B is a anchor moiety;

A is a cyclic moiety; and E is a MC4-R interacting moiety, and pharmaceutically acceptable salts thereof.

The MC4-R binding compounds of formula (II), may further comprise linking moieties, L I and L2. Such MC4-R binding compounds include compounds of the formula (III): B-L,-A-L2-E (III) wherein B is an anchor moiety (as described above), L and L2 are linking moieties, A is a cyclic moiety (as described above), and E is a MC4-R interacting moiety. Pharmaceutically acceptable salts of the MC4-R binding compound are also included.

The language"linking moiety"includes moieties which link, preferably covalently, the MC4-R interacting moiety, the cyclic moiety, and the anchor moiety of the invention. Examples of linking moieties include covalent bonds, 1-10 atom chains which may be branched or unbranched, substituted or unsubstituted alkyl, heterocyclic, alkenyl, or alkynyl. The chains may be substituted with 0-3 heteroatoms or other moieties which allow the MC4-R binding compound to perform its intended function.

Examples of suitable heteroatoms include sulfur, oxygen, nitrogen, and phosphorous.

The invention contemplates MC4-R binding compounds which comprises more than two linking moieties.

In an embodiment, L I is a chain of 1-10 atoms (e. g., such as carbon, nitrogen, oxygen, or sulfur atoms), e. g., 1,2,3,4,5,6,7,8,9 or 10 atoms. In an embodiment, L, is selected from the group consisting of a covalent bond, Cl-C6, Cl-Cs, Cl-C4, Cl-C3, Cl- C2, branched or unbranched alkyl, wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms. In a further embodiment, LI is a thioether (e. g.,-S-CH2-, S-CH (CH3)-,-CH2-S-CH2,-S-, or-S-CH- (C6H5)-.), an ether (e. g., -O-CH2 or-CH2-O-CH2-), a sulfoxide, a sulfone, an amine (e. g.,-NH-,-NH- CH2-,-NMe-CH2-, CH2-NH-CH2-, etc.) or alkyl (e. g.,-CH2-CH2-,-CH2-, or-CH2-CH2- CH2-). In another embodiment, L I comprises a sulfonyl group. Furthermore, Li can be substituted or unsubstituted (e. g., a hydrogen can be replaced by another moiety), such that the MC4-R binding compound is capable of performing its intended function, e. g., bind to or interact with the MC4-R. Examples of substituents include, but are not

limited to, halogens (e. g., fluorine, chlorine, bromine, iodine, etc.), alkyl (e. g., substituted or unsubstituted, branched straight chain or cyclic, e. g., methyl, ethyl, propyl, butyl, pentyl, etc.), alkenyl, alkynyl, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl, alkylaryl, aryl heteroaryl moieties, or combinations thereof.

In an embodiment, examples of L2 include a covalent bond, a chain of 1-10 atoms (e. g., such as carbon, nitrogen, oxygen, or sulfur atoms), e. g., 1,2,3,4,5,6,7,8, 9 or 10 atoms. In an embodiment, L 1 is selected from the group consisting of a covalent bond, C,-C6, Cl-C5, Cl-C4, Cl-C3, Cl-C2, branched or unbranched alkyl, wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms.. In a further embodiment, L2 is a covalent bond,-CH2-or-NH-. Furthermore, L2 may also comprise one or more carbonyl groups. For example, L2 linkers include substituted urea groups (NH-C=O-NH), oxycarbonylamino groups (-O-C=O-NH), thiocarboynl groups, etc.

Furthermore, like Ll, L2 can be substituted with any substituent such that the MC4-R binding compound is capable of performing its intended function. Examples of substituents include, but are not limited to, halogens (e. g., fluorine, chlorine, bromine, iodine, etc.), alkyl (e. g., substituted or unsubstituted, branched straight chain or cyclic, e. g., methyl, ethyl, propyl, butyl, pentyl, etc.), alkenyl, alkynyl, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl,

sulfonamido, nitro, trifluoromethyl, azido, heterocyclyl, alkylaryl, aryl and heteroaryl moieties.

In a further embodiment, the MC4-R binding compound is of formula (III) (e. g., B-LI-A-L2-E), wherein B is substituted or unsubstituted biaryl (e. g., substituted or unsubstituted biphenyl, naphthyl, fluorenyl), unsubstituted or substituted heteroaryl (e. g., thienyl, benzothienyl, furanyl, pyrazinyl, pyrrolyl, pyrrolidinyl, etc.), unsubstituted or substituted phenyl, wherein one or more of said substituents are selected from the group consisting of halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n-propoxy, isobutoxy, n-butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido; Li is a covalent bond, Cl-C, o branched or unbranched alkyl, wherein one or more of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; A is a substituted or unsubstituted phenyl, heteroaryl (e. g., pyrrolyl, pyrazinyl, pyridinyl, etc.), or biaryl (e. g., naphthyl, quinoxalinyl, purinyl, etc.) wherein said substituent is selected from the group consisting of halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n-propoxy, isobutoxy, n- butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl,

phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido; L2 is a covalent bond, a chain of 1-10 atoms (e. g., such as carbon, nitrogen, oxygen, or sulfur atoms), e. g., 1,2,3,4,5,6,7,8,9 or 10 atoms. In an embodiment, Li is selected from the group consisting of a covalent bond, Cl-C6, Cl-C5, Cl-C4, Cl-C3, Cl- C2, branched or unbranched alkyl, wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms, substituted or unsubstituted amino (e. g.,-NH-,-NH-CH2), ether, thioether, or alkyl (e. g., Ci-Cio,-CH2-,-CH2-CH2-, or-CH2-CH2-CH2-, etc.); E is unsubstituted amino, unsubstituted and substituted alkylamino (e. g., 3- aminopropylamino), dialkylamino (e. g., dimethyl amino, diethyl amino), amidino, guanidino, heterocyclic (e. g., substituted and unsubstituted piprazinyl, morpholinyl, piperidinyl, imidoazopyridinyl, pyrolloimidazolyl, pyridinyl, or pyrimidinyl) moieties, aryl (e. g., phenyl, heteroaromatic, e. g., substituted and unsubstituted pyrazinyl, imidazolyl, quinoxalinyl, or pyrimidinyl), wherein said substituents include, but are not limited to, amino (e. g., unsubstituted amino, alkylamino, dialkyl amino), aminoalkyl (e. g., methylamino, ethylamino, propylamino, etc.), alkyl (e. g., branched and straight chain, substituted and unsubstituted (e. g., carboxy, hydroxy, halogen, amino, cyano, nitro, etc. substituted), methyl, ethyl, propyl, butyl, etc.), aryl (e. g., phenyl, heteroaromatic), alkenyl (e. g., branched or straight chain, substituted or unsubstituted), alkynyl, etc, and pharmaceutically acceptable salts thereof.

In another embodiment, the invention pertains to a method for treating an MC4- R associated state in a mammal by administering an effective amount of a MC4-R binding compound to a mammal, such that the MC4-R associated state is treated. In an embodiment, the compound is of the formula (IV):

wherein A is a substituted or unsubstituted phenyl, heteroaryl (e. g., pyrrolyl, pyrazinyl, pyridinyl, etc.), or biaryl (e. g., naphthyl, quinoxalinyl, purinyl, etc.) wherein said substituent is selected from the group consisting of halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n-propoxy, isobutoxy, n- butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido; B is substituted or unsubstituted biaryl (e. g., substituted or unsubstituted biphenyl, naphthyl, fluorenyl), unsubstituted or substituted heteroaryl (e. g., thienyl, benzothienyl, furanyl, pyrazinyl, pyrrolyl, pyrrolidinyl, etc.), unsubstituted or substituted phenyl, wherein one or more of said substituents are-selected-from the. group consisting of halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n-propoxy, isobutoxy, n-butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl,

aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido; Li and L2 are selected from the group consisting of a covalent bond, Cl- C4 branched or unbranched, substituted or unsubstituted alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; r is a covalent bond, CH, CH2, CRI, CRIS2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CHRs, CRsR6 or absent (e. g., leaving a non-cyclic diamine); R is H, substituted or unsubstituted alkyl, arylalkyl, or heteroalkyl, and may optionally be linked to A, B, Li, or L2; R', R2, R3, R4, R5, and R6 are each substituted or unsubstituted alkyl, halogen, thiol, alkoxy, and may be optionally linked to each other to form additional ring moieties, e. g., quinoxalinyl. Pharmaceutically acceptable salts of the MC4-R binding compounds are also included.

In one further embodiment, A is substituted or unsubstituted phenyl. Examples of substituents include halogens (e. g., fluorine, chlorine, iodine, bromine), alkoxy, alkyl (e. g., methyl, trifluoromethyl), and amino moieties. In other embodiments, A is heteroaromatic, (e. g., thienyl), or biaryl, (e. g., napthyl or quinoxalinyl).

The invention also pertains to methods for treating an MC4-R associated state in a mammal comprising by administering an effective amount of a MC4-R binding compound of the formula (V): B is substituted or unsubstituted biaryl, unsubstituted or substituted heterocyclic, or unsubstituted or substituted phenyl, wherein one or more of said substituents are halogens, alkyl, alkynyl, alkoxy, aryl, amino, cyano, or nitro;

L 1 is a covalent bond, C,-CIO branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; E is substituted or unsubstituted alkyl, amino, amidino, guanidino, heterocyclic, or aryl, wherein said substituents are amino, arylalkyl, aminoalkyl, alkyl, aryl, alkenyl, or alkynyl; fI is a covalent bond, a carbon atom, a nitrogen atom, heterocyclic, alkyl, carbocyclic, or aryl; L3 is a covalent bond, Cl-C6 branched, unbranched or cyclic alkyl (wherein one, two or three of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms), carbonyl, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, or an aminothiocarbonyl moiety; and A is substituted or unsubstituted heterocyclic, aryl, alkoxy, amino, alkyl, alkenyl, alkynyl, or hydrogen; and X is 0,1 or 2, and pharmaceutically acceptable salts thereof.

Examples of MC4-R binding compounds with this structure include, but are not limited to, compounds, wherein fol is a carbon atom, L3 is aminocarbonyloxy, A is substituted aryl, X is one, Li and L2 are each CH2, and B and E are each pipridinyl.

Examples of substituents for A include but are not limited to, alkoxy (e. g., Cl-Cl0 alkoxy, e. g., methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy, nonoxy, and decoxy), cyano, halogens (e. g., fluorine, chlorine, bromine, iodine), alkyl (e. g., straight or branched chain, etc.), aryl, alkenyl, alkynyl, nitro, amino, or any other substituents which enables the MC4-R binding compound to perform its intended function, e. g., treat an MC4-R associated state.

Other examples of compounds of formula (V) include, but are not limited to, compounds wherein I1, L2 and L3 together are a single covalent bond, E is alkyl, and B is substituted or unsubstituted heterocyclic. In other compounds of formula (V), rI is a nitrogen atom, L2, Li and L3 are each alkyl, E is substituted amino (e. g., alkyl substituted), or heterocyclic (e. g., piprazinyl, piperidinyl, morpholinyl, etc.) and B and A are each aryl (e. g., phenyl, anthracenyl, biaryl, e. g., naphthyl).

In another further embodiment, the invention pertains to yet another method for treating an MC4-R associated state in a mammal by administering to a mammal an effective amount of a MC4-R binding compound of the formula (VI):

wherein P', p2, p3 and P4 are optionally substituted carbon, sulfur, or nitrogen, and wherein one of Pt, p2, P3, and p4 may represent a covalent bond; Zl, Z2, Z3, Z4, and Z5 are optionally substituted carbon or nitrogen; Ll is a covalent bond, Cl-C6 branched or unbranched alkyl, wherein one or two of the carbons are optionally replaced with oxygen, sulfur or nitrogen atoms; L2 is a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; J is an unsubstituted or substituted nitrogen containing heterocycle or a substituted or unsubstituted amino group, and pharmaceutically acceptable salts thereof.

Examples of substituents of PI, p2, p3, p4, Zl, Z2, Z3, Z4, and Z5 include halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n- propoxy, isobutoxy, n-butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido groups.

In a further embodiment, P', p2, P3, and P4 are each substituted or unsubstituted carbon (e. g., CH). For example, pl and P3 may be CH. In another further embodiment, p2 and P4 are each CH, CF, CCl, CBr, CI, CMe, C-OMe, or C-OCF3.

In a third further embodiment, Z3 and Z4 are each CH.

In a fourth further embodiment, Z'is CH, or covalently linked to Z2 to form a naphthyl ring. Examples of Z2 include CH, C- (C=CH), CCI, CBr, CI, and CF.

Furthermore, Z2 may be substituted with a chain of atoms which covalently links it to Z' to form a naphthyl ring.

Examples ouf vs include, but are not limited to, CH and C-alkoxy. The term"C- alkoxy"includes carbon atoms covalently bound to an alkoxy group, as described below. Examples of alkoxy groups include methoxy, ethoxy, propoxy, butoxy, etc.

In yet another further embodiment, L2 is a covalent bond.

Examples of J include, but are not limited to, substituted or unsubstituted piprazinyl, imidoazopyridinyl, pyrolloimidazolyl, pyrrolyl, azetidinyl, azapanyl, diazapanyl, pyrimidinyl, pyridinyl, morpholinyl, or piperidinyl. Furthermore, J may be a substituted or unsubstituted fused ring or bridged heterocycle.

In a further embodiment, each of P1, p2, P3, and P4 are each optionally substituted carbon; Z1,Z2,Z3,Z4, and Z5 are each also optionally substituted carbon (e. g., alkoxy substituted, halogen substituted or linked to form a ring); wherein Li is either-S-CH2-, or CH2-CH2. In a further embodiment, L2 is a covalent bond and J is a moiety of formula XIII, as described above.

In another embodiment, the MC4-R binding compound is of formula (VII): wherein Z', Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; and P1,P2,P3,P4, and P5 are CH, N or substituted carbon.

substituentsofZ1,Z2,Z3,Z4,Z5,P1,P2,P3,P4,andP5includeExample sof halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n-propoxy, isobutoxy, n-butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido groups.

In a further embodiment, P1, p2, P3, P4 and P5 are each substituted or unsubstituted carbon (e. g., CH). For example, Pl and p3 may be CH. In another further embodiment, P2 and P4 are each CH, CF, CCI, CBr, or CI. Furthermore, pl, p2, p3, and P4 can be linked covalently to form a bicyclic ring.

In a third further embodiment, Z3 and Z4 are each CH.

In a fourth further embodiment, Z'is CH, or covalently linked to Z2 to form a naphthyl ring. Examples of Z2 include CH, C- (C=-CH), CCI, CBr, CI, and CF.

Furthermore, Z2 may be substituted with a chain of atoms which covalently links it to zl to form a naphthyl ring.

In a further embodiment, p5 is C-L2-J, wherein C is a carbon atom, L2 is a linking moiety, e. g., a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; and J is an unsubstituted or substituted nitrogen containing heterocycle or a substituted or unsubstituted amino group. In yet a further embodiment, L2 is a covalent bond and J is a moiety of formula (XIII):

wherein r is a covalent bond, CH, CH2, CRI, CR'R, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, alkenyl, CHERS, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to A, B, Li, L2, Rl, le R3, R4, R5, or R6 to form one or more rings; and R', R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R6.R,R1,R2,R3,R4,R5or In another embodiment, the MC4-R binding compound is of formula (VIII): wherein Zl, Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; and P', P2, p3, p4, and P5 are CH, N or substituted carbon. substituentsofZ1,Z2,Z3,Z4,Z5,P1,P2,P3,P4,andP5includeExample sof halogens (e. g., bromine, fluorine, chlorine, iodine, etc.), alkyl groups (e. g., branched, straight chain or cyclic, substituted or unsubstituted, methyl, ethyl, propyl, butyl, etc.), alkoxy groups (e. g., substituted or unsubstituted alkoxy, e. g., methoxy, ethoxy, isopropoxy, n-propoxy, isobutoxy, n-butoxy, pentoxy, cyclopentoxy, methylenedioxy, ethylenedioxy, etc.), aryl groups (e. g., substituted or unsubstituted phenyl, heterocyclic groups), alkenyl, alkynyl, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido),

amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, and azido groups.

In a further embodiment, P', p2, P3, and P4 are each substituted or unsubstituted carbon (e. g., CH). For example, P1 and P3 may be CH. In another further embodiment, P2 and P4 are each CH, CF, CCl, CBr, or CI. Furthermore, P', P2, p3, and P4 can be linked covalently to form a bicyclic ring.

In a third further embodiment, Z3 and Z4 are each CH.

In a fourth further embodiment, Z'is CH, or covalently linked to Z2 to form a naphthyl ring. Examples of Z2 include CH, C-(C#CH), CCl, CBr, CI, and CF. <BR> <BR> <BR> <P>Furthermore, Z2 may be substituted with a chain of atoms which covalently links it to Z' to form a naphthyl ring.

In a further embodiment, p5 is C-L2-J, wherein C is a carbon atom, L2 is a linking moiety, e. g., a covalent bond, substituted or unsubstituted amino, ether, thioether, or alkyl; and J is an unsubstituted or substituted nitrogen containing heterocycle or a substituted or unsubstituted amino group. In yet a further embodiment, L2 is a covalent bond and J is a moiety of formula (XIII): (XIII) wherein r is a covalent bond, CH, CH2, CRI, CRIR2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, alkenyl, CHR5, CR'R', or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to A, B, L1, L2, Rl, R2, R3, R4, R5, or R6 to form one or more rings; and R', R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, aryl, hydroxyl, nitro, amino, cyano, optionally linked to form a ring with R, R1, R, R, R4, R, or R6.

In another embodiment, the invention pertains to MC4-R binding compounds of formulae VII and VIII. Examples of MC4-R binding compound of these formulae include, for example, compounds wherein P5 is a carbon covalently bonded to a moiety of formula XIII. In a further embodiment, the moiety of formula XIII is not benzoimidazole. In another further embodiment, Z3 is not ethoxy. In another embodiment, the invention pertains to both methods of using and MC4-R binding compounds of formula (IX): wherein: P2 is CH, CF, CCI, CBr, C-alkyl, C-alkoxy, C-CN, C-OH, or CI; P3 is CH, CF, CCI, CBr, C-alkyl, C-alkoxy, C-CN, C-OH, or CI; P4 is CH, CCl, CBr, CF, C-alkyl, C-alkoxy, C-CN, C-OH, or CI; G'and G 2are each independently CH2, S, or O; r is a covalent bond or CH2; t is CH2, CR3, or CR3R4; s is CH2, CHERS or CR5R6; R is hydrogen or alkyl; Z'is CH, or covalently linked to Z2 to form a naphthyl ring; Z2 is CH, C- (C-CH), CCI, CBr, CI, CF, or covalently linked to Z'to form a naphthyl ring; Zizis CH, or C-OMe; R3, R4, R5, and R6 are methyl, ethyl, hydroxyl, alkoxy, halogen, cyano, nitro, amino, or pharmaceutically acceptable salts thereof.

The language"linked to form a naphthyl ring"includes moieties which join Z1 and Z2 to form a naphthyl (fused) ring system. Examples of such Z'and Z2 groups include, but are not limited to,-CH=CH-CH=CH-.

In a further embodiment, Z'is CH; Z2 is CBr; and Z5 is C-OMe.

In another further embodiment, p2 is CH. In another, P4 is CCl or CF. G'and G2 are each CH2. In another, G1 and G2 together are -CH2-CH2-, -CH2-O-, -O-CH2-, -CH2- S-or-S-CH2-. In another, Z'and Z2 are linked to form a naphthyl ring.

The invention pertains to MC4-R binding compound of the formula (VII):

wherein Zl, Z2, Z3, Z4, and Zs are CH, N, or substituted carbon; P1,P2,P3, and P4 are CH, N or substituted carbon; and P5 is C-L2-J, wherein L2 is a covalent bond, alkyl (e. g., Cl-C3), amino, ether, carbonyl, etc., and wherein J is a moiety of the formula (XIII):

wherein r is a covalent bond, CH, CH2, CRI, CRIS2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHERS, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to R', R2, R3, R4, R5, or R6 to form one or more rings; and

Rl, R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R6.or The invention also pertains to MC4-R binding compound of the formula (VIII):

wherein Z', Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; P4areCH,Norsubstitutedcarbon;andP1,P2,P3,and P5 is C-L2-J, wherein L2 is a covalent bond, alkyl (e. g., Cl-C3), amino, ether, carbonyl, etc., and wherein J is a moiety of the formula (XIII):

(XIII) wherein r is a covalent bond, CH, CH2, CR', CR1R2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHUS, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to Rl, R2, R3, R4, R5, or R6 to form one or more rings; and Rl, R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R6.or The invention also pertains to MC4-R binding compound of the formula (XV):

wherein Zl, Z2, Z3, Z4, and Z5 are CH, N, or substituted carbon; P4areCH,Norsubstitutedcaron;andP1,P2,P3,and P5 is C-L2-J, wherein L2 is a covalent bond, alkyl (e. g., Cl-C3), amino, ether, carbonyl, etc., and wherein J is a moiety of the formula (XIII): wherein r is a covalent bond, CH, CH2, CRI, CRIS2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHR5, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to R', R2, R3, R4, R5, or R6 to form one or more rings; and Rl, R2, R3, R4, R5, and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R, R1, R2, R3 R4 Rs or R6 The invention also pertains to MC4-R binding compound of the formula (XVI):

wherein Z', Z2, Z3, Z4, and Zs are CH, N, or substituted carbon; P1,P2,P3, and P'are CH, N or substituted carbon; and P5 is C-L2-J, wherein L2 is a covalent bond, alkyl (e. g., Cl-C3), amino,. ether, carbonyl, etc., and wherein J is a moiety of the formula (XIII): wherein r is a covalent bond, CH, CH2, CRI, CRIR2, or H; t is CH, CH2, CR3, CR3R4, or H; s is CH, CH2, CHR5, CR5R6, or absent; R is hydrogen, alkyl, alkenyl, arylalkyl, benzocarbonyl, arylalkylcarbonyl, alkylcarbonyl, optionally linked to Rl, R2, R3, R4, R5, or R6 to form one or more rings; and Rl, R2, R3, R4, Rs and R6 are each halogen, thiol, alkoxy, alkyl, alkenyl, alkynyl, heterocyclic, hydroxyl, nitro, amino, cyano, aryl, optionally linked to form a ring with R6.or In a further embodiment, the invention includes compounds wherein PI, p2, p3, and P4 of any one of formulas VII, VIII, XV, or XVI are each substituted or unsubstituted carbon. For example, in one embodiment, P1 is CH. In another example, at least one of P2, P3 and P4 is a substituted carbon. In a further embodiment, P2, p3 and P4 are selected from the group consisting of CH, CF, Cl, CBr, C-alkyl, C-alkyoxy, or CI.

In another embodiment, the compounds of formulae VII, VIII, XV, or XVI, include compounds wherein Z3 and Z4 are each CH. In another further embodiment of the formulae, Z is CH. For example, in another further embodiment, Z'is covalently linked to Z2 to form a naphthyl ring. Z2 is CH, C- (C=CH), CCI, CBr, CI, and CF.

In another further embodiment, the compounds of the invention include compounds of formulae VII, VIII, XV, or XVI, wherein L2 is a covalent bond. Also included are compounds wherein R is H, alkyl, benzocarboxy, alkylcarboxy, or arylalkylcarboxy.

In another further embodiment, the compounds of the invention include compounds of formulae VII, VIII, XV, or XVI, wherein s is CRsR6 and Rs and R6 are each methyl. In another example r is a covalent bond. Alternatively, each of t, r and s may be CH2.

In one further embodiment, the MC4-R binding compounds of the invention of formula VII do not include benzoimadazole as the moiety of formula XIII, when P', p2, p3, P4, Z1,Z2,Z4,Z3, and Z5 are each CH. Furthermore, in another further embodiment, the compounds of the invention do not include compounds wherein the moiety of formula XIII is tetrahydropyrimidine, when P, p2, P3, p4, zl, Z2, Z4, and Zs are each CH and Z3 is C-OEt or CH.

In another further embodiment, the MC4-R binding compounds of the invention of formula VIII, do not include compounds wherein the moeity of formula XIII is benzoimidazolyl. In another further embodiment, the MC4-R binding compounds of the invention of formula VIII, do not include compounds wherein p2 iS not Cl, if pl, P3, or P4 are CH. In another further embodiment, the MC4-R binding compounds of the invention of formula VIII, do not include compounds wherein P', p2, p3, P4, zl, Z2, Z4, Z3, and Zs are each CH, when the moiety of formula XIII is tetrahydropyrimidine. In another further embodiment, the compounds of formula VIII of the invention do not include compounds wherein the moiety of formula is 4,5-dihydro-lH-imidazole, when pl, p2, p3, and p4 are each CH, and wherein one or two of Z1, Z2, or Z3 is CCI, and the remaining Z groups are CH. In another further embodiments, the MC4-R binding compounds of formula VIII of the invention, do not include compounds wherein the moiety of formula XIII is tetrahydropyrimidine, and when P', p2, p3, and P4 are each CH, and Z2 is CCI and the remaining Z groups are CH. In another further embodiments,

the compounds of formula VIII of the invention, do not include compounds wherein when the moiety of formula XIII is tetrahydropyrimidine, and when pl, p2, p3, and P4 are each CH, and Z'and one of Z4 or Zs are CCI and the remaining Z groups are CH.

In another further embodiment, the MC4-R binding compounds of the invention do not include compounds of formula XV, wherein the moiety of formula VIII is not benzoimidazole if P', p2, p3, p4 are each CH, and wherein Z2 is CMe and the remaining Z groups are CH.

In another further embodiment, the MC4-R binding compounds of the invention do not include compounds of formula XVI, wherein the moiety of formula XVI, wherein L2 is not NH (e. g., amino), if pl, p2, p3, p4, Zl, Z2, Z4, Z3, and Z5 are each CH. In another embodiment, the MC4-R binding compounds of formula XVI of the invention do not include compounds wherein P groups are substituted to form a naphthyl ring.

In another embodiment, the invention features a method for treating an MC4-R associated state in a mammal by administering an effective amount of a MC4-R binding compound to a mammal. Compounds of formula (X) are also included in the invention.

In this embodiment, the compound is of the formula (X): wherein Ar and Ar'are aromatic groups; Rl l is selected independently for each position capable of substitution from the group hydrogen, cyano, nitro, alkoxy, halogen, alkyl, amino, or aryloxy.

R12 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; R13 is hydrogen, alkenyl, alkynyl, aralkyl, nitro, cyano, alkyl (e. g., Ci-Cio alkyl, e. g., methyl, ethyl, etc.) acyl, carbonyl, or S02CH3, and may optionally be linked to an R16 or an Group;

R16 and R16'are each independently selected for each position capable of substitution from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heterocyclic, carbonyl, or acyl, and may optionally be connected through an alkyl chain to R13 or another R16 or group, to form a fused or spiro ring system; X is NR, S, O or a covalent bond; RI is hydrogen, alkyl, alkenyl, alkynyl, acyl, heterocyclic, or carbonyl; * 14 and Rls are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, heteroaromatic, halogen, nitro, cyano, amino, or aryl, for each occurrence; w is 0,1,2,3, or 4; eisO, 1,2, or3; f is 0,1,2, or 3, and pharmaceutically acceptable salts thereof.

Examples of Ar groups include: wherein Rl8 is acyl, alkyl or hydrogen.

In a further embodiment, Ar is, Rl l is selected independently for each aromatic position capable of substitution.

Exemplary R'1 groups include, but are not limited to, hydrogen, halogen (e. g., fluorine, chlorine, or bromine), alkyl, amino, and benzyloxy.

Examples of Ar'groups include:

wherein R'9 is hydrogen, alkyl, acyl, aryl, alkenyl, or alkynyl.

In a further embodiment, each Rl2 group is selected independently from the group consisting of hydrogen, alkoxy, halogen (e. g., fluorine, bromine, chlorine, or iodine), and cyano. Examples of alkoxy groups include Cl-Cl0 alkoxy, such as, methoxy, ethoxy, n-propoxy, i-propoxy, and cyclopentoxy.

Examples of X include covalent bond, S, O and Nu 17. Examples of Rl7 include hydrogen, alkyl (e. g., Cl-Clo alkyl, e. g., methyl), or acyl.

Examples of Rl6 and Rl6 include alkyl and hydrogen. Each R16 and R16'group is selected independently for each occurrence. In a further embodiment, at least one of Rl6 or Rl6 are at least once hydrogen. In another embodiment, at least one of R16 or R16' are at least once Cl-Cl0 alkyl, e. g., methyl or ethyl.

In yet another further embodiment, Rl4 and Rl5 are each independently hydrogen, alkyl (e. g., Ci-Cio, e. g., methyl) or phenyl for each occurrence.

In yet another further embodiment, R13 is hydrogen, acyl, alkyl (e. g., Cl-Clo alkyl, e. g., methyl, ethyl, etc.) acyl, carboxy, or S02CH3. Examples of acyl group include, but are not limited to, optionally substituted Cl-Cloalkyl acyl (e. g., i- propylcarbonyl and benzylcarbonyl).

In yet another further embodiment, w is 2 or 3. In yet another further embodiment, e is 0 or 1. In yet another further embodiment, f is 0 or 1.

In another embodiment, the invention features a method for treating an MC4-R associated state in a mammal by administering an effective amount of a MC4-R binding compound to a mammal. In this embodiment, the compound is of the formula (XI):

wherein Ar and Ar'are aromatic groups, as described above; Rl l is selected independently for each position capable of substitution from the group hydrogen, halogen, alkyl, amino, cyano, or aryloxy.

R12 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; X is NR, S, O or a covalent bond; Rl7 is hydrogen, alkyl, acyl, heterocyclic, or carbonyl; * 14 and Rls are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, or aryl, for each occurrence; R20 and R21 are each independently selected from the group consisting of substituted or unsubstituted alkyl, alkenyl, alkynyl, aryl, hydrogen, or carbonyl, and may optionally be linked to form a heterocycle (e. g., morphonlinyl, piperazinyl, piperidinyl, etc.); vis0,1,2,3,4,5, or 6; eisO, 1,2, or3; f is 0,1,2, or 3, and pharmaceutically acceptable salts thereof.

Examples of Ar, Ar', Rl l, Rl2, Rl4, Rl5 and X moieties include those described for formula (X).

Other examples of MC4-R binding compounds include compounds of the formula (XVIII):

wherein Ar and Ar'are aromatic groups; Rl selected independently for each position capable of substitution from the group hydrogen, cyano, alkoxy, nitro, halogen, alkyl, amino, or aryloxy; R12 is selected for each position capable of substitution from the group consisting of hydrogen, halogen, alkoxy, acetylenic, nitro, aryl, alkyl, alkenyl, alkynyl, cyano, acyl, or carbonyl; Rl3 is hydrogen, alkenyl, alkynyl, aralkyl, nitro, cyano, alkyl, acyl, carbonyl, or SO2CH3, and may optionally be linked to an Rl6 or an R16'group; Rl6 and Rl6 are each independently selected for each position capable of substitution from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyl, cyano, aryl, heterocyclic, carbonyl, or acyl, and may optionally be connected through an alkyl chain to R13 or another R16 or R16'group, to form a fused-or spiro ring system; X is NR, S, O or a covalent bond; Rl7 is hydrogen, alkyl, or carbonyl; Rl4 and Rl5 are each independently hydrogen, halogen, or alkyl; wis 1,2,3, or 4; e is 0 or 1; f is 0 or 1, wherein both e and f are not both 0 if X is a covalent bond, and pharmaceutically acceptable salts thereof.

Examples of Ar, Ar', R11,R12,R14,R15,R16 and R16'and X moieties include those described for formula (X).

Other examples of MC4-R binding compounds include compounds of the formulae:

The invention also includes MC4-R binding compounds such as: <BR> <BR> 2- [2- (4-benzyloxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyri midine;<BR> <BR> 2- [2- (2-iodo-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidin e;<BR> <BR> 2- [2- (2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o-pyrimidine; 2-[2-(naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(3-chloro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (2, 5-dimethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrim idine; 2-[2-(3-bromo-benzylsulfanyl)-phenyl]-1,[2-(3-bromo-benzylsu lfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-iodo-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole;[2-(2-iodo-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole 2-[2-(2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-4,5-dihydro- 1H-imidazole; 2- [2- (2-methoxy-5-nitro-benzyloxy)-phenyl]-1,4,5,6-tetrahydropyri midine; 2- [2- (2-bromo-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidi ne; 2-[2-(3-iodo-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-3a,4,5,6,7,7a-hex ahydro-1 H- benzoimidazole; <BR> <BR> 2- {2- [2- (2-methoxy-naphthalen-1-yl)-ethyl]-phenyl}-1,4,5,6-tetrahydr opyrimidine;<BR> <BR> 2- [2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6,-tetrahyd ropyrimidine; 2- {2- [2- (2-methyl-naphthalen-1-yl)-ethyl]-phenyl}-1,4,5,6-tetrahydro pyrimidine; 2- {2- [2- (2,3-dihydro-benzo [1,4] dioxin-5-yl)-ethyl]-phenyl}-1, 4,5,6- tetrahydropyrimidine; 2-[2-(2-methoxy-napthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydropyrimidine; 2- (2-Benzylsulfanyl-phenyl)-1,4,5,6-tetrahydro-pyrimidine;

2-(2-Pentadecylsulfanyl-phenyl)-1,(2-Pentadecylsulfanyl-phen yl)-1, 4,5,6-tetrahydro-pyrimidine; 2- (2-Cyclohexylmethylsulfanyl-phenyl)-1,4,5,6-tetrahydro-pyrim idine; 2-[2-(2-Methyl-benzylsulfanyl)-phenyl]-1,[2-(2-Methyl-benzyl sulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (3-Nitro-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidi ne; 2-[2-(3,4-dimethoxy-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(4-Fluoro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Chloro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Fluoro-benzylsulfanyl)-phenyl]-1,[2-(2-Fluoro-benzyl sulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2,4-Bis-trifluoromethyl-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(3-Methoxy-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- [2- (3, 5-Bis-trifluoromethyl-benzylsulfanyl)-phenyl]-1,4,5,6-tetrah ydro-pyrimidine; 2-[2-(2-Methoxy-5-nitro-benzyloxy)-phenyl]-1,[2-(2-Methoxy-5 -nitro-benzyloxy)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole;[2-(2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole 2- (2-Benzylsulfanyl-phenyl)-4, 5-dihydro-1 H-imidazole; 2- [2- (2, 6-Difluoro-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimi dine; 2-[2-(Naphthalen-1-ylmethoxy)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 1-{2-[2-(2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-5, 6-dihydro-4H-pyrimidin-1-yl}- ethanone; 2- [2- (2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-3a,4,5,6,7,7a-hex ahydro-1 H- benzoimidazole; 2- [2- (2-Iodo-benzylsulfanyl)-phenyl]-3a, 4,5,6,7,7a-hexahydro-lH-benzoimidazole; 2- [2- (2,5-Dimethyl-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyr imidine; 4- [2- (1,4,5,6-Tetrahydro-pyrimidin-2-yl)-phenylsulfanylmethyl]-qu inoline; 2-[2-(2-Methoxy-5-nitro-benzylsulfanyl)-pyridin-3-yl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Methoxy-benzylsulfanyl)-phenyl]-1,[2-(2-Methoxy-benz ylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (2-Cyclopentyloxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro -pyrimidine; 2- [2- (2,3-Dihydro-benzo [1,4] dioxin-5-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (6-Methoxy-2,3-dihydro-benzo [1,4] dioxin-5-ylmethylsulfanyl)-phenyl]-1,4,5,6- tetrahydro-pyrimidine; 2- [2- (5-fluoro-2-methoxy-benzylsulfanyl)-phenyl]-4, 5-dihydro-IH-imidazole;

1-Methyl-2- [2- (naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole; 2- [2-(5-Bromo-2-methoxy-benzyloxy)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(Naphthalen-1-yloxymethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine; 2-[2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5, 5-dimethyl-1,4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5,5-dimethyl-4,5- dihydro-1 H- imidazole; 2-[2-(2,6-Dimethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahyd ro-pyrimidine; 2-[2-(2-Bromo-6-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetr ahydro-pyrimidine; <BR> <BR> <BR> 2- [5-Bromo-2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole;<BR> <BR> <BR> <BR> <BR> 2- [5-Bromo-2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o- pyrimidine; 2- [4-Bromo-2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o- pyrimidine; 2- [2-(2-Bromo-5-methoxy-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-5-methyl-phenyl]-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (Biphenyl-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyr imidine; 2- [2- (5-Chloro-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahyd ro-pyrimidine; 2- [2- (2-Methoxy-5-thiophen-3-yl-benzylsulfanyl)-phenyl]-1,4,5,6-t etrahydro- pyrimidine; <BR> <BR> <BR> 2- [2- (Biphenyl-2-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyr imidine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Iodo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro -pyrimidine;<BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-5-fluoro-phenyl]-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (4, 4'-Dimethoxy-biphenyl-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-te trahydro- pyrimidine; 2- [2- (9H-Fluoren-9-ylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine;

2- [2- (3'-Chloro-4'-fluoro-4-methoxy-biphenyl-3-ylmethylsulfanyl)- phenyl]-1,4,5,6- tetrahydro-pyrimidine; 2-[2-(1-Naphthalen-1-yl-ethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-5-fluoro-phenyl]-4, 5-dihydro-1 H-imidazole;<BR> <BR> <BR> <BR> <BR> 2- (2-Benzhydrylsulfanyl-phenyl)-1,4,5,6-tetrahydro-pyrimidine; 2-[2-(2'-Fluoro-4"-methoxy-[1, 1';[2-(2'-Fluoro-4"-methoxy-[1, 1'; 4', 1"] terphenyl-3"-ylmethylsulfanyl)-phenyl]-1,4,5,6- tetrahydro-pyrimidine; 2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzamidine; 2-[4-(Naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> <BR> 2- [2- (5-Ethynyl-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahy dro-pyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-1,4,5,6-tetrahydr o-pyrimidine; 2- [2- (5-Bromo-2-cyclopentyloxy-benzylsulfanyl)-phenyl]-1,4,5,6-te trahydro- pyrimidine; <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-ethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro -pyrimidine;<BR> <BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-propoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o-pyrimidine; [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-diethyl-amine; 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperazine; C- {4- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-quinoxatin-2-yl]-morpholi n-2-yl}- methylamine; 2- [2- (2-Methoxy-5-methyl-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahyd ro-pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzyloxymethyl)-phenyl]-l, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-dimethyl-amine;&l t;BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-isopropoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrah ydro-pyrimidine; 2-[2-(2-Ethoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Propoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,[2- (2-Propoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 4-Methoxy-3- [2- (1,4,5,6-tetrahydro-pyrimidin-2-yl)-phenylsulfanylmethyl]- benzonitrile; 1- {4-Methoxy-3-[2-(1, 4,5,6-tetrahydro-pyrimidin-2-yl)-phenylsulfanylmethyl]-pheny l}- ethanone; 2-[2-(Naphthalen-1-ylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperidine;

C- {4-[2-(2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-morp holin-2-yl}- methylamine; 1-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-pyrrolidin-3 -ylamine; 1- [2-(2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-pyrroli din-3-ylamine; 3-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-1, 5,6,7,8,8a-hexahydro- imidazo [1,5-a] pyridine; 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-5,6,7,7a -tetrahydro-1 H- pyrrolo [1,2-c] imidazole; 2-[2-(Benzo[b]thiophen-3-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[3-Fluoro-2-(naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- (Naphthalen-1-ylmethylsulfanyl)-3- ( 1,4,5,6-tetrahydro-pyrimidin-2-yl)-phenylamine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-phenyl]-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (2-Methoxy-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro- pyrimidine; <BR> <BR> <BR> 1- {2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5, 6-dihydro-4H-pyrimidin-1-yl}-<BR> <BR> <BR> <BR> <BR> 3-methyl-butan-1-one;<BR> <BR> <BR> <BR> <BR> 1- {2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5, 6-dihydro-4H-pyrimidin-1-yl}- 2-phenyl-ethanone; <BR> <BR> <BR> 2- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyridin-2-yl]-1,4,5,6-tet rahydro-pyrimidine;<BR> <BR> <BR> <BR> <BR> N- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-guanidine; 2- [2-(2-Isopropoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2-(2-Cyclopentyloxy-naphthalen-1-ylmethylsulfanyl)-phenyl]- 1, 4,5,6-tetrahydro- pyrimidine; <BR> <BR> <BR> (5-Bromo-2-methoxy-benzyl)-[2-(1,4,5,6-tetrahydro-pyrimidin- 2-yl)-phenyl]-amine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanylmethyl)-phenyl]-1,4,5,6-tet rahydro- pyrimidine; 2-[2-(2-Methoxy-naphthalen-l-ylsulfanylmethyl)-phenyl]-1,[2- (2-Methoxy-naphthalen-l-ylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyrazin-2-yl]-1,4,5,6-tet rahydro-pyrimidine; <BR> <BR> <BR> 2- [3-Chloro-2- (naphthalen-1-ylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine;

2-[2-(6-Bromo-2-methoxy-naphthalen-1-ylmethylsulfanyl)-pheny l]-1, 4,5,6-tetrahydro- pyrimidine; 2- [3-Chloro-2-(2-methoxy-naphthalen-1-ylsulfanylmethyl)-phenyl ]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tet rahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-3-chloro-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2-[1-(2-Naphthalen-1-yl-ethyl)-1H-pyrrol-2-yl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> (5-Bromo-2-methoxy-benzyl)-methyl-[2-(1,4,5,6-tetrahydro-pyr imidin-2-yl)-phenyl]- amine; <BR> <BR> <BR> 2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzylamine;<BR> <BR> <BR> <BR> 2- [2- (2-Chloro-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine;<BR> <BR> <BR> <BR> <BR> 2- [2- (2-Bromo-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-py rimidine;<BR> <BR> <BR> <BR> 2- (2-o-Tolylsulfanylmethyl-phenyl)-1,4,5,6-tetrahydro-pyrimidi ne; 2-[2-(2, 5-Dichloro-phenylsulfanylmethyl)-phenyl]-1,[2-(2, 5-Dichloro-phenylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- (3-Amino-propylamino)-6- (5-bromo-2-methoxy-benzylsulfanyl)-benzonitrile;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-1,4,5,6-tetrahydr o-pyrimidine;<BR> <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-diethyl-amine;< ;BR> <BR> <BR> <BR> <BR> 4- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-morpholine; 3'- (5-Bromo-2-methoxy-benzylsulfanyl)-3,4,5,6-tetrahydro-2H- [1,2'] bipyrazinyl; <BR> <BR> <BR> 2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-piperazin-1-yl-6, 7-dihydro-quinoxaline;<BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperidine; C- {4- [2- (2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-morpholin- 2-yl}- methylamine; <BR> <BR> <BR> 1- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyrazin-2-yl]-pyrrolidin- 3-ylamine;<BR> <BR> <BR> <BR> 1- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-quinoxalin-2-yl]-pyrrolid in-3-ylamine;<BR> <BR> <BR> <BR> <BR> 1-[2-(2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-pyrro lidin-3-ylamine;[2-(2-Methoxy-naphthalen-1-ylmethylsulfanyl) -benzyl]-pyrrolidin-3-ylamine <BR> <BR> <BR> <BR> C- {4- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyrazin-2-yl]-morpholin-3 -yl}- methylamine; <BR> <BR> <BR> 1- [3-Fluoro-2- (2-naphthalen-1-yl-ethyl)-benzyl]-piperazine;<BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-azetidin e;

1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-pyrrolid in-3-ol; [2-(Naphthalen-1-ylmethylsulfanyl)-phenyl]-carbamic acid 1-aza-bicyclo [2.2.2] oct-3-yl ester; 1-aza-[2-(2-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-ca rbamicacid bicyclo [2.2.2] oct-3-yl ester; 2-piperidin-1-yl-[2-(2-Methyl-naphthalen-1-ylmethylsulfanyl) -phenyl]-carbamicacid ethyl ester; {1-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-py rrolidin-2-yl}- methanol; 4-tert-Butyl-N-naphthalen-1-ylmethyl-N-(2-piperidin-1-yl-eth yl)-benzamide;(2-piperidin-1-yl-ethyl)-benzamide N,N-Dimethyl-N'-naphthalen-2-ylmethyl-N'-naphthalen-1-ylmeth yl-propane-1,3- diamine; N- (5-Bromo-2-methoxy-benzyl)-N', N'-dimethyl-N-naphthalen-1-ylmethyl-propane-1,3- diamine; 1-Naphthalen-1-ylmethyl-3-phenethyl-1-(2-piperidin-1-yl-ethy l)-thiourea; <BR> <BR> <BR> 3- (4-Dimethylamino-phenyl)-1- (3-dimethylamino-propyl)-1-naphthalen-1-ylmethyl- thiourea; 4- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzylamino]-pip eridine-1- carboxylic acid ethyl ester; 2- [2- (2-Naphthalen-1-yl-ethyl)-phenyl]-ethylamine; Naphthalene-2-sulfonic acid (2-dimethylamino-ethyl)-naphthalen-1-ylmethyl-amide; 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-2-methox ymethyl- pyrrolidine; (2-Hexyloxy-phenyl)-carbamic acid 2-piperidin-1-yl-1-piperidin-1-ylmethyl-ethyl ester; 3-[2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxy]-pyrrolidine; 2-[2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxymethyl]-pyrrolid ine; 2-[2-(Naphthalen-1-ylsulfanylmethyl)-phenyl]-piperidine; <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzylamino]-propan-l-ol; <BR> <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzylamino]-3-methyl-but an-1-ol; 1-[2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-pyrrolidin-3-ol; <BR> <BR> <BR> {1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-pyrrolidin-2-yl}- methanol;<BR> <BR> <BR> <BR> <BR> {1-[2-(Naphthalen-1-ylsulfanylmethyl)-benzyl]-piperidin-2-yl }-methanol;

2-[2-(Naphthalen-1-ylsulfanylmethyl)-pyrrolidin-1-yl]-ethyl- N-pyrrolidine;[2-(Naphthalen-1-ylsulfanylmethyl)-pyrrolidin- 1-yl]-ethyl-N-pyrrolidine <BR> <BR> <BR> <BR> <BR> N-pyrrolyl- [l- (2-naphthalen-1-yl-ethyl)-pyrrolidin-2-ylmethyl]-amine; 1-(2-Naphthalen-1-yl-ethyl)-piperidine-2-carboxylic acid methyl ester; <BR> <BR> <BR> (3-Bromo-benzyl)- (1-ethyl-pyrrolidin-2-ylmethyl)-naphthalen-1-ylmethyl-amine; <BR> <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxy]-piperidine;< ;BR> <BR> <BR> <BR> <BR> (5-Bromo-2-methoxy-benzyl)- (1-ethyl-pyrrolidin-2-ylmethyl)-naphthalen-1-ylmethyl- amine; <BR> <BR> <BR> (1-Ethyl-pyrrolidin-2-ylmethyl)-naphthalen-2-ylmethyl-naphth alen-1-ylmethyl-amine;<BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxymethyl]-pyrrolid ine;<BR> <BR> <BR> <BR> <BR> (3-Bromo-benzyl)- (3-imidazol-1-yl-propyl)-naphthalen-1-ylmethyl-amine;<BR& gt; <BR> <BR> <BR> (3-Imidazol-1-yl-propyl)-naphthalen-2-ylmethyl-naphthalen-1- ylmethyl-amine; [2- (Naphthalenl-ylmethylsulfanyl)-phenyl]-carbamic acid 2-piperidin-1-yl-1-piperidin- 1-ylmethyl-ethyl ester; [2- (Naphthalen-1-ylmethylsulfanyl)-phenyl]-carbamic acid 2-dimethylamino-ethyl ester; <BR> <BR> <BR> 1- [2- (Naphthalen-1-ylsulfanylmethyl)-benzyl]-piperazine;<BR> ; <BR> <BR> <BR> <BR> [3- (2-Methyl-piperidin-1-yl)-propyl]- [2- (naphthalen-1-ylsulfanylmethyl)-benzyl]- amine; 1- [3-Chloro-2- (naphthalen-1-ylsulfanylmethyl)-benzyl]-piperazine; N,N-Dimethyl-N'-(2-naphthalen-1-yl-ethyl)-N'-naphthalen-1-yl methyl-ethane-1,2- diamine; <BR> <BR> <BR> {1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-piperidi n-2-yl}-methanol; 1-[2-(2-Naphthalen-1-yl-ethyl)-benzyl]-piperazine [3-(2-Methyl-piperidin-1-yl)-propyl]-[2-(2-naphthalen-1-yl-e thyl)-benzyl]-amine; 1- [3-Fluoro-2- (2-naphthalen-1-yl-ethyl)-benzyl]-piperazine; {1-[3-Chloro-2-(naphthalen-1-ylsulfanylmethyl)-benzyl]-piper idin-2-yl}-methanol; <BR> <BR> <BR> {1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-piperidi n-2-yl}-methanol; {1-[2-(2-Naphthalen-1-yl-ethyl)-benzyl]-piperidin-2-yl}-meth anol; [3-(2-Methyl-piperidin-1-yl)-propyl]-[2-(2-naphthalen-1-yl-e thyl)-benzyl]-amine; 1-[2-(2-Naphthalen-1-yl-ethyl)-benzyl]-pyrrolidin-3-ylamine; 1-Phenyl-3-piperazin-1-yl-5,6,7,8-tetrahydro-isoquinoline-4- carbonitrile; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-6-ethyl-1,4,5,6-t etrahydro- pyrimidine;

2- [2- (4-Methoxy-biphenyl-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetr ahydro-pyrimidine; 2-[2-(2-Methoxy-5-phenylethynyl-benzylsulfanyl)-phenyl]-1,4, 5,6-tetrahydro- pyrimidine; 2-[2-(2-Naphthalen-1-yl-ethyl)-pheny;]-1,4,5,6-tetrahydro-py rimidine; 2- [3-(2-Methoxy-naphthalen-1-ylsulfanylmethyl)-thiophen-2-yl]- 1, 4,5,6-tetrahydro- pyrimidine; 2-[2-(2,5-Dimethoxy-phenylsulfanylmethyl)-phenyl]-1,4,5,6-te trahydro-pyrimidine; 2-[2-(4-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5, 6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-4,4-dime thyl-4,5-dihydro-<BR> <BR> <BR> <BR> <BR> 1 H-imidazole;<BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-5, 5-dimethyl-1,4,5,6- tetrahydro-pyrimidine; 2-[3-(Naphthalen-1-ylsulfanylmethyl)-thiophen-2-yl]-1,4,5,6- tetrahydro-pyrimidine; 2-{2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-phenyl}-1,4,5,6-tetrahydro -pyrimidine; 2- [3-Chloro-2- (2-naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine; 2- {2-[2-(5-Bromo-2-methoxy-phenyl)-ethyl]-3-fluoro-phenyl}-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-3-fluoro-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (Naphthalen-1-ylsulfanylmethyl)-phenyl]-4, 5-dihydro-lH-imidazole; 2- [3-Fluoro-2- (naphthalen-1-ylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimi dine; 2- [3-Bromo-2- (naphthalen-1-ylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine; 2- {2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-3-chloro-phenyl}-l, 4,5,6-tetrahydro- pyrimidine; 2- [2- (2-Methoxy-5-trifluoromethyl-benzylsulfanyl)-phenyl]-1,4,5,6 -tetrahydro- pyrimidine; 2-[4-(Naphthalen-1-ylsulfanylmethyl)-thiophen-3-yl]-1,4,5,6- tetrahydro-pyrimidine; 2- [2- (Naphthalen-1-ylsulfanylmethyl)-thiophen-3-yl]-1,4,5,6-tetra hydro-pyrimidine; 2-{2-[2-(5-Bromo-2-methoxy-phenyl)-ethyl]-3-trifluoromethyl- phenyl}-1,4,5,6- tetrahydro-pyrimidine; <BR> <BR> <BR> 2- [2- (2-Naphthalen-1-yl-ethyl)-3-trifluoromethyl-phenyl]-1,4,5,6- tetrahydro-pyrimidine; 2- [2- (6-Fluoro-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tet rahydro-pyrimidine;

{1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperidin-2-yl}-m ethanol;<BR> <BR> <BR> <BR> <BR> 2- [3-Fluoro-2- (2-naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine;<BR> <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]- [3- (2-methyl-piperidin-1-yl)-<BR> <BR> <BR> <BR> <BR> propyl]-amine;<BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-pyrrolid in-3-ylamine;<BR> <BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-piperazi ne; 5,5-Dimethyl-2- [2- (2-naphthalen-1-yl-ethyl)-phenyl]-4, 5-dihydro-1 H-imidazole; 2-[3-Fluoro-2-(2-naphthalen-1-yl-ethyl)-phenyl]-5,5-dimethyl -4,5-dihydro-1H- imidazole; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3, 5-difluoro-phenyl]-1,4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3,5-difluoro-phenyl]-5,5- dimethyl-4,5- dihydro-1 H-imidazole; 3-(2-Naphthalen-1-yl-ethyl)-2-(1,(2-Naphthalen-1-yl-ethyl)-2 -(1, 4,5,6-tetrahydro-pyrimidin-2-yl)-phenylamine; Amino-[2-(2-naphthalen-1-yl-ethyl)-phenyl]-acetonitrile; <BR> <BR> <BR> 1- [2- (2-Naphthalen-1-yl-ethyl)-phenyl]-ethane-1,2-diamine;<BR& gt; <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-4-methyl-4, 5-dihydro-1 H- imidazole; <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-4-methyl -4, 5-dihydro-1 H- imidazole; <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-phenyl]-4-methyl -4, 5-dihydro-1 H- imidazole; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3, 4-difluoro-phenyl]-1,4,5,6-tetrahydro- pyrimidine; 2- [3-Fluoro-2- (naphthalen-1-ylsulfanylmethyl)-phenyl]-5,5-dimethyl-4,5-dih ydro-1 H- imidazole; 2-{2-[2-(5-Bromo-2-methoxy-phenyl)-1-methyl-ethyl]-phenyl}-1 , 4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy benzyl sulfanyl)-3-fluoro-4-trifluoromethyl-phenyl]-4,4- dimethyl-4,5-dihydro-1 H-imidazole; 2- [2- (5-Bromo-2-methoxy-benzyl sulfanyl)-3-fluoro-4-trifluoromethyl-phenyl]-5,5- dimethyl-1,4,5,6-tetrahydro-pyrimidine;

2- [3-Methoxy-2- (2-naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-phenyl]-1,4,5,6- tetrahydro- pyrimidin-5-ol; 2- {2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-3-methoxy-phenyl}-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-6-ethyl-1,4,5,6-t etrahydro- pyrimidine, and pharmaceutically acceptable salts thereof.

Other compounds of the invention are shown in Table 4.

In one further embodiment, the methods of the invention do not include methods wherein 2- [2- (2, 5-dichlorothiophen-3-ylmethylsulfanyl)-phenyl]-I, 4,5,6- tetrahydropyrimidine (Compound A); 2 [2- (2-chloro- 6-fluoro-benzylsulfanyl)-phenyl]- 1,4,5,6-tetrahydropyrimidine (Compound B); 1- (6-bromo-2-chloro-quinolin-4-yl)-3- (2-diethylaminoethyl)-urea (Compound AN); 2- [2- (2,6-difluorobenzylsulfanyl)-phenyl]- 1,4,5,6-tetrahydropyrimidine (Compound AO); 1- (4-hydroxy-1,3,5-trimethyl- piperadin-4-yl)-ethanone (Compound AR); 4,6-dimethyl-2-piperazin-1-yl-pyrimidine (Compound FP); 2-piperazin-1-yl-pyrimidine (Compound FR); 1-pyridin-2-yl- piperazine (Compound FS); 2-piperazin-1-yl-4-trifluoromethyl pyrimidine (Compound FT); 6-piperazin-1-yl-7-trifluoromethyl-thieno [3,2-b] pyridine-3-carboxylic acid methyl ester (Compound FU); 5-bromo-2-piperazin-1-yl)-pyrimidine (Compound FV); 1- (3- trifluoromethyl-pyridin-2-yl)-piperazine (Compound FW); 1- (5-trifluoromethyl-pyridin- 2-yl)-piperazine (Compound FX); piperazine (Compound KY); or (2-Hexyloxy-phenyl)- carbamic acid 2-piperidin-1-yl-1-piperidin-1-ylmethyl-ethyl ester (Compound OQ) are used as MC4-R binding compounds. In another further embodiment, the compounds claimed as MC4-R binding compounds do not include those listed above.

In another embodiment, the methods of the invention do not include methods wherein 2-naphthalen-1-ylmethyl-4,5-dihydro-lH-imidazole (NAPHAZOLINE; Compound AS); 10- [2- (1-methyl-piperadin-2-yl)-ethyl]-2-methylsulfanyl-1 OH- phenothiazine (THORADIAZINE; THIODIAZINE; Compound AP); (2,6-dichloro- phenyl)-imidazolidin-2-ylidene-amine (CLONIDINE; Compound AY); or 2-benzyl-4,5- dihydro-lH-imidazole (TOLAZOLINE; Compound AZ) are used as MC4-R binding compounds. In another further embodiment, the invention pertain to compounds other than those listed above as MC4-R binding compounds.

In another further embodiment, the methods of the invention do not include 5- (4- chloro-phenyl)-2,5-dihydro-3H-imidazo [2,1-a]-isoindol-5-ol (MASPINDOL; Compound DT) as an MC4-R binding compound. In one embodiment, the compounds of the invention include MC4-R binding compounds other than MASPINDOL.

The term"alkyl"includes saturated aliphatic groups, including straight-chain alkyl groups (e. g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. The term alkyl further includes alkyl groups, which can further include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone. In an embodiment, a straight chain or branched chain alkyl has 10 or fewer carbon atoms in its backbone (e. g., Cl-Clo for straight chain, C3-Clo for branched chain), and more preferably 6 or fewer. Likewise, preferred cycloalkyls have from 4-7 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.

Moreover, the term alkyl includes both"unsubstituted alkyls"and"substituted alkyls", the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e. g., with the substituents described above. An"alkylaryl"or an"aralkyl"moiety is an alkyl substituted with an aryl (e. g., phenylmethyl (benzyl)). The term"alkyl"also includes the side chains of natural and unnatural amino acids. Examples of halogenated alkyl groups include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl,

dichloromethyl, trichloromethyl, perfluoromethyl, perchloromethyl, perfluoroethyl, perchloroethyl, etc.

The term"aryl"includes groups, including 5-and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiaozole, imidazole, triazole, tetrazole, pyrazole, oxazole, isooxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like. Furthermore, the term"aryl"includes multicyclic aryl groups, e. g., tricyclic, bicyclic, e. g., naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, napthridine, indole, benzofuran, purine, benzofuran, deazapurine, or indolizine. Those aryl groups having heteroatoms in the ring structure may also be referred to as"aryl heterocycles","heterocycles,""heteroaryls"or"heteroaromatics ". The aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminoacarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Aryl groups can also be fused or bridged with alicyclic or heterocyclic rings which are not aromatic so as to form a polycycle (e. g., tetralin).

The term"alkenyl"includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond.

For example, the term"alkenyl"includes straight-chain alkenyl groups (e. g., ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted

cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups. The term alkenyl further includes alkenyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone. In certain embodiments, a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e. g., C2-C6 for straight chain, C3-C6 for branched chain).

Likewise, cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C2-C6 includes alkenyl groups containing 2 to 6 carbon atoms.

Moreover, the term alkenyl includes both"unsubstituted alkenyls"and "substituted alkenyls", the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.

The term"alkynyl"includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond.

For example, the term"alkynyl"includes straight-chain alkynyl groups (e. g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups. The term alkynyl further includes alkynyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone. In certain embodiments, a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e. g., C2-C6 for straight chain, C3-C6 for

branched chain). The term C2-C6 includes alkynyl groups containing 2 to 6 carbon atoms.

Moreover, the term alkynyl includes both"unsubstituted alkynyls"and "substituted alkynyls", the latter of which refers to alkynyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.

Unless the number of carbons is otherwise specified,"lower alkyl"as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure."Lower alkenyl"and"lower alkynyl"have chain lengths of, for example, 2-5 carbon atoms.

The term"acyl"includes compounds and moieties which contain the acyl radical (CH3CO-) or a carbonyl group. The term"substituted acyl"includes acyl groups where one or more of the hydrogen atoms are replaced by for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.

The term"acylamino"includes moieties wherein an acyl moiety is bonded to an amino group. For example, the term includes alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido groups.

The term"aroyl"includes compounds and moieties with an aryl or heteroaromatic moiety bound to a carbonyl group. Examples of aroyl groups include phenylcarboxy, naphthyl carboxy, etc.

The terms"alkoxyalkyl","alkylaminoalkyl"and"thioalkoxyalkyl"incl ude alkyl groups, as described above, which further include oxygen, nitrogen or sulfur atoms replacing one or more carbons of the hydrocarbon backbone, e. g., oxygen, nitrogen or sulfur atoms.

The term"alkoxy"includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups and may include cyclic groups such as cyclopentoxy. Examples of substituted alkoxy groups include halogenated alkoxy groups. The alkoxy groups can be substituted with groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moieties. Examples of halogen substituted alkoxy groups include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, etc.

The term"amine"or"amino"includes compounds where a nitrogen atom is covalently bonded to at least one carbon or heteroatom. The term"alkyl amino" includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group. The term"dialkyl amino"includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups. The term"arylamino"and"diarylamino" include groups wherein the nitrogen is bound to at least one or two aryl groups,

respectively. The term"alkylarylamino,""alkylaminoaryl"or"arylaminoalkyl"refer s to an amino group which is bound to at least one alkyl group and at least one aryl group.

The term"alkaminoalkyl"refers to an alkyl, alkenyl, or alkynyl group bound to a nitrogen atom which is also bound to an alkyl group.

The term"amide"or"aminocarboxy"includes compounds or moieties which contain a nitrogen atom which is bound to the carbon of a carbonyl or a thiocarbonyl group. The term includes"alkaminocarboxy"groups which include alkyl, alkenyl, or alkynyl groups bound to an amino group bound to a carboxy group. It includes arylaminocarboxy groups which include aryl or heteroaryl moieties bound to an amino group which is bound to the carbon of a carbonyl or thiocarbonyl group. The terms "alkylaminocarboxy,""alkenylaminocarboxy,""alkynylaminocarbo xy,"and "arylaminocarboxy"include moieties wherein alkyl, alkenyl, alkynyl and aryl moieties, respectively, are bound to a nitrogen atom which is in turn bound to the carbon of a carbonyl group.

The term"carbonyl"or"carboxy"includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom, and tautomeric forms thereof. Examples of moieties which contain a carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc. The term"carboxy moiety"or "carbonyl moiety"refers to groups such as"alkylcarbonyl"groups wherein an alkyl group is covalently bound to a carbonyl group,"alkenylcarbonyl"groups wherein an alkenyl group is covalently bound to a carbonyl group,"alkynylcarbonyl"groups wherein an alkynyl group is covalently bound to a carbonyl group,"arylcarbonyl" groups wherein an aryl group is covalently attached to the carbonyl group. Furthermore, the term also refers to groups wherein one or more heteroatoms are covalently bonded to the carbonyl moiety. For example, the term includes moieties such as, for example, aminocarbonyl moieties, (wherein a nitrogen atom is bound to the carbon of the carbonyl group, e. g., an amide), aminocarbonyloxy moieties, wherein an oxygen and a nitrogen atom are both bond to the carbon of the carbonyl group (e. g., also referred to as a"carbamate"). Furthermore, aminocarbonylamino groups (e. g., ureas) are also include as well as other combinations of carbonyl groups bound to heteroatoms (e. g., nitrogen, oxygen, sulfur, etc. as well as carbon atoms). Furthermore, the heteroatom can be

further substituted with one or more alkyl, alkenyl, alkynyl, aryl, aralkyl, acyl, etc. moieties.

The term"thiocarbonyl"or"thiocarboxy"includes compounds and moieties which contain a carbon connected with a double bond to a sulfur atom. The term "thiocarbonyl moiety"includes moieties which are analogous to carbonyl moieties. For example,"thiocarbonyl"moieties include aminothiocarbonyl, wherein an amino group is bound to the carbon atom of the thiocarbonyl group, furthermore other thiocarbonyl moieties include, oxythiocarbonyls (oxygen bound to the carbon atom), aminothiocarbonylamino groups, etc.

The term"ether"includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms. For example, the term includes "alkoxyalkyl"which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.

The term"ester"includes compounds and moieties which contain a carbon or a heteroatom bound to an oxygen atom which is bonded to the carbon of a carbonyl group.

The term"ester"includes alkoxycarboxy groups such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, etc. The alkyl, alkenyl, or alkynyl groups are as defined above.

The term"thioether"includes compounds and moieties which contain a sulfur atom bonded to two different carbon or hetero atoms. Examples of thioethers include, but are not limited to alkthioalkyls, alkthioalkenyls, and alkthioalkynyls. The term "alkthioalkyls"include compounds with an alkyl, alkenyl, or alkynyl group bonded to a sulfur atom which is bonded to an alkyl group. Similarly, the term"alkthioalkenyls" and alkthioalkynyls"refer to compounds or moieties wherein an alkyl, alkenyl, or alkynyl group is bonded to a sulfur atom which is covalently bonded to an alkynyl group.

The term"hydroxy"or"hydroxyl"includes groups with an-OH or-0-.

The term"halogen"includes fluorine, bromine, chlorine, iodine, etc. The term "perhalogenated"generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.

The terms"polycyclyl"or"polycyclic radical"include moieties with two or more rings (e. g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls)

in which two or more carbons are common to two adjoining rings, e. g., the rings are "fused rings". Rings that are joined through non-adjacent atoms are termed"bridged" rings. Each of the rings of the polycycle can be substituted with such substituents as described above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, alkylaminoacarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkyl, alkylaryl, or an aromatic or heteroaromatic moiety.

The term"heteroatom"includes atoms of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.

The term"heterocycle"or"heterocyclic"includes saturated, unsaturated, aromatic ("heteroaryls"or"heteroaromatic") and polycyclic rings which contain one or more heteroatoms. Examples of heterocycles include, for example, benzodioxazole, benzofuran, benzoimidazole, benzothiazole, benzothiophene, benzoxazole, deazapurine, furan, indole, indolizine, imidazole, isooxazole, isoquinoline, isothiaozole, methylenedioxyphenyl, napthridine, oxazole, purine, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, tetrazole, thiazole, thiophene, and triazole.

Other heterocycles include morpholine, piprazine, piperidine, thiomorpholine, and thioazolidine. The heterocycles may be substituted or unsubstituted. Examples of substituents include, for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, alkylaminoacarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl,

sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkyl, alkylaryl, or an aromatic or heteroaromatic moiety.

It will be noted that the structure of some of the compounds of this invention includes asymmetric carbon atoms. It is to be understood accordingly that the isomers arising from such asymmetry (e. g., all enantiomers and diastereomers) are included within the scope of this invention, unless indicated otherwise. Such isomers can be obtained in substantially pure form by classical separation techniques and by stereochemically controlled synthesis. Furthermore, the structures and other compounds and moieties discussed in this application also include all tautomers thereof.

In a further embodiment, the compound is an antagonist of the MC4-R. In another embodiment, the compound is an agonist of the MC4-R. Compounds which are agonists of MC4-R can be identified using the cAMP assay given in Example 5.

The term"administering"includes routes of administration which allow the MC4-R binding compound to perform its intended function, e. g. interacting with MC4- Rs and/or treating a MC4-R associated state. Examples of routes of administration which can be used include parental injection (e. g., subcutaneous, intravenous, and intramuscular), intraperitoneal injection, oral, inhalation, and transdermal. The injection can be bolus injections or can be continuous infusion. Depending on the route of administration, the MC4-R binding compound can be coated with or disposed in a selected material to protect it from natural conditions which may detrimentally effect its ability to perform its intended function. The MC4-R binding compound can be administered alone or with a pharmaceutically acceptable carrier. Further, the MC4-R binding compound can be administered as a mixture of MC4-R binding compounds, which also can be coadministered with a pharmaceutically acceptable carrier. The MC4-R binding compound can be administered prior to the onset of a MC4-R associated state, or after the onset of a MC4-R associated state. The MC4-R binding compound also can be administered as a prodrug which is converted to another form in vivo.

In one embodiment of the invention, the invention includes methods of treating an MC4-R associated state by administering the MC4-R binding compound of the invention in combination with art recognized compounds, e. g., therapeutic agents. For example, a patient suffering from cachexia resulting from HIV, may be treated using both the MC4-R binding compounds of the invention in combination with art recognized

compounds for treating the cachexia or HIV itself. The term"combination with" includes both simultaneous administration as well as administration of the MC4-R binding compound before the art recognized compound or after the compound. The period between administrations of the MC4-R binding compound and the other agent may be any length of time which allows the compositions to perform their intended function, e. g., the interval may be between few minutes, an hour, more than one hour, etc. In addition, the MC4-R binding compounds may also be administered in combination with other MC4-R binding compounds of the invention.

The invention also features a pharmaceutical composition for the treatment of a MC4-R associated state in a mammal. The pharmaceutical composition includes a pharmaceutically acceptable carrier and an effective amount of an MC4-R binding compound of the formula (I): B-Z-E (I) wherein B is an anchor moiety, Z is a central moiety, and E is a MC4-R interacting moiety. In other embodiments, the pharmaceutical compositions of the invention include MC4-R binding compounds of formulae II, III, IV, V, VI, VII, VIII, IX, X, and/or XI. Pharmaceutical compositions comprising pharmaceutically acceptable salts of at least one MC4-R binding compound are also included.

The language"effective amount"of the compound is that amount necessary or sufficient to treat or prevent a MC4-R associated state, e. g. prevent the various morphological and somatic symptoms of a MC4-R associated state. The effective amount can vary depending on such factors as the size and weight of the subject, the type of illness, or the particular MC4-R binding compound. For example, the choice of the MC4-R binding compound can affect what constitutes an"effective amount". One of ordinary skill in the art would be able to study the aforementioned factors and make the determination regarding the effective amount of the MC4-R binding compound without undue experimentation. An in vivo assay as described in Example 4 below or an assay similar thereto (e. g., differing in choice of cell line or type of illness) also can be used to determine an"effective amount"of a MC4-R binding compound. The ordinarily skilled artisan would select an appropriate amount of a MC4-R binding compound for use in the aforementioned in vivo assay. Advantageously, the effective amount is

effective to treat a disorder associated with pigmentation or weight loss, e. g., weight loss is a result of anorexia nervosa, old age, cancer cachexia, or HIV cachexia.

The regimen of administration can affect what constitutes an effective amount.

The MC4-R binding compound can be administered to the subject either prior to or after the onset of a MC4-R associated state. Further, several divided dosages, as well as staggered dosages, can be administered daily or sequentially, or the dose can be continuously infused, or can be a bolus injection. Further, the dosages of the MC4-R binding compound (s) can be proportionally increased or decreased as indicated by the exigencies of the therapeutic or prophylactic situation.

The term"treated,""treating"or"treatment"includes the diminishment or alleviation of at least one symptom associated or caused by the state, disorder or disease being treated. For example, treatment can be diminishment of one or several symptoms of a disorder or complete eradication of a disorder.

The language"pharmaceutical composition"includes preparations suitable for administration to mammals, e. g., humans. When the compounds of the present invention are administered as pharmaceuticals to mammals, e. g., humans, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

The phrase"pharmaceutically acceptable carrier"is art recognized and includes a pharmaceutically acceptable material, composition or vehicle, suitable for administering compounds of the present invention to mammals. The carriers include liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject agent from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be"acceptable"in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.

Some examples of materials which can serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene

glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed in pharmaceutical formulations.

Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

Examples of pharmaceutically acceptable antioxidants include: water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, a-tocopherol, and the like; and metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.

Formulations of the present invention include those suitable for oral, nasal, topical, transdermal, buccal, sublingual, rectal, vaginal and/or parenteral administration.

The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred per cent, this amount will range from about 1 per cent to about ninety-nine percent of active ingredient, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent.

Methods of preparing these formulations or compositions include the step of bringing into association a compound of the present invention with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient. A compound of the present invention may also be administered as a bolus, electuary or paste.

In solid dosage forms of the invention for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; humectants, such as glycerol; disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; solution retarding agents, such as paraffin; absorption accelerators, such as quaternary ammonium compounds; wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; absorbents, such as kaolin and bentonite clay; lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof ; and coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be

made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.

The tablets, and other solid dosage forms of the pharmaceutical compositions of the present invention, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient (s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.

The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.

Liquid dosage forms for oral administration of the compounds of the invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluent commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3- butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert dilutents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and

sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar- agar and tragacanth, and mixtures thereof.

Formulations of the pharmaceutical compositions of the invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more compounds of the invention with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.

Formulations of the present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.

Dosage forms for the topical or transdermal administration of a compound of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.

The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

Powders and sprays can contain, in addition to a compound of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body. Such dosage forms can be made by dissolving or dispersing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the active compound in a polymer matrix or gel.

Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.

Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more compounds of the invention in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form.

Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

Injectable depot forms are made by forming microencapsule matrices of the subject compounds in biodegradable polymers such as polylactide-polyglycolide.

Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly (anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.

The preparations of the present invention may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, etc. administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories. Oral administration is preferred.

The phrases"parenteral administration"and"administered parenterally"as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.

The phrases"systemic administration,""administered systemically,""peripheral administration"and"administered peripherally"as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.

These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.

Regardless of the route of administration selected, the compounds of the present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.

Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.

The selected dosage level will depend upon a variety of factors including the activity of the particular compound of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.

A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.

In general, a suitable daily dose of a compound of the invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above.

Generally, intravenous and subcutaneous doses of the compounds of this invention for a patient, when used for the indicated analgesic effects, will range from about 0.0001 to about 100 mg per kilogram of body weight per day, more preferably from about 0.01 to about 50 mg per kg per day, and still more preferably from about 1.0 to about 100 mg per kg per day. An effective amount is that amount treats an MC4-R associated state.

If desired, the effective daily dose of the active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.

While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical composition.

As set out above, certain embodiments of the present compounds can contain a basic functional group, such as amino or alkylamino, and are, thus, capable of forming

pharmaceutically acceptable salts with pharmaceutically acceptable acids. The term "pharmaceutically acceptable salts"is art recognized and includes relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or by separately reacting a purified compound of the invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like. (See, e. g., Berge et al. (1977)"Pharmaceutical Salts", J. Pharm. Sci. 66: 1-19).

In other cases, the compounds of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases. The term"pharmaceutically acceptable salts"in these instances includes relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention. These salts can likewise be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.

Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.

The term"pharmaceutically acceptable esters"refers to the relatively non-toxic, esterified products of the compounds of the present invention. These esters can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form or hydroxyl with a suitable esterifying agent. Carboxylic acids can be converted into esters via treatment with an alcohol in the presence of a catalyst. Hydroxyls can be converted into esters via treatment with an esterifying agent such as alkanoyl halides. The term also includes

lower hydrocarbon groups capable of being solvated under physiological conditions, e. g., alkyl esters, methyl, ethyl and propyl esters. (See, for example, Berge et al., supra.) A preferred ester group is an acetomethoxy ester group. Preferably, the amount of the MC4-R binding compound is effective to treat a pigmentation or weight loss disorder, e. g., weight loss associated with anorexia nervosa, old age, cachexia, HIV or cancer.

The invention also pertains to packaged MC4-R binding compounds. The packaged MC4-R binding compounds include, an MC4-R binding compound (e. g., of formulae I, II, III, IV, V, VI, VII, VIII, IX, X, and/or XI), a container, and directions for using said MC4-R binding compound to treat an MC4-R associated state, e. g., weight loss, etc.

Examples of MC4-R binding compounds for inclusion in pharmaceutical compositions include, for example, <BR> <BR> <BR> 2- [2- (4-benzyloxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyri midine;<BR> <BR> <BR> <BR> 2- [2- (2-iodo-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidin e;<BR> <BR> <BR> <BR> <BR> 2- [2- (2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o-pyrimidine; 2- [2-(naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o-pyrimidine; 2- [2- (3-chloro-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine; 2- [2- (2, 5-dimethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrim idine; <BR> <BR> <BR> 2- [2- (3-bromo-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidi ne;<BR> <BR> <BR> <BR> 2-[2-(2-iodo-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole;[2-(2-iodo-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole <BR> <BR> <BR> <BR> <BR> 2-[2-(2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole;[2-(2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole <BR> <BR> <BR> <BR> 2- [2- (2-methoxy-5-nitro-benzyloxy)-phenyl]-1,4,5,6-tetrahydropyri midine; 2-[2-(2-bromo-benzylsulfanyl)-phenyl]-1,[2-(2-bromo-benzylsu lfanyl)-phenyl]-1, ; 2- [2- (3-iodo-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidin e; 2- [2- (2-methoxy-5-nitro-benzylsulfanyl)-phenyl]-3a, 7,7a-hexahydro-1H- benzoimidazole; 2- {2- [2- (2-methoxy-naphthalen-1-yl)-ethyl]-phenyl}-1,4,5,6-tetrahydr opyrimidine; <BR> <BR> <BR> 2- [2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6,-tetrahyd ropyrimidine;<BR> <BR> <BR> <BR> 2- {2- [2- (2-methyl-naphthalen-1-yl)-ethyl]-phenyl}-1,4,5,6-tetrahydro pyrimidine; 2- {2- [2- (2,3-dihydro-benzo [1,4] dioxin-5-yl)-ethyl]-phenyl}-1,4,5,6- tetrahydropyrimidine;

2-[2-(2-methoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydropyrimidine; 2- (2-Benzylsulfanyl-phenyl)-1,4,5,6-tetrahydro-pyrimidine; 2- (2-Pentadecylsulfanyl-phenyl)-1,4,5,6-tetrahydro-pyrimidine; 2- (2-Cyclohexylmethylsulfanyl-phenyl)-1,4,5,6-tetrahydro-pyrim idine; 2-[2-(2-Methyl-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2-(3-Nitro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (3, 5-Dimethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrim idine; 2-[2-(4-Fluoro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Chloro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Fluoro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (2, 4-Bis-trifluoromethyl-benzylsulfanyl)-phenyl]-1,4,5,6-tetrah ydro-pyrimidine; 2- [2- (3-Methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimi dine; <BR> <BR> <BR> 2-[2-(3, 5-Bis-trifluoromethyl-benzylsulfanyl)-phenyl]-1, 4S556-tekahydro-pyrimidine;[2-(3, 5-Bis-trifluoromethyl-benzylsulfanyl)-phenyl]-1, 4S556-tekahydro-pyrimidine 2-[2-(2-Methoxy-5-nitro-benzyloxy)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-4,5-dihydro- 1H-imidazole; 2-(2-Benzylsulfanyl-phenyl)-4,5-dihydro-1H-imidazole; 2-[2-(2,6-Difluoro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (Naphthalen-1-ylmethoxy)-phenyl]-1,4,5,6-tetrahydro-pyrimidi ne; 2- [2- (2-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tet rahydro-pyrimidine; <BR> <BR> <BR> 1- {2-[2-(2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-5, 6-dihydro-4H-pyrimidin-1-yl}- ethanone; 2- [2- (2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-3a,4,5,6,7,7a-hex ahydro-1 H- benzoimidazole; 2-[2-(2-Iodo-benzylsulfanyl)-phenyl]-3a,[2-(2-Iodo-benzylsul fanyl)-phenyl]-3a, 4,5,6,7,7a-hexahydro-1 H-benzoimidazole; <BR> <BR> <BR> 2- [2- (2, 5-Dimethyl-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimi dine;<BR> <BR> <BR> <BR> <BR> 4- [2- (1,4,5,6-Tetrahydro-pyrimidin-2-yl)-phenylsulfanylmethyl]-qu inoline;<BR> <BR> <BR> <BR> 2- [2- (2-Methoxy-5-nitro-benzylsulfanyl)-pyridin-3-yl]-1,4,5,6-tet rahydro-pyrimidine;<BR> <BR> <BR> <BR> <BR> 2- [2- (2-Methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimi dine;<BR> <BR> <BR> <BR> 2- [2- (2-Cyclopentyloxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro -pyrimidine; 2- [2- (2,3-Dihydro-benzo [1,4] dioxin-5-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro- pyrimidine;

2- [2- (6-Methoxy-2,3-dihydro-benzo [1,4] dioxin-5-ylmethylsulfanyl)-phenyl]-1,4,5,6- tetrahydro-pyrimidine; 2- [2- (5-fluoro-2-methoxy-benzylsulfanyl)-phenyl]-4, 5-dihydro-1 H-imidazole; 1-Methyl-2- [2- (naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-4, 5-dihydro-IH-imidazole; 2- [2- (5-Bromo-2-methoxy-benzyloxy)-phenyl]-1,4,5,6-tetrahydro-pyr imidine; 2- [2-(Naphthalen-1-yloxymethyl)-phenyl]-1,4,5,6-tetrahydro-pyr imidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5, 5-dimethyl-1,4,5,6-tetrahydro- pyrimidine; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5,5-dimethyl -4,5-dihydro-1H- imidazole; 2- [2- (2, 6-Dimethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrim idine; 2- [2- (2-Bromo-6-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o-pyrimidine; 2- [5-Bromo-2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-4, 5-dihydro-lH-imidazole; 2- [5-Bromo-2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o- pyrimidine; 2- [4-Bromo-2- (5-bromo-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o- pyrimidine; 2-[2-(2-Bromo-5-methoxy-benzylsulfanyl)-phenyl]-1,[2-(2-Brom o-5-methoxy-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-5-methyl-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; <BR> <BR> <BR> 2- [2- (Biphenyl-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyr imidine;<BR> <BR> <BR> <BR> 2- [2- (5-Chloro-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahyd ro-pyrimidine; 2-[2-(2-Methoxy-5-thiophen-3-yl-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (Biphenyl-2-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyr imidine; 2-[2-(5-Iodo-2-methoxy-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-5-fluoro-phenyl]-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-1,4,5,6- tetrahydro- pyrimidine;

2- [2- (4, 4'-Dimethoxy-biphenyl-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-te trahydro- pyrimidine; 2- [2- (9H-Fluoren-9-ylsulfanyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine; 2-[2-(3'-Chloro-4'-fluoro-4-methoxy-biphenyl-3-ylmethylsulfa nyl)-phenyl]-1, 4,5,6- tetrahydro-pyrimidine; 2- [2-(1-Naphthalen-1-yl-ethylsulfanyl)-phenyl]-1,4,5,6-tetrahy dro-pyrimidine; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-5-fluoro-phenyl]-4,5 -dihydro-1H-imidazole; 2-(2-Benzhydrylsulfanyl-phenyl)-1,(2-Benzhydrylsulfanyl-phen yl)-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2'-Fluoro-4"-methoxy-[1, 1';[2-(2'-Fluoro-4"-methoxy-[1, 1'; 4', 1"] terphenyl-3"-ylmethylsulfanyl)-phenyl]-1,4,5,6- tetrahydro-pyrimidine; 2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzamidine; 2-[4-(Naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2- [2- (5-Ethynyl-2-methoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahy dro-pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-1,4,5,6-tetrahydr o-pyrimidine; 2- [2- (5-Bromo-2-cyclopentyloxy-benzylsulfanyl)-phenyl]-1,4,5,6-te trahydro- pyrimidine; <BR> <BR> <BR> 2- [2- (5-Bromo-2-ethoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydro -pyrimidine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-propoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahydr o-pyrimidine;<BR> <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-diethyl-amine;< ;BR> <BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperazine; C- {4- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-quinoxalin-2-yl]-morpholi n-2-yl)- methylamine; <BR> <BR> <BR> 2- [2- (2-Methoxy-5-methyl-benzylsulfanyl)-phenyl]-1,4,5,6-tetrahyd ro-pyrimidine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzyloxymethyl)-phenyl]-1,4,5,6-tetrahyd ro-pyrimidine;<BR> <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-dimethyl-amine;&l t;BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-isopropoxy-benzylsulfanyl)-phenyl]-1,4,5,6-tetrah ydro-pyrimidine; 2-[2-(2-Ethoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,[2-( 2-Ethoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[2-(2-Propoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,[2- (2-Propoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 4-Methoxy-3- [2- (1,4,5,6-tetrahydro-pyrimidin-2-yl)-phenylsulfanylmethyl]- benzonitrile; 1- {4-Methoxy-3- [2- (1,4,5,6-tetrahydro-pyrimidin-2-yl)-phenylsulfanylmethyl]-ph enyl}- ethanone;

2-[2-(Naphthalen-1-ylsulfanylmethyl)-phenyl]-1,[2-(Naphthale n-1-ylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperidine; C- {4- [2- (2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-morpholin- 2-yl}- methylamine; 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-pyrrolidin-3-ylam ine; 1-[2-(2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-pyrro lidin-3-ylamine; 3-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-1, 5,6,7,8,8a-hexahydro- imidazo [1,5-a] pyridine; 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-5,6,7,7a -tetrahydro-1 H- pyrrolo [1,2-c] imidazole; 2-[2-(Benzo [b] thiophen-3-ylmethylsulfanyl)-phenyl]-1,[2-(Benzo [b] thiophen-3-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[3-Fluoro-2-(naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-(Naphthalen-1-ylmethylsulfanyl)-3-(1, 4,5,6-tetrahydro-pyrimidin-2-yl)-phenylamine; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (2-Methoxy-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro- pyrimidine; 1- {2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5, 6-dihydro-4H-pyrimidin-1-yl}- <BR> <BR> <BR> 3-methyl-butan-1-one;<BR> <BR> <BR> <BR> 1- {2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-5, 6-dihydro-4H-pyrimidin-1-yl}- 2-phenyl-ethanone; 2-[3-(5-Bromo-2-methoxy-benzylsulfanyl)-pyridin-2-yl]-1, 4,5,6-tetrahydro-pyrimidine; N- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-guanidine; 2- [2- (2-Isopropoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6 -tetrahydro- pyrimidine; 2-[2-(2-Cyclopentyloxy-naphthalen-1-ylmethylsulfanyl)-phenyl ]-1,[2-(2-Cyclopentyloxy-naphthalen-1-ylmethylsulfanyl)-phen yl]-1, 4,5,6-tetrahydro- pyrimidine; (5-Bromo-2-methoxy-benzyl)- [2- (1,4,5,6-tetrahydro-pyrimidin-2-yl)-phenyl]-amine; 2-[2-(5-Bromo-2-methoxy-benzylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2-[2-(2-Methoxy-naphthalen-1-ylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyrazin-2-yl]-1,4,5,6-tet rahydro-pyrimidine;

2-[3-Chloro-2-(naphthalen-1-ylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- [2- (6-Bromo-2-methoxy-naphthalen-1-ylmethylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2- [3-Chloro-2-(2-methoxy-naphthalen-1-ylsulfanylmethyl)-phenyl ]-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tet rahydro- pyrimidine; 2-[2-(5-Bromo-2-methoxy-phenylsulfanylmethyl)-3-chloro-pheny l]-1, 4,5,6-tetrahydro- pyrimidine; 2-[1-(2-Naphthalen-1-yl-ethyl)-1 H-pyrrol-2-yl]-1,4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> (5-Bromo-2-methoxy-benzyl)-methyl-[2-(1,4,5,6-tetrahydro-pyr imidin-2-yl)-phenyl]- amine; <BR> <BR> <BR> 2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzylamine;<BR> <BR> <BR> <BR> <BR> 2- [2- (2-Chloro-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine; 2-[2-(2-Bromo-phenylsulfanylmethyl)-phenyl]-1,[2-(2-Bromo-ph enylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- (2-o-Tolylsulfanylmethyl-phenyl)-1,4,5,6-tetrahydro-pyrimidi ne;<BR> <BR> <BR> <BR> 2- [2- (2, 5-Dichloro-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro- pyrimidine;<BR> <BR> <BR> <BR> <BR> 2- (3-Amino-propylamino)-6- (5-bromo-2-methoxy-benzylsulfanyl)-benzonitrile;<BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-1,4,5,6-tetrahydr o-pyrimidine;<BR> <BR> <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-diethyl-amine;< ;BR> <BR> <BR> <BR> 4- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-morpholine; 3'- (5-Bromo-2-methoxy-benzylsulfanyl)-3,4,5,6-tetrahydro-2H-[1, 2'] bipyrazinyl; <BR> <BR> <BR> 2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-piperazin-1-yl-6, 7-dihydro-quinoxaline;<BR> <BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperidine; C- {4- [2- (2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-morpholin- 2-yl}- methylamine; <BR> <BR> <BR> 1- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyrazin-2-yl]-pyrrolidin- 3-ylamine;<BR> <BR> <BR> <BR> <BR> 1- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-quinoxalin-2-yl]-pyrrolid in-3-ylamine; 1- [2- (2-Methoxy-naphthalen-1-ylmethylsulfanyl)-benzyl]-pyrrolidin -3-ylamine; C- {4- [3- (5-Bromo-2-methoxy-benzylsulfanyl)-pyrazin-2-yl]-morpholin-3 -yl}- methylamine; 1- [3-Fluoro-2- (2-naphthalen-1-yl-ethyl)-benzyl]-piperazine;

1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-azetidin e;<BR> <BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-pyrrolid in-3-ol; [2- (Naphthalen-1-ylmethylsulfanyl)-phenyl]-carbamic acid 1-aza-bicyclo [2.2.2] oct-3-yl ester; [2- (2-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-carbamic acid 1-aza- bicyclo [2.2.2] oct-3-yl ester; [2-(2-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-carbamic acid 2-piperidin-1-yl- ethyl ester; {1-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-py rrolidin-2-yl}- methanol; 4-tert-Butyl-N-naphthalen-1-ylmethyl-N-(2-piperidin-1-yl-eth yl)-benzamide;(2-piperidin-1-yl-ethyl)-benzamide N,N-Dimethyl-N'-naphthalen-2-ylmethyl-N'-naphthalen-1-ylmeth yl-propane-1,3- diamine; <BR> <BR> <BR> N- (5-Bromo-2-methoxy-benzyl)-N', N'-dimethyl-N-naphthalen-1-ylmethyl-propane-1,3- diamine; 1-Naphthalen-1-ylmethyl-3-phenethyl-1- (2-piperidin-1-yl-ethyl)-thiourea; 3- (4-Dimethylamino-phenyl)-1- (3-dimethylamino-propyl)-1-naphthalen-1-ylmethyl- thiourea; 4-[2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzylamino]-pip eridine-1- carboxylic acid ethyl ester; 2-[2-(2-Naphthalen-1-yl-ethyl)-phenyl]-ethylamine; Naphthalene-2-sulfonic acid (2-dimethylamino-ethyl)-naphthalen-1-ylmethyl-amide; 1-[2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-2-methox ymethyl- pyrrolidine; (2-Hexyloxy-phenyl)-carbamic acid 2-piperidin-1-yl-1-piperidin-1-ylmethyl-ethyl ester; <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxy]-pyrrolidine;&l t;BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxymethyl]-pyrrolid ine; 2-[2-(Naphthalen-1-ylsulfanylmethyl)-phenyl]-piperidine; <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzylamino]-propan-1-ol; <BR> <BR> <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzylamino]-3-methyl-but an-1-ol;<BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-pyrrolidin-3-ol;& lt;BR> <BR> <BR> <BR> <BR> {1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-pyrrolidin-2-yl}- methanol;

{1- [2- (Naphthalen-1-ylsulfanylmethyl)-benzyl]-piperidin-2-yl}-meth anol;<BR> <BR> <BR> <BR> <BR> 2- [2- (Naphthalen-1-ylsulfanylmethyl)-pyrrolidin-1-yl]-ethyl-N-pyr rolidine; N-pyrrolyl-[1-(2-naphthalen-1-yl-ethyl)-pyrrolidin-2-ylmethy l]-amine; 1-(2-Naphthalen-1-yl-ethyl)-piperidine-2-carboxylic acid methyl ester; <BR> <BR> <BR> (3-Bromo-benzyl)-(l-ethyl-pyrrolidin-2-ylmethyl)-naphthalen- 1-ylmethyl-amine;<BR> <BR> <BR> <BR> <BR> 3- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxy]-piperidine; (5-Bromo-2-methoxy-benzyl)-(1-ethyl-pyrrolidin-2-ylmethyl)-n aphthalen-1-ylmethyl- amine; <BR> <BR> <BR> (1-Ethyl-pyrrolidin-2-ylmethyl)-naphthalen-2-ylmethyl-naphth alen-1-ylmethyl-amine;<BR> <BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyloxymethyl]-pyrrolid ine;<BR> <BR> <BR> <BR> (3-Bromo-benzyl)- (3-imidazol-1-yl-propyl)-naphthalen-1-ylmethyl-amine;<BR& gt; <BR> <BR> <BR> <BR> (3-Imidazol-1-yl-propyl)-naphthalen-2-ylmethyl-naphthalen-1- ylmethyl-amine; 2-piperidin-1-yl-1-piperidin-[2-(Naphthalen1-ylmethylsulfany l)-phenyl]-carbamicacid 1-ylmethyl-ethyl ester; [2- (Naphthalen-1-ylmethylsulfanyl)-phenyl]-carbamic acid 2-dimethylamino-ethyl ester; <BR> <BR> <BR> 1- [2- (Naphthalen-1-ylsulfanylmethyl)-benzyl]-piperazine;<BR> ; <BR> <BR> <BR> [3- (2-Methyl-piperidin-1-yl)-propyl]- [2- (naphthalen-1-ylsulfanylmethyl)-benzyl]- amine; 1- [3-Chloro-2- (naphthalen-1-ylsulfanylmethyl)-benzyl]-piperazine; N,N-Dimethyl-N'-(2-naphthalen-1-yl-ethyl)-N'-naphthalen-1-yl methyl-ethane-1,2- diamine; {1-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-pi peridin-2-yl}-methanol; <BR> <BR> <BR> 1-[2-(2-Naphthalen-1-yl-ethyl)-benzyl]-piperazine;<BR> <BR> <BR> <BR> <BR> [3- (2-Methyl-piperidin-1-yl)-propyl]- [2- (2-naphthalen-1-yl-ethyl)-benzyl]-amine;<BR> <BR> <BR> <BR> 1- [3-Fluoro-2- (2-naphthalen-1-yl-ethyl)-benzyl]-piperazine;<BR> <BR> <BR> <BR> <BR> {1- [3-Chloro-2- (naphthalen-1-ylsulfanylmethyl)-benzyl]-piperidin-2-yl}-meth anol; {1-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-pi peridin-2-yl}-methanol; <BR> <BR> <BR> {1- [2- (2-Naphthalen-1-yl-ethyl)-benzyl]-piperidin-2-yl}-methanol;& lt;BR> <BR> <BR> <BR> [3-(2-Methyl-piperidin-1-yl)-propyl]-[2-(2-naphthalen-1-yl-e thyl)-benzyl]-amine;<BR> <BR> <BR> <BR> <BR> 1-[2-(2-Naphthalen-1-yl-ethyl)-benzyl]-pyrrolidin-3-ylamine; [2-(2-Naphthalen-1-yl-ethyl)-benzyl]-pyrrolidin-3-ylamine <BR> <BR> <BR> <BR> 1-Phenyl-3-piperazin-1-yl-5,6,7,8-tetrahydro-isoquinoline-4- carbonitrile;

2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-6-ethyl-1,4,5,6-t etrahydro- pyrimidine; <BR> <BR> <BR> 2- [2- (4-Methoxy-biphenyl-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetr ahydro-pyrimidine; 2- [2-(2-Methoxy-5-phenylethynyl-benzylsulfanyl)-phenyl]-1,4,5, 6-tetrahydro- pyrimidine; 2-[2-(2-Naphthalen-1-yl-ethyl)-phenyl]-1,[2-(2-Naphthalen-1- yl-ethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; 2-[3-(2-Methoxy-naphthalen-1-ylsulfanylmethyl)-thiophen-2-yl ]-1, 4,5,6-tetrahydro- pyrimidine; 2-[2-(2, 5-Dimethoxy-phenylsulfanylmethyl)-phenyl]-1,[2-(2, 5-Dimethoxy-phenylsulfanylmethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- [2- (4-Methyl-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tet rahydro-pyrimidine;<BR> <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-4,4-dime thyl-4,5-dihydro-<BR> <BR> <BR> <BR> <BR> IH-imidazole; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-5,5 -dimethyl-1, 4,5,6- tetrahydro-pyrimidine; 2-[3-(Naphthalen-1-ylsulfanylmethyl)-thiophen-2-yl]-1, 4,5,6-tetrahydro-pyrimidine; 2- {2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-phenyl}-1,4,5,6-tetrahydro -pyrimidine; 2- [3-Chloro-2- (2-naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine; 2- {2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-3-fluoro-phenyl}-1,4,5,6-t etrahydro- pyrimidine; <BR> <BR> <BR> 2- [2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-3-fluoro-phenyl]-1, 4,5,6-tetrahydro- pyrimidine; 2-[2-(Naphthalen-1-ylsulfanylmethyl)-phenyl]-4,5-dihydro-1H- imidazole; <BR> <BR> <BR> 2- [3-Fluoro-2- (naphthalen-1-ylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine;<BR> <BR> <BR> <BR> <BR> 2- [3-Bromo-2- (naphthalen-1-ylsulfanylmethyl)-phenyl]-1,4,5,6-tetrahydro-p yrimidine; 2-{2-[2-(5-Bromo-2-methoxy-phenyl)-ethyl]-3-chloro-phenyl}-1 , 4,5,6-tetrahydro- pyrimidine; 2- [2- (2-Methoxy-5-trifluoromethyl-benzylsulfanyl)-phenyl]-1,4,5,6 -tetrahydro- pyrimidine; <BR> <BR> <BR> 2- [4- (Naphthalen-1-ylsulfanylmethyl)-thiophen-3-yl]-1,4,5,6-tetra hydro-pyrimidine; 2-[2-(Naphthalen-1-ylsulfanylmethyl)-thiophen-3-yl]-1,[2-(Na phthalen-1-ylsulfanylmethyl)-thiophen-3-yl]-1, 4,5,6-tetrahydro-pyrimidine; 2- {2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-3-trifluoromethyl-phenyl}- 1,4,5,6- tetrahydro-pyrimidine;

2-[2-(2-Naphthalen-1-yl-ethyl)-3-trifluoromethyl-phenyl]-1,[ 2-(2-Naphthalen-1-yl-ethyl)-3-trifluoromethyl-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> 2- [2- (6-Fluoro-naphthalen-1-ylmethylsulfanyl)-phenyl]-1,4,5,6-tet rahydro-pyrimidine;<BR> <BR> <BR> <BR> {1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-benzyl]-piperidin-2-yl}-m ethanol; 2-[3-Fluoro-2-(2-naphthalen-1-yl-ethyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; <BR> <BR> <BR> [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]- [3- (2-methyl-piperidin-1-yl)- propyl]-amine; <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-pyrrolid in-3-ylamine;<BR> <BR> <BR> <BR> <BR> 1- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-benzyl]-piperazi ne; 5,5-Dimethyl-2- [2- (2-naphthalen-1-yl-ethyl)-phenyl]-4, 5-dihydro-1 H-imidazole; 2- [3-Fluoro-2- (2-naphthalen-1-yl-ethyl)-phenyl]-5,5-dimethyl-4,5-dihydro-1 H- imidazole; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3, 5-difluoro-phenyl]-1,4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3,5-difluoro-phenyl]-5,5- dimethyl-4,5- dihydro-1 H-imidazole; 3-(2-Naphthalen-1-yl-ethyl)-2-(1,(2-Naphthalen-1-yl-ethyl)-2 -(1, 4,5,6-tetrahydro-pyrimidin-2-yl)-phenylamine; Amino- [2- (2-naphthalen-1-yl-ethyl)-phenyl]-acetonitrile; 1- [2- (2-Naphthalen-1-yl-ethyl)-phenyl]-ethane-1, 2-diamine ; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-4-methyl-4, 5-dihydro-1 H- imidazole; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-fluoro-phenyl]-4-m ethyl-4,5-dihydro-1H- imidazole; 2-[2-(5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-phenyl]-4-m ethyl-4,5-dihydro-1H- imidazole; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3, 4-difluoro-phenyl]-1,4,5,6-tetrahydro- pyrimidine; 2- [3-Fluoro-2-(naphthalen-1-ylsulfanylmethyl)-phenyl]-5,5-dime thyl-4,5-dihydro-1 H- imidazole; 2- {2-[2-(5-Bromo-2-methoxy-phenyl)-1-methyl-ethyl]-phenyl}-1, 4,5,6-tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy benzyl sulfanyl)-3-fluoro-4-trifluoromethyl-phenyl]-4,4- dimethyl-4,5-dihydro-1 H-imidazole;

2- [2- (5-Bromo-2-methoxy-benzyl sulfanyl)-3-fluoro-4-trifluoromethyl-phenyl]-5, 5-<BR> <BR> <BR> <BR> <BR> dimethyl-1,4,5,6-tetrahydro-pyrimidine;<BR> <BR> <BR> <BR> 2- [3-Methoxy-2- (2-naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-3-chloro-phenyl]-l,4,5,6- tetrahydro- pyrimidin-5-ol; 2- {2- [2- (5-Bromo-2-methoxy-phenyl)-ethyl]-3-methoxy-phenyl}-1,4,5,6- tetrahydro- pyrimidine; 2- [2- (5-Bromo-2-methoxy-benzylsulfanyl)-phenyl]-6-ethyl-1,4,5,6-t etrahydro- pyrimidine, and pharmaceutically acceptable salts thereof. Also included are compositions containing the compounds listed in Table 4.

In a further embodiment, the pharmaceutical compositions of the invention include compositions wherein the MC4-R binding compound is not 5- (4-chloro-phenyl)- 2,5-dihydro-3H-imidazo [2,1-a]-isoindol-5-ol (MASPINDOL; Compound DT).

In another embodiment, the pharmaceutical compositions of the invention include compositions wherein the MC4-R binding compound is not 2-naphthalen-1- ylmethyl-4,5-dihydro-lH-imidæole (NAPHAZOLINE; Compound AS); 10- [2- (1- <BR> <BR> <BR> methyl-piperadin-2-yl)-ethyl]-2-methylsulfanyl-1 OH-phenothiazine (THORADIAZINE; THIODIAZINE; Compound AP); (2,6-dichloro-phenyl)-imidazolidin-2-ylidene-amine (CLONIDINE; Compound AY); or 2-benzyl-4,5-dihydro-lH-imidazole (TOLAZOLINE; Compound AZ).

In another further embodiment, the pharmaceutical compositions of the invention includes compositions wherein the MC4-R binding compound is not 2- [2- (2,5- dichlorothiophen-3-ylmethylsulfanyl)-phenyl]-1,4,5,6-tetrahy dropyrimidine (Compound A); 2 [2- (2-chloro- 6-fluoro-benzylsulfanyl)-phenyl]-1,4,5,6- tetrahydropyrimidine (Compound B); 1- (6-bromo-2-chloro-quinolin-4-yl)-3- (2- diethylaminoethyl)-urea (Compound AN); 2-[2-(2, 6-difluorobenzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydropyrimidine (Compound AO); 1- (4-hydroxy-1,3,5-trimethyl-piperadin- 4-yl)-ethanone (Compound AR); 4,6-dimethyl-2-piperazin-1-yl-pyrimidine (Compound FP); 2-piperazin-1-yl-pyrimidine (Compound FR); l-pyridin-2-yl-piperazine (Compound FS); 2-piperazin-1-yl-4-trifluoromethyl pyrimidine (Compound FT); 6- piperazin-1-yl-7-trifluoromethyl-thieno [3,2-b] pyridine-3-carboxylic acid methyl ester (Compound FU); 5-bromo-2-piperazin-1-yl)-pyrimidine (Compound FV); 1- (3-

trifluoromethyl-pyridin-2-yl)-piperazine (Compound FW); 1- (5-trifluoromethyl-pyridin- 2-yl)-piperazine (Compound FX); piperazine (Compound KY); or (2-Hexyloxy-phenyl)- carbamic acid 2-piperidin-1-yl-1-piperidin-1-ylmethyl-ethyl ester (Compound OQ).

The compounds of the present invention can be synthesized using standard methods of chemical synthesis and/or can be synthesized using schemes described herein. Synthesis of specific compounds is discussed in detail in the Example sections below. Examples of syntheses of several classes of compounds of the invention are outlined in the schemes below. Scheme 1 depicts a method of synthesizing thiomethylene compound of the invention. 0 han reflux in 1, 2-dichlorobenzene ! + ?" Hz OH

Y=OorS; qbond, CH2, fused-cyclohexane.

R = various alkyl, cycloalkyl, aryl or heteroaryl X=l, BrorCI Scheme 1 2-hydroxy or 2-mercapto benzoic acid is heated with the diamine in refluxing 1,2-dichlorobenzene to form the corresponding heterocyclic compound. The desired thioether or ether is formed by treating the thiol or alcohol with a corresponding halogenated compound.

Scheme 2 depicts a general preparation of ethanyl-linked compounds of the invention. CN 1) LDAtTHF-78 °C ¢4 /2) Ar/ Ar N I I 1,3-diaminopropane,H2S ¢4NH -11 H

Scheme 2 Scheme 2 shows a method of synthesizing ethanyl linked compounds by treating a-tolunitrile with a lithium base in THF at-78 °C. A halogenated alkylaryl compound is then added to form the ethanyl linkage. To form the heterocycle, hydrogen sulfide gas is bubbled through a solution of the nitrile and 1,3 diaminopropane. After formation, the product can then be obtained and purified using standard techniques.

Scheme 3 depicts a method of preparing methylenethio linked compounds of the invention. CON I CN pr-gH Br K, CO,/DMF S Ar s'-Ar NEZ I w NJ 1,3-diaminopropane,H2S N -11 H Au Scheme 3

As depicted in Scheme 3, the methylenethio compounds of the invention can be prepared by adding anhydrous K2CO3 to a thiophenol compound (Ar-SH) in DMF. The solution is then stirred and bromomethyl-benzonitrile is subsequently added. The thioether is then converted to the heterocyclic compound by bubbling hydrogen sulfide through a solution of the thioether and 1,3 diaminopropane. After formation, the product can then be obtained and purified using standard techniques.

The invention is further illustrated by the following examples which in no way should be construed as being further limiting. The contents of all references, pending patent applications and published patent applications, cited throughout this application are hereby incorporated by reference. It should be understood that the animal models used throughout the examples are accepted animal models and that the demonstration of efficacy in these animal models is predictive of efficacy in humans.

EXEMPLIFICATION OF THE INVENTION: EXAMPLE 1: Synthesis of Compounds B, HO, and IZ Synthesis of Compound B 2- (4, 5-Dihydro-lH-imidazol-2-yl)-benzenethiol. To a suspension of 20.0 g (0.112 mol) ofthiosalicylic acid in 200 mL of 1,2-dichlorobenzene was added 21.6 mL (0. 323 mol) of ethylenediamine. The mixture was refluxed under nitrogen for 4 h then cooled to ca.

60 OC and 50 mL of methanol was added. The solution was allowed to stand at 22 oc over night and the resulting yellow crystalline solid collected and washed with ether to give 10.6 g of pure product.

2-[2-(2-Chloro-6-fluoro-benzylsulfanyl)-phenyl]-1,[2-(2-C hloro-6-fluoro-benzylsulfanyl)-phenyl]-1, 4,5,6-tetrahydro-pyrimidine; hydrochloride (Compound B). To a solution of 750 mg (3.90 mmol) of 2- (1,4,5,6- Tetrahydro-pyrimidin-2-yl)-benzenethiol was added 1.04 g (5.81 mmol) of 1-Chloro-2- chloromethyl-3-fluoro-benzene. The solution was stirred overnight at 22 OC and 2-3 mL of ether was added to induce crystallization. The crystals were collected and washed with ether to give 1.34 g of product.

NMR Data for Compound B 'H NMR (300 MHz, CD30D) 8 2.01-2.09 (2H, m), 3.49 (4H, br t, J = 5.8 Hz), 4.28 (2H, s), 7.01-7.07 (1H, m), 7.22-7.33 (2H, m), 7.48 (2H, m), 7.56-7.64 (1H, m), 7.75 (1H, d, J = 7.8 Hz) Synthesis of Compound HO: Compound HO

I I CN i ^'CN /I THF _ I ) H + n-BuLi + HMPA + ( : : : : 6 THF I -78C Scheme 4 2- (2-Naphthalen-1-yl-ethyl)-benzonitrile. A solution of 1.26 mL (911 mg, 9.00 mmol) of diisopropylamine in 50 mL of THF (tetrahydrofuran) was cooled to-78 °C under nitrogen and 5.6 mL (9.0 mmol) of n-butyllithium, 1.6 M in hexanes, was added via syringe. The mixture was stirred at-78 °C for 1 hour and a solution of 353 mg (3.00 mmol) of a-tolunitrile in 10 mL of THF was added. The solution was stirred at-78 °C for one additional hour and a solution of 1.57 mL (9.00 mmol) of HMPA and 583 mg (3.30 mmol) of 1-chloromethylnaphthalene in 10 mL of THF was added dropwise. After stirring for one additional hour at-78°C, the reaction was quenched with water and extracted with Et20 (diethyl ether) (2x30 mL). The organic layer was washed with aqueous 1 N HCl (30mL), water (3x30mL), brine (30mL) and dried (Na2S04). The solvent was evaporated to give 735 mg of crude product which was used directly in the next step.

Scheme 5 2- [2- (2-Naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimid ine (Compound IQ) Hydrogen sulfide gas was bubbled through a solution of 735 mg of crude 2- (2- Naphthalen-1-yl-ethyl)-benzonitrile in 5 mL of 1,3-diaminopropane for 5 minutes, as

depicted in Scheme 3. The reaction was capped and heated to 80 °C for 72 hours. The reaction mixture was then diluted with 5 mL of water and extracted with ethyl acetate (2xlOmL). The organic extracts were washed with water (3xlOmL), brine (2xlOmL), dried (Na2SO4) and the solvent was evaporated. The residue was purified on silica gel (eluting with 90: 10: 1: 1 of dichloromethane/methanol/water/formic acid) to afford 310 mg of the formate salt of the product as a colorless oil.

NMR Data for Compound HO: <BR> <BR> <BR> 'H NMR (300 MHz, CDC13) 8 1.35-1.50 (2H, m), 2.80-2.95 (4H, m), 3.03 (2H, t, J = 6.8), 3.30 (2H, t, J = 6.8), 6.77 (1H, d, J = 6.9), 7.03-7.30 (3H, m), 7.30-7.57 (4H, m), 7.67 (1H, d, J = 8.1), 7.80-7.90 (1H, m), 7.94-8.03 (1H, m), 8.06 (2H, brs, formate salt).

Synthesis of Compound IZ: Compound IZ Scheme 6 2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-benzonitrile. As depicted in Scheme 4 above, to a solution of 104 mg (0.470 mmol) of 2-methoxy-5-bromo-thiophenol in 5 mL of DMF was added 162 mg (1.18 mmol) of anhydrous to a solution of 104 mg (0.470 mmol) of 2-methoxy-5-bromo-thiophenol in 5 mL of DMF was added 162 mg (1.18 mmol) of anhydrous K2CO3. The solution was stirred for 15 minutes at 22 °C and 103 mg (0.520 mmol) of 2-bromomethyl-benzonitrile was added. The reaction was capped and heated to 40 °C for 12 hours. The mixture was subsequently diluted with 5 mL of water and extracted with ethyl acetate (2x 1 OmL). The organic extracts were washed with water (3xlOmL), brine (2xlOmL), and dried (Na2S04). The solvent was evaporated and the product was purified on silica gel (eluting with 9: 1 of hexane/ethyl acetate) to afford 102 mg of the product as a colorless oil.

Scheme 7 2- [2- (5-Bromo-2-methoxy-phenylsulfanylmethyl)-phenyl]-1,4,5,6-tet rahydro- pyrimidine. (Compound DV) Compound DV was obtained from 2- (5-Bromo-2- methoxy-phenylsulfanylmethyl)-benzonitrile, 1,3-propanediamine and hydrogen sulfide in 73% yield by a procedure analogous to that used for the preparation of 2- [2- (2- Naphthalen-1-yl-ethyl)-phenyl]-1,4,5,6-tetrahydro-pyrimidine described above.

Following chromatography, the material was converted to the hydrochloride salt and recrystallized from methanol/ether.

NMR Data for Compound IZ 'H NMR (300 MHz, DMSO-d6) 8 1.95-2.10 (2H, m), 3.45-3.55 (4H, m), 3.86 (3H, s), 4.40 (2H, s), 6.97-7.04 (1H, m), 7.36-7.65 (6H, m), 10.03 (2H, s, hydrochloride salt).

The compounds given in Table 1, were made using procedures similar to that used for Compound B. The ES-LRMS values each had a relative intensity of 100.

Table 1: Physical Data of Selected MC4-R Binding Compounds ID Molecular Formula Exact ES-Melt Name LRMS Point Nome found Base) (M+H) C24H24N2OS388.16389.6178-I2-[2-(4-Benzyloxy-benzylsulfanyl)- phenyl]- 1,4,5,6-tetrahydro-pyrimidine;hydrochloride HCI 179 M 2-[2-(2-lodo-benylsulfanyl)-phenyl]-Cl7Hl7IN2S 408. 02 409 207- 1,4,5,6-tetrahydro-pyrimidine; HCl hydrochloride N 2- [2- (2-Methoxy-5-nitro-benzylsulfanyl)- C, $H, 9N303S 357. 11 358.1 239- phenyl]-1,4,5,6-tetrahydro-pyrimidine; HBr 241 hydrobromide O 2-[2-(Naphthalen-1-ylmethylsulfanyl)- C21H20N2S 332.13 333.1 207- phenylJ-1,4,5,6-tetrahydro-pyrimidine; HCI 208 hydrochloride Q 2- [2- (3-Chloro-benzylsulfanyl)-phenyl]- C17Hl7CN2S 316.08 317 224- 1,4,5,6-tetrahydro-pyrimidine; HBr 225.5 hydrobromide AI 2-[2-(2,5-Dimethoxy-benzylsulfanyl)- C19H22N2O2S 342.14 343.2 201- 202phenyl]-1,4,5,6-tetrahydro-pyrimidine;HCl hydrochloride ZZ2-[2-(3-Bromo-benzylsulfanyl)-phenyl]- C17H17BrN2S 360.03 361 210- 1,4,5,6-tetrahydro-pyrimidine; HBr 211 hydrobromide B 2-[2-(2-Chloro-6-fluoro-benzylsulfanyl)- C17H16ClFN2S 334.07 335 232- phenyl]-1,4,5,6-tetrahydro-pyrimidine; HCl 233 hydrochloride C16H15IN2S394394.9184-AE2-[2-(2-Iodo-benzylsulfanyl)-phenyl] -4,5- dihydro-I H-imidazole;hydrochloride HCI 185 2- 2- [2- (2-Methoxy-5-nitro-benzylsulfanyl)- C, 7H,N303 343.1 344.1 253- HBr 254 hydrobromide Y 2-[2-(2-Methoxy-5-nitro-benzyloxy)- C18H19N3O4 341. 14 342.1 220- phenyl]-1,4,5,6-tetrahydro-pyrimidine; HCI 221 hydrochloride AA 2- [2-(2-Bromo-benylsulfanyl)-phenyl]-Cl7Hl7BrN2S 360. 03 361.0 177- 1,4,5,6-tetrahydro-pyrimidine; HBr (rel. hydrobromide 2-[2-(3-Iodo-benzylsulfanyl)-phenyl]- C17H17IN2S 408.02 409 183- 1,4,5,6-tetrahydro-pyrimidine; HBr 185 hydrobromide AG 2-[2-(2-Methoxy-5-nitro-benzylsulfanyl)- C21H23N3O3S 397.15 398. 1 >240 phenyl]-3a,4,5,6,7,7a-hexahydro-1H-HBr benzoimidazole; hydrobromide AL 2-[2-(2-Methoxy-napthalen-I-C22H22N2OS 362.1 363 ylmethylsulfanyl)-phenyl]-1,4,5,6-HCl tetrahydropyrimidine; hydrochloride 2-390 390.9 phenyl]-1,4,5,6-tetrahydropyrimidine; HCl hydrochloride

Example 2: Scincillation Proximity Assay (SPA) High-Throughput Receptor Binding Screening for MC4-R Binding Compounds A. Preparation of Membranes from MC4-R Cells A crude preparation of plasma membranes, of sufficient purity for use in the scincillation proximity assay (SPA), was prepared using the following protocol (Maeda et al. (1983) Biochem. Biophys. Acta 731: 115-120).

MC4-R cells were stable recombinant K293 cells overexpressing the MC4-R.

The cells were routinely cultured and passaged in a growth medium composed of DMEM base medium: 10% fetal bovine serum (FBS), 1X Glutamine, and 0.5 mg/ml G418. Terminal cultures (i. e., those which will be processed to produce plasma membranes) were grown in identical media, with the exception that the media contained 0.2 mg/ml G418 At 4°C, harvested cells were pelleted and immediately washed with 25 mL of PBS. The washed cells were resuspended in two volumes of STM buffer (0.25 M sucrose, 5 mM Tris, 1 mM MgCl2, pH 7.5), containing Boehringer Complet protease inhibitors. Cell breakage was accomplished using a Dounce homogenizer. After 20-30 strokes, nuclei and unbroken cells were pelleted by centrifugation at 1100 rpm for 5 minutes. The supernatant was saved and the pellet was resuspended in 1 volume of STM/protease inhibitors, and then a further lysis step was carried out by the Dounce homogenizer (10-20 strokes). This material was then combined with the first supernatant. 11.25 mL of the homogenate was gently layered on top of 27.25 mL f 42% (w/w) sucrose (5 mM Tris, 1 mM MgCl2, pH 7.5). After spinning at 28,000 rpm (ultracentrifuge, SW-28 rotor) for 90 minutes, membranes were collected at the interface with a transfer pipette.

The membrane suspension obtained from the sucrose interface was collected and diluted with 5 mM Tris and 1 mM MgCl2. Membranes were collected by a further round of centrifugation at 33,000 rpm for 30 minutes (SW-41 Ti rotor). The pellet of membranes was subsequently resuspended in a small (0.5 mL) volume of STM, using a 2 mL Dounce homogenizer, and immediately frozen. The resulting membranes were stable to both freeze-thaw cycles and temperatures around 4°C for at least 6 hours.

B. High-throughput screen A scincillation proximity assay (SPA) format ligand binding assay was used.

The membranes from the MC4-R mammalian cells (K293 expressing MC4-R) were bound to wheat germ agglutinin (WGA) coated SPA beads. The membrane coated SPA beads were added to screening plates, which contained the test compounds pre-dissolved in 30pL of 10% DMSO. After pre-equilibration of the receptor coated beads with the test compounds (1 hour), 2nM of radioactive ligand ( NDP-a-MSH) was added.

Since the binding of the radioactive ligand to the receptor causes the scincillation of the beads, blockage of the binding of the radioactive ligand by a small molecule causes a reduction in scincillation.

1. Pre-Binding of the MC4R Membranes to the WGA-SPA beads The membranes were mixed with the SPA beads to make a 2X stock of membrane and beads.

For a twenty plate batch of screening plates, the components were mixed in proportions given in Table 2. The membranes and beads were stirred with a magnetic stir bar at room temperature for 1-2 hours to allow binding.

Table 2 Component Volume Final Concentration in Assay 4 mg/ml WGA-SPA Beads 14. 4 mL 25 pg/well MC4R crude plasma membranes 600 pL 5 pg/well SPA Binding Buffer 100 mL N/A the exact amount of membranes used varies with the quality of the membrane preparation and must be checked for each new batch.

2. Binding Assay The following assay was performed with automation using a Titertec MultiDrop with plate stacker.

30 gL of 10% DMSO was added per well to the dried compound film in an OptiPlate. Then, 5LL of cold NDP-a-MSH was added to the control wells.

Subsequently, 50p1 per well of 2X membranes and beads were added and pre- equilibrated with the compounds for 1 hour.

Binding was initiated by adding 20uL of radioactive ligand (a 20 nM solution of [125I]-NDP-a-MSH) to each test well. The plates were incubated overnight at room temperature and read the following morning.

The reagents and amounts are summarized below in Table 3.

Table 3 Volume(pL) Reagent Max (100%) Min (0%) 50% Test 20%DMSO 30 30 30 30 2X membranes + beads 60 0 60 60 2nM [I]-NDP-a-MSHin 20 20 20 20 bindingbuffer NDP-a-MSH (5µM in H20) 5 0 0 0 NDP-a-MSH (20 nM in H20) 0 0 5 0 Test005µM0 Test compound stock diluted in BuOH 1: 10,25 p. L dried in assay plate in hood prior to addition of assay buffer. Well contained 0.5 nmol of each test compound (20/well) in 2.5 µL 100% DMSO.

Potency of inhibitors was quantified with respect to positive (100% inhibition) and negative (no inhibitor; 0% inhibition) controls. The following formula was used: % Inhibition = {1-[cpm-(positive control)]/[(negative control)-(positive control)]}*100% Results from the SPA, are summarized in Table 4. In Table 4, * indicates good inhibition of the MC4-R, ** indicates very good inhibition of the MC4-R, and*** indicates exemplary inhibition of the MC4-R.

Compounds which were found to be not active as MC4-R binding compounds, using the SPA assay described herein, are depicted in Table 5.

In an embodiment, the present invention pertains to the compounds and methods described herein provided that the compound is not selected from the group consisting of those depicted in Table 5.

Table 4 Mol MC CHEMICAI NAME Weight Structure (Tot) 2- [z- (z. soichor c s thiophen-3- A ylmethylsulfanyl)-393. 7877 phenyl]-1, 4, 5, r, tetrahydro- pyrimidine;HCI 2- [2- (2-Chloro-& fluor- benzylsulfanyl)-415. 7566. C ** phenyl]-1, 4, 5, 6 tetrahydro- pyrimidine;HCI ci 2- (2- Benzylsulfanyl-ij I D phenyl)-1,4,5,6- 363. 3214's * tetrahydro- pyrimidine ; HBr I i 2- (2- Pentadecylsulfan E yl-phenyl)-1,4,5,6 483. 6 tetrahydro- pyrimidine :HBr . N 2- (2- Cydohexylmethyl F sulfanyl-phenyl)-369.369 1, Js * 1,4,5,&tetrahyd pydmidine:HBr t HN 2- [2- (2-Methyl- benzylsulfanyl)-s G phenyl]-1,4,5,6- 377. 3483/* tetrahydro- pyrimidine:HBr _ H _ /'\/' \/"./ benzylsulfanyl)-/ H phenySl-1,4,5,6- 408.319 \ * tetrahydro- pynmidine ; HBr e v0 2- [2- (4-Benzylox iz benzylsulfanyl)- phenyl]-1, 4, 5, 6- 424.9934 _ ** tetrahydro- pyrimidine ; HCI " 2- [2- (2-lod benzylsulfanyl)-s M pheny)}-1. 4. 5. 6- 444. 7659 ** tetrahydro- pynmidine HCI, -\U/ d/n/7 2- [2- (2-Methoxy- nitro- benzylsulfanyl)-Io- phenyll-1, 4, 5, fi-. \ tetrahydro- pyrimidine: HBr on o 2- [2- (Naphthalen 1- O ylmethylsulfanyl)-368 9293. *** phenyl]-1, 4, 5, 6- tetrahydro-' pydmidine ; HCI HN_ .''_/ 2- [2- (3-lodo- benzylsulfanyly s P phenyl]-1,4,5,6- 489.2179 \ ** tetrahydro- pyrimidine.HBr \y HN / 2- [2- (3-Chloro- benzylsulfanyl)-s Q phenyll-1, 4, 5, fi-397. 7662 * tetmhydro- pyrimidine ci 2- [2- (3, 5- Dimethoxy-s R benzytsulfanyl)-378. 922 phenyl]-1, 4, 5, 6-, tetrahydro- pynmidine ; HCI 0 NN HN 2- [2- (4-Fluoro- benzylsulfanyl)- s B phenyl]-1, 4, 5, fi-381.3119 (* tetrahydro- pyrimidine.HBr \/ F y F F 2- [2- (2-Chloro- N- benzylsulfanylf s T phenyll-1, 4, 5, b-397. 7662/* tetrahydro-\ pyrimidine) ""/ HN , ba HNa2- [2- (2-Fluoro- benzylsulfanyl)-s U pheny !]-1. 4. 5. 6- 381. 3119/* tetrahydro- pyrimidine;HBr '/ -"\ 2- [2- (2, 4-Bis- tnfluoromethyl- v benzylsulfanyl)-499. 3179 F phenyl]-1, 4, 5, & tetrahydro- F pyrimidine ;HBr \_ F F \F 2- [2- (3-Methoxy- benzylsulfanylf s W phenyll-1, 4, 5, 6-348.8957 S_ * tetrahydro- pyrimidine ; HCI \ 2- [2- (3, 5-Bis- trifluoromethyl- benzylsulfanyly phenyl]-1, 4, 5, 6- 454. 8659 F tetrahydro-\ pynmidine ; HCI F,/\, F \F F F 2- [2- (2-Methoxy- nitro-benzyloxy)- Y phenyl]-1, 4, 5, 6- 377.8267 ! ° tetrahydro- pyrimidine;HCI Nrb y ; ; N-v 2- [2- (3-Bromo-- benzylsulfanyl)-s Z phenylj-1 s4, 5, 6-442. 2175 ** tetrahydro- pyrimidine ; HBr B, ,i /\ 2-[2-(2-Bromo- ; _ NJ benzylsulfanyl)- M phenyl]-1, 4, 5, s 442. 2175 s ** tetrahydro- pyrimidine er- X/\ NH 2- [2- (2-Chloro-6- fluors- benzylsulfanyl)-3572777 F * AB 357. 2777 / dihydro-1 H- ( imidazole ci r\NH 2_ (2_ Benzylsulfanyl- AC phenyl)-4, 5- 304.8425 d! hydro-1H- -. s-. dihydro-lh-s imidazole; HCI CJ \L 2- (2- (2-todo- benzylsulfanyl)-N AE phenyl} 4, S 430.7391 4-** dihydro-lH- imidazole ; HCI f NH 2- [2- (2-Methoxy- /O H nitro-0 :. N" AF benzylsulfany)-424. 3184 5- ** phenyl]-4, & dihydro-IH- imidazoleHBr o / 2- [2- (2-Methoxy- nitro- benzylsulfanyl)- phenyl]- AG 3a, 4, 5, 6, 7,7a-478. 41 hexahydro-IH- benzoimidazole;. HBr/ 2-[2-(Naphthaler No 1-ylmethoxy)- AH phenyil-4 s e-362.4327, teVahydro- pyrimidine; Formate 2-[2-(2, S _ Dimethoxy-""- benzysulfanyl)--° ** AI phenyl]-1, 4. 5. & 378. 922 tetrahydro- pyrimidine;HCI : 2- [2- (2-Methyl- naphthalen-l- AJ ytmethylsulfanyl)-346. 4962 phenyl]-1,4,5,6- HN-' tetrahydro-N pydmidine 1- (2- [2- (2-Ch1I0o0 I r, fluoro- benzylsulfanyp-CI AK pheny !)-5. 6-376.8819 f dihydro-4H- pynmidin-1-y))-/"\ ethanone ~cl N ~ N 2- [2- (2-Methoxy- naphthalen-1-, | ,. yethy! su! fany!)-QQ Qcee""" ° *** AL [methylsulfanyl)- phenyl]-1,4,5,& tetrahydro- pynmidine ; HCI v N2- [2- (5-Bromo-2- methoxy- AM benzylsulfanyl)-427. 7917 phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine;HCI rs 1-(6-Bromo-2-o chloro-quinolin-4 rH AN yl)-3- (2 399. 7179 s,, l Z/N * diethylamino- ethyi)-urea 2-[2-(2, 6-Diñuon iX benzylsulfanyl)-N F AO Phenyl]-1, 4, 5, 6-480.2143 " tetrahydro- pyrimidine ; HBr F 10- [2- (1-Methyt-\ piperidin-2-yl)-N ethyl]-2- AP methylsutfanyl-407. 0429 1OH-S- phenothiazine ; HCI 4- (3, SBis- trifluorometha- phenyl)-1, 4, 6, 7- tetrahydro-" AQ imidazo [4, 5- 507. 5465 c]pyridine-S carbothioicacid (3-diethylamino- propyl)-amide . i CH 1-(4-Hydroxy- AR, 35'lnmethyl- 1852664 \C J * piperidin-4-yl)- ethanone HO NON 2-Naphthalen-1-\ . C y! methy!-4.5-O/LRyaf; [* AS Ylmethyl-4, 5- 246.7386 * dnyaro-iH-/ imidazole ; HCI \/ 1- (3-Diethylamin propy !)-3- {1- [5- (2.-, methyl-S- triñuoromethyl-2F. 1 AT pyrazo !-)-552. 7096- thiophene-2- sulfonyl]- pyrrolidin-3-yl}- thiourea N- [2-Cydopropyl- 3- (1. 1, 3, 3- tetramethyl- AU butylamino)-342.4846 j 4 * imidazo (1, 2- alpyridin-8-yll- acetamide (2-lsopropyl-H, C CH, imidazo [1, 2-CK4LCHG AV alPV^dn-3-yp-342. 4846""' * (1. 1, 3, 3-, r4 tetramethyl-butyl) amine N (2-lsopropyl-c CY imidazo [1, 2-/gL AW alpyridin-3 yl} 287.4485 l~Nc * tetramethyl-butyl) iel SCH amine CN a CrvH 1 XanihW3, 4P5, 6 S vN NhvaMyL3, , 5,8- yN; 3H. * AX 505. 6509 cl F cl (2,6-DfChtoro-H H phenyl AY imidazolidin-2-266.5561\/ ylidene-amine ; ci HCI H N 2-Benzyl-4, S AZ dihydro-IH-160. 2188" imidazole 1- (4-Phenyl-5'- tinuoromethyl- 3, 4, 5, 6-tetrahyd 2H-* BA 2., b.'d. ny.-4. 489. 5843"r ylmethyl)-3- (2- pipendin-1-yl-~ ethyl)-urea 2-(2-N Methylsulfanyl- BB phenyl)-1, 4, 5, 6-334.2216 FP/H * tetrahydro-H pyrimidine N N 2- (, 4. 5. & N/\ 2-(1|4, 5, 6-Jl NJBZ Totmhydro-192. 2848 benzenethiol I 2- [2- (4-Nitro- benzylsulfanyl)- BD phenyl]-1, 4, 5, 6-408.319 * tetrahydro- pyrimidine 2-(3- [2_ (1. 4. 5. & I Tetrahydro- N phenylsulfanyt]- propyr)-isoindole- 1,3-dione ;HBr o' (\\ U 2- [2- (3-Phenyl- propylsulfanyl)-f+HN BF phenyll-1, 4f5, 6-391.3752 S * tetrahydro- pyrimidine ; HBr/ 2- [2- (4- Trifluoromethyl- BG benzylsulfanyl)-431. 3197 s phenyl]-1,4,5,& tetrahydro- pyrimidine;HBr r 6 H N 4-Piperazin-1-yl- BH tnf) uoromethy). 281. 2806-A. * quinoline r N F F NH 3NiVo-N * 'ka Bj 4-Carbamimidoyl-163. 1791 o NH benzamide HH"--'HN7 2-Phenyl-4, & BK dihydro-1H-1461919 H * imidazole N N 2-(3- Benzylsulfanyl- BL phenyl)-1, 4, 5, 6-282. 4094 * tetrahydro. pyrimidine 2- [2- (4-tert-Butyl- benzylsulfanyl)- BM phenyl]-1, 4, 5, 6- 419. 4289 tetrahydro- pyrimidine ; HBr 4 2,2-Diphenyl-4- [2 (1. 4. 5. 6_ BN tetrahydro-492. 4827 pyrimidin-2-yl)- phenylsulfanyl]- butyroniVile ; HBr HN 2- (2- (3, 4-Dimethy benzylsulfanyl)- BO phenyl]-l, 4,56-346.9232 (s * tetrahydro- pyrimidine ; HCI An HN)3-[2-(1, 4, 5n6-mNS Tetrahydro-s pyrimidin-2-yl)-* phenylsulfanylme a hyll-benzonitdle ; HBr H 2- [2- (4-Bromo- benzylsulfanyl)-s BR phenyll-1, 4, 5|6-442.2175 ( tetrahydro- pyrimidine ; HBr dA iN) , HN 2-Z- (z, CYDICrIOf benzylsulfanyl)- BS pheny !]-1. 4. 5. 6-432. 2109/ tetrahydro- pyrimidine ; HBr HN 2-[2-(Naphthalen >d) z_ N S ylmethylsulfanyl)-413. 3813 * ph nyl]-1, 4, 5, 6- tetrahydro- pyrimidine ;HBr t 2- [2- (4-Fluoro- benzylsulfanyp-s BU phenyl]-1, 4, 5, 6-381.3119 (* tetrahydro- pynmidine; HBr w F nu 2-[2-(Biphenyl-4-y N ylmethylsulfanyl)- BV phenyl]-1, 4, 5, 6-394.9672 mB * tetrahydro- Pvnm d ne : HC HN 2- [2- (2, 4-Bis- trifluoromethyl-N BW benzylsulfanyl)-499. 3179 & tetrahydro-F pyrimidine ;HBr F rF F F F F , HN 2-2- (1, 4. 5, r. H Tetrahydro-N BX pyrimidin-2-yi)-388. 3312 hy l. ben50n b e N=C 4phenylsulfanylme hyl]-benzoniMIA ; HBr N-c 4-2- (1, 4, 5, 6- Tetrahydro- PY midin-2-yl)-* phenyisulfanylme hyl]-benzonitrile ; HBr cN "Br \ yr 2- [2- (4 benzylsulfanyl)-s BZ phenyll-1, 4, 5, 6- 348.8957 t * tetrahydro- pyrimidineHCI 0 nu NH CA Benzamidine : HC 156.614,-,-NH, F nu F F NH 3. $-BIS- F I Nh * CB trifluoromethyl-292. 6105 benzamidine ; HC FUI H 2- (2- Benzylsulfanyl- CC phenyl)-4, 5- 304.8425 54 % * dihydro-1H-¢) \ imidazole ; HCI (2-Butoxy-phenyl carbamic acid 2- CD piperidin---yl 1-463.6221 CL/** ylmethyl-ethyl ester;Formate (2-Pentyloxy- phenyl)-carbami CEyl-1-pl eridin-;-477 649 C, < ** yl-1-piperidin-1- ylmethyl-ethyl ester,Formate NEZ ft \ 2- (2-Bromo- CF phenyl)-4, 5- 261. 5479 dihydro-1H- imidazole ; HCI Q 4-Phenyl-2- CJ piperazin-1-yl-6-330. 4326 t oN * tolyl-pyrimidine AJ k.- I N, N-Benzyl-N- (3 chloro-benzyl)- CK N', N'-dimethyl- 302. 8468-l * ethanal, 2-"" diamine N-Benzyl-N- (4- bromo-benzyl)- CL N', N'-dimethyl- 347. 29 ; 8 ethane-1,2-s ~ ~ diamine N-Benzyl-N- (3, 4- dichloro-benzyl)- CM N', N'-dimethyl- 337. 2916 * ethane-1,2- diamine 7-Chloro-4, 6 C w dimethyl-2- * CO piperazin-t-yl-365. 8208 a quinoline ; Oxalat, u, 7-Chloro-4,& dimethyl-2- 01 * CP piperazin-1-yl-275. 7808 a,.,,,. w.., quinoline 7-Chloro-4, 8- dimethyl-2- PPerazin-1-yl- quinoline; NN Formate dimethy!-2-r\ CS 2, 7-Dichloro4, 8-226 1046 < * dimethyl-quinolin 2- (2- Benzylsulfanyl- phenyl)- CT 4, 5, 6, 7, 7a- 358. 9 hexahydro-1 H- benzoimidazole; t _ HCI , 2-[2-(2-Chloro-6 fluor- benzylsulfanyl)- // phenyl]-F ** CU 3a, 4, 5, 6, 7, 7a- 411.3694 hexahydro-lH- -' benzoimidazole ; HCI c. 2- [2- (2-lodo- benzylsulfanyl)- -phenyl) CV 3a, 4,5,6,7,7a- 484. 8307 HN hexahydro-1 H- benzoimidazole; HCI N III C NH 1-Phenyl-3- piperazin-1-yl- CY 5,6, , s-teo-anydr 318. 4216 w-"** isoquinoline-4- carbonitnle \v W 2- [2- (Pyridin-3- ylmethylsu fanyl)- CZ phonyl]-l,", 5, e- 283.3972. tetrahydro- pyrimidine 1-Pyridin-3- -ayr; an-a- ylmethyl-2- [2- (pyridin3 DA ylmethylsulfanyl)-374.5096 s * phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine N 2-[2-(2-Ethoxy- ethylsulfanyl)-1, 0 N DB phenyl]-1, 4, 5, 6 345.3037 iX s * tetrahydro-' pyrimidine;HBr lao FN- 2- [2- (2. 5-Dimethy benzylsulfanyl)- DC phenyl]-1,4,5, 6-346. 9232 ; ** tetrahydro- pynmidine ; HCI 2- [2- (2- _ l H BenzenesuWonyl _ : methyl- DD benzylsulfanyl)-517. 5108 phenyl]-1, 4, 5, 6-o tetrahydro-° pyridine;HBr t N/\ 4- [2- (1, 4. 5, 6- TeVahydro-C NH PYmidin-2-yp= ** phenylsulfanylme hyl]-quinoline; YS1 N N/ 2- [2- (2-Methoxy- II nitro- DF benzylsultanyl ;'s 439 3331 N5ffi5 Oz ** pyridin-3-yl]- 1,4,5,6tetrahyd pyrimidine; HBrr _ NA N 2- [2- (2-Methoxy- benzylsulfanyl)- Phenyl]-1. 4. 5. 8 3 tetrahydro- pyrimidine;HCI u N ben Cydopentytoxy-f) F'\ DH ulfanyl)- DH pheznyljs 1,4,5,6- 447. 4393 tetrahydro- pyrimidine ; HBr 2-Biphenyl-2-yl-I J D pyrimidine ; 282. 3465 H pyrimidine ; Formate'' Formate N 2- [2- (2, 3- N".) Dimethoxy- benzylsulfanyl)- DJ phenylj-1. 4. 5. 6 423. 374 I % Is o tetrahydro- pyrimidine ; HBr I 2- [2- (2, 3-Dihydr benzo [1,4] dioxin- II INN I DK ylmethylsulfanyl)-421.3581 O' o^ ** phenyl]-1, 4, 5, 6-L 1 o tetrahydro- pydmidine ;HBr S 2- [2- (6-methoxy- N 2,3dihydro- benzo [1,4] dioxin- NH II DL ylmethylsulfanyl)-451. 3844 phenyl]-1, 4, 5, 6 \ g . letrahydro- o= pynmidine N2- [2- (5-fluoro-2- methoxy- pjn benzy! su! fany!)-Qa o benzylsulfanyl)-', _"S ol phenyl]-4, S dihydro-lH-4' imidazole ; HCI i F 1-Methyl-2- [2- N' II (naphthalen ylmethylsultanylf | D N phenyl]-1, 4, S, 6-392.5262 ("I-s tetrahydro- pyrimidine ; formate HCX 1-Methyl-2- [2- (naphthalen-1-WN DO ylmethyisultanyl)-332.4693 s phenyl]-4, S dihydro-1H- imidazole \ 2- [2- (SBromo-2- i methoxy- DP benzylsulfanyl)-413.7649 s ot phenyl]-4, 5- dihydro-1H- imidazole ; HCI B. N2- [2- (S-Bromo-2- methoxy- DQ benzyloxy)-411. 7251 Cl".. 1 phenyll-1, 4, 5, 6- tetrahydro- pyrimidine ; HCI e N N 2- [2- (Naphthalen. NH 1-yloxymethylr DR phenylj-1, 4, 5, 6-316.4027 \\ tetrahydro-o lv pyrimidine I 2-(2-Phenoxy-CX DS phenyl)-1, 4, 5'6-288. 7759 tetrahydro- pynmidine ; HCI 5-(4-Chloro-HND phenyl)-2, 5- DT dihydro-3H-284.7448 o/t * imidazo[2,1- H a]isoindol-5-ol a cl 2- [2- (2-Methoxy- phenoxymethyl)- DU phenyl]-1, 4, 5, 6- 332.8291- tetrahydro-0 pyrimidine ; HCI 0 2-[2-(2, 6- Dimethoxy- DV phenoxymethyp-326. 3954 phonyl]-1, 4, 5, 6- tetrahydro- pyrimidine 2- [2- (5-Bromo-2- methoxy- benzylsulfanyl)- DW 3855phenyl]-5, 5- 419. ws'*** dimethyl-1, 4, 5, 6- tetrahydro-j pyrimidine N N l 2- [2- (2-Methoxy- phenoxy)-phenyl] ao, H DX1 4, 5, 6-tetrahyd 328. 3722 i * pynmidine ; Formate 2- [2- (5-Bromo-2- ii methoxy- benzylÕulfanyl)-, # DY phenyl]-S, S-405.3586 5 O *** dimethyl-4, 5- dihydro-lH- imidazole rs 2- [2- (5-Bromc2- methoxy- benzylsulfanyl)- s o * DZ trieuoromethyl-459.33 v s o * phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine N 2- [2- (2, 6- 11 Dimethoxy-'NH benzylsulfanyl)-s o *** EA phenyl]-1, 4, 5, 6- 378. 922 I tetrahydro- pynmidine ; HCI so/\J6 2-[2-(S-Bromo-2 l9/ methoxy- benzylsulfanyl)-419. 3855 5 0 *** phenyl]-6-ethyl- 1,4,5,6-tetrahyd pyrimidine e. (Y 2- (5-Bromo-2- ethoxy- EC'benzylsulfanyl)-334. 2364 benzonitnle T N 2-[2-(2-Bromo 6- methoxy- ED benzylsulfanylr 42. 2437 Is o-*** phenylJ-1. 4, S. G tetrahydro- pyrimidine;HBr 5. ~tv 2- [S-Bromo-2- (5- bromo-2-methoxy benzy ! su ! fany !)- (, t EF phenyt]-4, 5- 502.2309 ! r' dihydro-lH- imidazole ; i Formate N- 9-Benzylidene- EJ 4 9ã-diaza-306.3685 0-0 4, 9a-diaza- fluorene;Formas N 2- [2- (Biphenyl-3 E K dihydro-~ H-314. 3868 o * anyaro. iH- imidazole NH 2- [2- (4-Chlo EL phenoxy)-phenyl] 272 7338 o * 4,Sdihydro- 1 H- imidazole ci 2- [5-Bromo-2- (5- bromo-2-methoxy benzylsulfanyl)- EM phenyl]-1, 4, 5, 6- 516.2578 tetrahydro- pyrimidine; j Formate N/E 2- [2- (Naphthale 2-yloxy)-phenyl} l EN 4,5-d. hydro-IH- 334. 3789' imidazole ; o Formate 2- [4-Bromo-2- (5- bromo-2-metho benzy'sulfanyl)-470. 2278s EO phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine 2- [2- (2-Bromo-& methoxy- benzylsulfanyl 422437'** phenylj-1, 4. 5, 6- tetrahydro- pyrimidine ;HBr o i methoxy- ethoxy- methoxy- E Q benzyfsulfanyl)-5. 405. 3586 1, methyl-phenyl]- 1,4,5,6-tetrahydrc pydmidine e e 2- [2- (Naphthalen 1-yloxy)-phenyl]- ER 4,5-dihydro-1H-334.3789\ * imidazole ; formate NA 2- [2- (Naphthalen 1-yloxy)-phenyl]- ES 1,4,5,6-tetrahydrc-348. 4058 xjS O * pyrimidine; Formate Ws 9,) 2- [2- (Biphenyl-3- ylmethylsulfanyl)- ET phenyl]-1,4,5,6- 439.4192 tetrahydro- pyrimidine ;HBr * vi N 2- [2- (Naphthalen 2-yloxyrphenyl]- EU 1,4,5,6-tetrahydrc-348. 4058 s61s * pyrimidine; Formate nu 't J 2- [2- (5-Bromo-2- methoxy- ! s «.* EV P"e"y'"et"anes 407.3311 Ifinyl)-phenyl]- I 1,4,5,6-tetrahyd pyrimidine I e NA) 2- [2- (5-Chloro-2- methoxy- benzylsulfanyl phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine:HCI Cl 2- [2- (2-Methoxy- thiophen-3-yl- benzylsulfanyl)-2 EX phenyl]-1, 4, 5, 6 tetrahydro- pydmidine ; HCI N 2- [2- (Biphenyl-2- ylmethylsulfanyl) phenyl]-1, 4, 5& s ** EY 404.5372 tetrahydro- pyrimidine ; Formate (1 2- [2- (54odo-2- methoxy- benzylsulfanyl)- EZ phenyl]-1, 4, 5, 6-484.3622" tetrahydro- pyrimidine; Formate N' 2- [2- (5-Bromo-2- methoxy- FA benzylsultanyl)-409 3222 Xo s *** Buoro-phenyl]- 1,4, 5, 6-tetrahydr pyrimidine- N e N 2- [2- (5-Bromo-2- s rN methoxy benzylsulfanyl)-3- Buoro-phenyl]-r I, 1,4,5,&tetrahydr pyrimidine e 2-Iz-I4, 4'-. !) Dimethoxy- bipheny-3- FC ylmethylsulfrlyi)-499. 4717 phenyl]-1,4,5,6- tetrahydro- pyrimidine ; HBr N' 2- [2- (9H-Fluoren- HN 9 ylsulfanylf | i FD phenyl]-1, 4, 5, 6-437.4033 < s ** tetrahydro- pyridine;HBr ,-. J 2- [2- (3'-Chloro-4'" fluoro-4-methoxy- biphenyl-3-'=- FE Ylmethylsulfanyl)-4g6. 9987 6"* FE 486. 9987 tetrahydro- pyrimidine; Formate N Naphthalen-1-yl- FF ethylsulfanyl)-382. 9562 phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine ; HCI 2- [2- (4-Methoxy- biphenyl3- ylmethylsulfanyl)- FG phenyl]-1, 4, 5, & 434. Ei634 tetrahydro- pyrimidine ; Formate 2- [2- (5-Bromo-2- methoxy benzylsulfanyl)- FH nuoro-pneny]-o, 441.3253 ! r dihydro-IH- imidazole ; Formate 2- (2- N Benzhydrylsulfan Fl yl-phenyl)-1, 4, 5, 404 5372 k Jus *** tetrahydro- pyrimidine ; Formate 2-(3-Amino- propylamino)-6- ( FJ bromo-z-metno 452. 3764 benzylsulfanyl)- benzonitrile ; Formate 2- [2- (2'-Fluoro-4". methoxy- [1,1'; 4', 1"Jterphe FK ylmethylsulfanyl)-528.6517 Y phenyl]-1, 4, 5, 6- tetrahydro- pyrimidine; formate 2- [2- (2-Methoxy- phenylethynyl- benzylsulfanyl)-s FL phenyl]-1, 4, 5, 6-458.5854- tetrahydro-c. pyhm! d! ne:'-, Formate; Formate 2- [3- (Naphthalen 1_ N ylmethylsulfanyl)- FM phenyl]-1, 4, 5, 6- 378.4993 1 tetrahydro- pyrimidine ; Formate i 4-Methoxy-N- [4- I methyl-2- (1, 4, 5, 6 H tetrahydro-oN H FN pyrimidin-2-yl)-369.4248 * phenyl]- benzamide; orin. Formate NH 2- (5-Bromo-2- NH, methoxy- FO benzylsulfanyl)-397. 297 4 ! ** benzamidine; formate I H 4,6-Dimethyl-2- FP piperazin-1-yl-192. 264 N * pyrimidine a k 8-Isopmpyl-3, 3- N dimethyl-r, piperazin-1-yi-3, 4 FQ dihydro-1H-314.4308 I 1 pyrano [3, 4- c]pyridine-5- carbonitrile H FR e'''164.2102 H * pyrimidine Non H N FS'--163. 2224 piperazine N 2-Piperazin-1-yl4 NH FT trifluoromethyl-232.2085 FC N"NJ f pyrimidine N SPiperazin-1-yl- trifluoromethyl- thieno [3, 2- 55 * b] py6dine-3- CF, carboxylic acid methyl ester NH 5-BfOmo-2-NYN J piperazin-1-yl-243.1063fil'Y pyrimidine B, XN r NH 1-3 Nv NJ FW Trifluoromethyl-231. 2207 I/* caf3 piperazine piperazine 1 (S NH FX TRuoromethyl-231. 2207"J * FX pyhdin-2-yi)- piperazine N' Benzyl-[2-(1, 4, 5, HH FY tetranydro-265. 3581 I pymidin-2-yi)- phenyl]-amine / 2- [4- (Naphthalen -orra ylmethylsulfanyl)- FZ phenyl]-1, 4, 5, 6-378. 4993 5 v ** tetrahydro- pyrimidine ; Formate 2- [2- (5-Ethynyl-2- ethoxy- benzylsuffanyl)- GA phenyl]-1. 4. 5. 8- 372. 9177 tetrahydro- pyrimidine ; HCI III r 2- [2- (5-Bromo-2- methoxy- Q benzy! su! <any)-, <. n Q<oc [. ** benzylsulfanyl)- benzyl]-, 4, 5, 6 tetrahydro- pyrimidine; HCI N/J 2-[2-(S-tert-Butyl, D J 2-methoxy- GC benzylsulfanyl)-405. 0032 phenyll-1, 4, 5, 6- tetrahydro- pyrimidine ; HCI N 2-[2-(S-Bromo-2-N/\j cyclopentyloxy- benzylsulfanylr GD phenyl]-1, 4, S, E 4g1.4534 s o \/*** tetrahydro- pyrimidine; Formate a H 1 2- [2- (5-Bromo-2- ethoxy- benzylsulfanyl)- phenyl]-1, 4, 5, 6 tetrahydro- pynmidine ; HCI D NA2- [2- (5-Brom2- propoxy- GF benzylsulfanylr 455. 8455 f v S"*** phenyl]-1, 4, 5, 6 tetrahydro- pyrimidine ; HCI N [2-(5-Bromo-2- methoxy- i GG benzylsulfanyl)-430. 8357, _o Is o benzyl]-diethyl- amine;HCI § 4- [2- (5-Bromo-2- methoxy- benzy (sufanyp- 444.8192 iisJ"* benzyl]- morpholine ; HCI s 1-12- (5-Bromo-2- methoxy- GI benzylsulfanyl)-497. 4145s ** benzyl- piperazine: tel Oxalate i 0 (1- [2- (5-Bromo-2- H-e methoxy- benzylsulfanyl)- GK benzylpyrrolidin-507.4918 C * 3-yircarbamic acidtert-butyl ester b (NH3-(S-Bromo-2-N NJ N NJ methoxy- GL benzylsulfanyl)-395. 3 3, 4, 5, 6-tetrahyd 2H- [1,2'] bipyraziñyl b P) H, CO C- (4- [3 (SBrom- 2-methoxy- benzylsulfanyl)- GM quinoxali-2-yi)-548. 3308 morpholin-2-yif \ methylamine; 2HCI r, \ 2- (5-Bromo-2- methoxy- benzylsulfanyl)-HS \s * GN piperazin-1-y4 491. 4131 quinoxaline ; Formate\ N 2-[2-(2-Methoxy-NN methyl- GO benzylsulfanyl)-362. 9226 phenyll-1. 4, 5, 6- tetrahydro- ydmidine ; HCI 2- [2- (SBBomo-2- methoxy- GP phenyl]-i 4 sh 425. 752 *** '° ou tetrahydro- pyrimidine;HCI 2- {2- (5- (3, 3- Dimethyl-but-1- ynyl)-2-methoxy- GQbenzylsulfanyl]-429.0252 phenylr1, 4, 5, 6- tetrahydro- pyrimidine;HCI o, in 3-Benzylidene-2- GR (Z-methylamino-28. 3538" * ssineo r o RNGR ethyl)-2, 3-dihydr 278. 3538 isoindol-1-one Nez Naphthalen-1-yl- GS ethylsulfanyl)-346. 4962 phenyl]-1,4,5,6- tetrahydro- pyrimidine UN/ [2- (5-Bromo-2- methoxy- benzylsulfanyl)-402.7819 ! I benzyl]-dimethyl- amine ; HCI P N2- [2- (S-Bromo-2- isopropoxy- t/benzy! su! fany!)-,. t-E Q., tcc s o-" jt GV benzylsulfanyl)-455.8455 n o- phenyl-1,4,5,6- tetrahydro- pyrimidine ; HCI 1 2- [2- (2-Ethoxy- naphthalen-1-/ ylmethylsulfanyl)-412. 9824I\5 0I/*** tetrahydn> z \ s i tetrahydro- pyrimidine ; HCI N 2- [2- (2-Propoxy- , Nf naphthalen-1- ,-v y! methyu! fany!)-. y Q °-r . GX Ymethylsulfanyl)-42. 0093'\\_ **' phenyl]-1,4,5. 6- tetrahydro- pyrimidine ; HCI 4-Methoxy-3[2-r 4 (1, 4, 5, r, tetrahydro- GY pynmidin-2-yl)-373.9055A phenylsultanylme I hyl]-benzonitrile ; HCI 1- {4-Methoxy-3 [ (1, 4, 5, 6-/% JLN tetrahydro- GZ pyhm. din-2-y !)-nncm' phenylsulfanytme e hyl]-phenyl} X i ethanone 0 Formate (1- [2- (2-Methoxy- naphthalen-1- ylmethytsulfanyl)- HA benzyl]-pyrrolidin 478.6556 rT ?" 3-yl)-carbamic acid tert-butyl ester N 2- [2- (Naphthalen 1 i Ir HB Ysulfanylmethyl)-368. 9293 *** phenyl]-i. 4. 5. 6- tetrahydro- pynmidine ; HCI N 2- (2-Phenethyl- phenyl)-1, 4, 5. 6- HC tetrahydro-310.4003 il 1 pyrimidine ; i Formate i 1- [2- (5-Bromo-2- methoxy- HD benzylsulfanyl)-452.4167 Is ** benzyl]- p Y. a piperidine ; Formate (4- [2- (2-Methoxy- naphthalen-1- (i ° ylmethylsulfanyl)- HE benzyl]-morpholi 508.6819 d * 2-ylmethyl}- carbamic acid ter butyl ester Methoxy- MeNhoxy-Nnaphthaten-1- HF ylmethylsulfanyl)-481. 486 benzyt]-morpholir- hylamine ; 2HCI 2hui 1- [2- (5-Bromo-2- methoxy-A) HG benzylsulfanyl)-480.2959 t, ** benzyl]-pyrrolidin- 3-lamine ; 2HCI J03 2- [2- (Naphthalen. 1- HH ytmethylsulfanyl)-316. 4265 imidazole i N 2- [2- (1-Benzyl-1 imidazol-2-N H I Ymethylsulfanyl)-362. 4986 S * phenyl]-1, 4, 5, 6- I tetrahydro-) pyrimidine N en' 1- [3- (5-Bromo-2- methoxy-f, . benzy! su! fany!)-. eo oe Ns <c<, * HJ benzylsulfanylr 468. 2446 C"'s °°s * PYzin-2-yl]- pyrrolidin-3-° I ylamine ; 2HCI ty 1- [3- (5-Bromo-2- N methoxy- benzylsulfanyl)-l J V N 5 O * HK quinoxain-2-yl]-18. 3045,, pyrrolidin-3- y! am! ne: 2HC! .. flamine; 2HCI \/N ru4 1- [2- (2-Methoxy- naphthalen-1- HL ylmeNylsulfanyl)-414.9983 k.. A. benzyl]-pyrrolidin 3-ylamine ; HCI 1-(S-Bromo-2-> oo HM methoxy-benzyl)-360.2938 U + * 2-phenyl- piperidine Br rg 9-Benzyl-2, 3, 9, 1 tetrahydro-1 H- HN 4,9,10a-tnaza-323. 3991 v N * phenanthrene; Formate N-. 2-[2-(2-1l 0 Naphthalen-1-yl- HO 4, 5, 6-tetmhydrc-60.4602. 1, 4, 5, 8-tetrahydr pyAmidine; I i Formate \< 3- [2- (5-Bromo-2- N methoxy- benzylsulfanyl)-3- Huoro-phenyl]-s o-*** 1, 5, 6, 7, 8, 8a- hexahydro- imidazo[1,5- a] pyndine ; HCI 3-[2- (5-Brom2- N, methoxy-1l \ benzylsulfanyl)33 f"' fluoro-phenyl]- HQ 5,6,7, 7a-481.3901 | o_ *** F tetrahydro-1 H- pyrrolo [1, 2- c]imidazole; I Formate 2_I2_ H (Benzo [b] thiophe nu HR ylmethytsulfanyl)-419.4094 s *** phenyl]-1,4,5,6- teVahydro- pyrimidine; HBr </) 2-[3-Fluoro-2- (naphthalen--II ylmethylsulfanyl)- HS phenyl} 1, 4, 5, 6-396.4897 s tetrahydro- pyrimidine: Formate 2-(Naphthalen-1-, i ylmethylsulfanyt)- 3- (1. 4. 5. 6- t ! HT tetrahydro-393.514s *' pynmidin-2-ylf NN phenylamine ; Formate N 2- [2- (5-Bromo-2- methoxy- beniylsulfanyl)-3s a. e **, oro-phenyll- 1,4,5,6-tetrahydrc pyrimidine a C- (4- [3- (5-Bromo- ro 2-methoxy- (pI benzylsulfanyl)-t 2 HV pyrazin-2-yy-471.3795 ? r morpholin-2-yl}- methylamine; twI Formate N Nez Benzy)-mathyl- [2- (1,4, 5, 6- cetrar, yero- 325. 415 I * pyrimidin-2-yl)- phenyl]-amine; iN/8+= Formate v " 2- [2- (2-Methoxy-/ phenylsulfanylme HX hyl)-phenyl]-348.8957\ o 1,4,5,Etetrahydr pynmidine ; HCI v 1- (2- [2- (S-Bromo- 2-methoxy- benzytsulfanyl)- phenyl]-5.6- o". i ** HY dihydro-0H-45. 4497\ 1 1 pyrimidin-1-y-3- methyl-butan-1-, one 2- [2- (5-Bromo-2- methoxy- benzylsulfanyl)- i HZ 525. 4662-Ksp- dihydro-4H-o 0 pyrimidine-1- carboxylic acid benzyl 1- {2- [2- (5-Bromo- 2-methoxy- benzylsulfanyl) % IA phenyl]-5, 6- 509. 4668 dihydro-4H- pyrimidin-1-yl}-2- phenyl-ethanone 2- [2- (S-BromD-2- . methoxy- benzyl ulfanyl)- I B phenyl]-1-469.4234 r'v s * _O ; N\5 O methanesulfonyl- 1,4,5,6-tetrahydr pyrimidine- Br 2-(S-Bromo-2-, H2N ic thoxy 324. 2413 S benzylsulfanyl)- phenylamine/ N 2-o-Tolyl-1, 4, 5, & I D tetrahydro-174. 2456/% l N * pyrimidine H I 2- [3- (S-Bromo-2- N methoxy- ! IE benzylsulfanyl)-392 3195 vs or *** pyndin-2-yl]-. X z W 1,4,5,&teVahydr pyrimidine D h5- [2- (5-Bromo-2- methoxy- IF benzylsulfanyl)-392. 2762 phenyl- oxadiazol- ylamine B 0 HN 2- (5-Bromo-2- methoxy- benzylsulfanyl)-367.2664 t JK * benzoicacid hydrazide Y D HN j T" N-[2-(S-Bromo-2- ! s NHr |s methoxy-one"07 l l ** benzylsulfanyl)- phenyl]-guanidin & 2 [2 (Z Isopropoxy- naphthalen-t- Ylmethylsulfanyl)-436. 5793 5 0- ** phenyl]-l. 4, 5, 6- tetrahydro- pyrimidine ; Formate 2- (2- (2- CyGopentyloxy- naphthalen-1-</Y IM ylmethylsulfanyl)-453.0472 s O_ ** phenyl]-1,4,5,6- tetrahydro-w pyrimidine;HCI N (5-Bmmo-2- J methoxy-benzyl)- I2- (1, 4, 5, 6- cwr ** I N 374. 2804 tetrahydro- pyrimidin-2-yl)- phenyl]-amine 2- [2- (S-Bromo-2- methoxy- I benzylsulfanylme IO hyl)-phenyl]-451. 3886 s O *** 1,4,5,&teVahydr pyrimidine; Formate N' 2- [2- (2-Methoxy- naphthalen-1- I P Ylsulfanylmethyl)-398. 9556 *** pheny]-1, 4, 5, 6 tetrahydro-, pyrimidine : HCI " 2- [3 (5-Bromo-2- methoxy- benzylsulfanyl)-., s ocl% PYzin-2-yi]- 1.4,5,6-tetrahydr pyrimidine N N 2-[3-Chloro-2- (naphthalen-1- IR yisulfanylmethyl) 403. phenyl-1,4,5,& J tetrahydro- pyrimidine ; HCI N 2- [2- (B-Brbmo-2- methoxy-I naphthalen-t- IS ylmethylsulfanyl)-477, $516 5^'i *** phenyl]-1, 4, 5, 6-r \ t tetrahydro- pyrimidine;HCI 9-(S-Bromo-2-N-) methoxy-benzyl)- 2,3,9,'I6 IT tetrahydro-lH-432. 3214 "'°I' * 4,9,10a-triaza- phenanthrene ; Formate 2- [3-Chloro-2- (2- I methoxy- naphthalen-1- IU ylsulfanylmethyl)-396. 9403 *** phenyl]-1,4.5,6- o s tetrahydro-< w pyrimidine 2- [2- (2. 7- Dimethoxy- naphthalen-1- IV Ylmethylsulfanyl)-438. 5518-* phenyl]-1,4,5,6-, tetrahydro- pyrimidine; Formate o Fortnate i 2-Piperazin-1-yl-l N H pyriCine-3-270,3557o=s=o CNH * sultonic acid ethylamide wN 7-Methoxy3- (4- IX nitro-phenyl)-2-364. 404-Y piperazin-1-yl- quinoline 4-Methyl-2- IY PPezin-t-yi-227. 3092 * quinoline methoxy-i i method- Phenylsulfanylme 427. 7917 *** hyl)-phenyt]-s 1, 4, 5, 6tetrahydr pyrimidine ; HCI 2- [2- (S-Bromo-2- j methoxy- phenylsulfanylme JA hyl)-3-ahloro-462. 2365 T s *** phenyl]-1,4,5,6- tetrahydro- pyrimidine ; HCI a 3- (5-Bromo-2- methoxy- benzylsulfanyl)-2 5 * JB (1,4,5, s- 442.3794" ? r tetrahydro- pyrimidin-2-yi)- quinoline e han Naphthalen-1-yl- JC ethyl)-1H-pyrrol-2 303.407 (J ** ylj-'1,4,5. 6- tetrahydro- pyrimidine N (S-Bromo-2-1l 0 methoxy-benzyl)- ethyl- [2- (1,4,5, E 388. 3073 tetrahydro- pyrimidin-2-yl)- phenyl]-amine M. Ov H N, [2-(5-Bromo-2- methoxy-s 0-1 JE benzylsulfanyl)-338.2682 Li phenyl]-methyl- amine i3r /IW y 2- (5-Bromo-2- methoxy- J F benzylsulfanyl)-3. >) benzylamine ; HC N-' N2- [2- (2-Chloro- phenylsulfanylme J K hyl)-phenyl]-353.3142\ a 1P4f5srztetrahyd s pyrimidine ; HCI g' N/\ 2- [2- (2-Bromo- phenylsultanylme JL hyl)-phenylj-397. 7655 ** 1. 4, 5, r. tetrahydr4 s pyrimidine ; HCI I N 2- (2-c- Tolyisulfanyimeth JM yl-phenyl)-1, 4, 5, 332. 8963'** tetrahydro- pyrimidine ; HCI N/\j pi 2- [2- (2, 5-Dichlorc phenylsulfanylme JN hyl)-phenyl]-387. 7589" 1 *** 1,4,5,6 tetrahyd sy pydmidine ; HCI Y, a 2- [3- (3-Chloro- benzylsulfanyl)-\ methyl-isothiazol- JO ¢rn-. a. s. s- 383.927 NAS * tetrahydro- pyrimidine; Fomate N- (4-Methyl- JP quinazolin-2-yl)-237691 (jA guanidine ; HCI N-(1-Methyl- I jQ benzo [flquinazoli vw n-3-yl)-guanidine | v. çvv HCI 5 N- 2- [3- (2-Methoxy- naphthalen-1- ylsulfanylmethyl)- JR thiophen-2-yl]-414.5537 5, ** 1,4,5,Stetrahyd,/ pyrimidine; ,, ASFormate 2- [2- (2. 5- Dimethoxy- phenylsulfanylme ol hyl)-phenyl]-. so), 1,4,5,Stetrahyd'i pyrimidine 1 0 2- [2- (4-Methyl- naphthalen-1- ylmethylsulfanyl)"** JT phenyl]-1, 4, 5, 6- 382. 9562 tetrahydro-i pyrimidine ; HCI v 2- [2- (5-Bromo-2- methoxy- benzy'sulfanyl)-3- fiuoro-phenyl]-4. 459. 8091 YI _ *** dimethyl-4, 5- dihydro-1 H- imidazole ; HCI a 2- [2- (S-Bromo-2- methoxy benzylsulfanyl) 3 JV fluoro-phenyl]-S, 473. 836 les o *** dimethyl-1, 4, 5, 6- tetrahydro- pyrimidine; HCI Methyl- I naphthalen-1-yl- [ NI JW tetrahydro-375.4748) * pyrimidin-2-yl)-"I benzyl]-amine; Formate N'1 Methyl- [2- (1, 4, 5, ^ CHN J X tetrahydro-189. 2603 IC pyhm! d! n-2-y!). 189.2603 Me nu 2-(S-Bromo-2-NA methoxy- benzylsulfanyl)-3 JY (1,4,5,6-443.3672 v N SS O * tetrahydro- pynmidin-2-yl,-ts J quinoxaline s S N'1 2- [3- (Naphthalen. i v 1-wa- ylsulfanylmethyl)- Jz thiophen-2-yl]-384.5274 s *** 1,4,5,&tetrahydr pyrimidine ;/ Formate MHz Naphthaien-1-yi-/NHJ ethoxy)-pyndin-2 KA ril-i. 4.5,6- 377. 4474 tetrahydro-o pyrimidine; Fomate NA 2- (2- (2- (5-Bromo. 2-methoxy- « 1 KB phenyl)-ethyl]-373. 2926 o phenyPrl, 4, 5, 6- tetrahydro- pyrimidine i 10-(5-Bromo-2- N ^ methoxy-phenyl)- 9 methyl-2, 3, 9, 1 HN KC tetrahydns1H-432.3214 W\N/I"> * 4,9,10a-triaza- I phenanthrene; Formate OH 2-Morpholin-4- KD ylmethyl-245.2811 AN-\0 * quinazolin-4-ol N nu N,N-Dimethyl-N'- (4-phenyl- KE quinazolin-2-yl)-292. 3838 ~. * ethane-1,2- ! ! ! diamine 4-Phenyl-2- KF piperazin-1-yl-290.3679 fY : quinazoline \ ! N, 2- [3-Chioro-2- (2-NH" naphthalen-1-yl- KG ethyl)-phenyll-385. 3349 1,4,5,6-tetrahydr pyrimidine; HCI N 2- {2- [2- (5-Brom 2-methoxy- KH pfluoro-pheny-427. 74"51 1 ''fuoro-pheny!}-t'.'J' J 1,4,5,6-tetrahydr pyrimidine;HCI . 9, 1-(2-Naphthalen 1-yy-eyp. g. I (1. 4. 5, 6- W N KI tetrahydro-377.4474N pyHmidin-2-yl)-lH pyridin-2-one; Formate 2- [2- (5-Bromc)-2- methoxy- phenylsulfanylme KJ hy !)-Muoro- 445.7822 l) *** phenyl]-1,4,5,6- tetrahydro- pyrimidine;HCI N-- 2-[2- (Naphthalen w W rai 1_ KK Ylmethyl)'354. 9024 C phenvl-4. S I 1 dihydro-1 H-s z 9< 2 imidazole;HCI J N 2-[3-Fluoro-2- (naphthalen-1-Aj/HN" KL yisulfanylmethyl)-386. 9197 phenyl, 4,5, & tetrahydro- pynmidine ; HCI N 2- [3-Bromo-2- (naphthalen-1- KM yisulfanylmethyl)-447. 8253 phenyl]-1,4,5,& tetrahydro- pyrimidine ; HCI N) 2- {2- [2- (5-Bromo- 2-methoxy- KN Phenyp-ethylj-3 444. 1974 1' ° *** chloro-phenyl}-a, 1,4,5,6 tetrahydr pyrimidine; HCI 6-Benzylsultanyl- 5-4 5, 6-S vN tetrahydro- j ! H KO pynmidin-2-yl)-374. 492 N-5 * imidazo [2, 1- b] thiazole ; Formate 2- [3- (S-Bromo-2- Nl- methoxy-AN phenylsultanyl)- KP propyl]-1,4,5,6- 389. 3177 OM. tetrahydro- pyrimidine; Formate s, NA 2-[2-(2-Methoxy-) t 0 tdfluoromethyl- KQ benzylsulfanyl)-380.4339 X'*** phenyl]-1. 4. 5. & y tetrahydro- pyrimidine co 9-Methyl-10- naphthalen-1-yl-H 2, 3.9,10."I * KR tetrahydro-1H-373.459 eN < * 4,9,1ûa-tHaza-Me phenanthrene; Formate 7-Chloro-4, & KS dimethyl-1H-207.6592 lwl * quiniin-2-one cl 4 H 7-Chloro-4-methy KT 2-piperazin-1-yi-261.754 Cl N N-) * quinoline CY'l 4,8-Dimethyl-2- piperazin-1 quinoline NMR 2- [4- (Naphthalen L , <, y! su! fany! methy!)- Qy Qt; 7'-\ s ** KV Ylsulfanylmethyl)-34. 9574 SJ5 ** thiaphen-3y¢ 1. 4. 5. 6-tetrahyd w. J pyr, dn 2- [2- (Naphthalen 1-1--" yisulfanylmethyl)- thiophen-3-yl]- 1,4,5,6-tetrahydr pyrimidine;HCI 6-(2-Methoxy-Njn phenyl)-3. 4- C6N6 Cihydro-2H-336.3948 < * PYmido [2.1- i a] isoquinoline ; Formate H N KY Piperazine 86.1369 t) * H " N 2- [2- (4-Fluoro- naphthalen-1-iY ylmethylsulfan phenyl]-1, 4,5.6 s I tetrahydro- pyrimidine ; HBr : 7-Ethyl-4-methyl-i LA qu no ne 2 5 5 363 @ w M *z-piperazn--y-255. 363 I-""1 * quinoxaline 6-Ethy1-4-methyl- LB 2-piperazin 1-yl-255. 363 N N| * quinoline Met 5,8-Dimethoxy-4- LC methyi2 287.3618 N N) * piperazin-1-yl-N N quinoline OMe | NH 2- (2- [2- (5-Bromo- 2-methoxy- phenylethyl)-3- LD 441. 29 () 9 F9 pheny-1, 4, 5, 6- F, tetrahydro- pyrimidine ; Parent Naphthalen-1-yl- ethyl) 3- n LE thftuoromethy !-418.8884 < w ! *** phenyl]-1, 4, 5, 6 F tetrahydro-F'\F pyrimidine; HCI k 2- [4-Benzyloxy-2- (5-bromo-2- methoxy- benzylsulfan o LF yl)-543. 4858 j tetrahydro- pyrimidine; Formate (3- (5-Bromc-2- methoxy- b zylsulfanyl)- LG quinoxalin-2-yl]- (: 533. 4937 lc ; Nlt_ pyrrolidin-1-yl- " propylramine ; NA Naphthalen-1-l 0 N^J ylmethyl-[2-, Af NH (1,4,5,û-l ! LH tetrahydro-361.448m pyrimidin-2-yl)- phenyl]-amine ; Fomate i [3- (5-Bromo-2- methoxy- benzylsulfanyl)- LI 9inoxalin-2-yl]- [rJ33. 4937"""* (1-methy- pyrrolidin-2-yl)-"s ethyl]-amine ; Formate [3- (5-Bromo-2- methoxy- benzylsultanyl)-rW tNH/ LJ noxalin-2-yi] (2 o- (2-methyl- piperidin-1-ylr propylFamine Bl Formate [3-(5-Bromo-2- methoxy-v N, NH benzylsulfanyl)-H s o' LK quinoxalin-2-yl]-519.4669 N + * piperidina- yimethyl-amine Formate 2- [1,4'] Bipiperidinyl 1-yl-3-(S bromo-.. N N_/ LM methoxy-573.5585 (YX S o benzylsulfanyl)- quinoxaline ; Formate er H Nl- [3- (5-Bromo-2 methoxy-N xS oz LN benzylsulfanyl)-rJ06. 2935 * quinoxalin-2-yIJ- propane-1,3 diamine ; 2HCI a 2 11.4']Bipiperidinyl 1'-yl-3-(Sbrom N I LO methoxy-5815377 benzylsulfanyl)- quinoxaline; 9 Formate Br 2- (5-Bromo-2- methocy- benzylsulfanyl) 3s o . p [4- (3-morpho-4 gggggg"U. LP (3-morpholin 4 N YI. ProPYI) _ piperazin-1-yl]- quinoxaline; Formate 4- [2- (SBromo-2- methoxy- benzylsulfanyl) LQ benzylamino]-539. 4949 piperidine-1- carboxylic acid ethyl ester ; Formate 1-[2- (Naphthalen 1_ * LR ylmethylsulfanyl)-347. 5242 benzyl]-piperidin NEZ N 24- [2- (5-Bromo. f-N-N' 2-methoxy- LS benzylsulfanyl)-531. 4779 s"J' benzyl]-piperazin 1-yi)-pyrimidine ; Formate Br N 2-[2- (6-Fluoro- v naphthalen-1-uNH ylmethylsulfanyl) is *** ph nyll-1, 4. 5, 6- tetrahydro- ! teVahyCro- c pyrimidine ; HBr F 0 1- {4- [2- (SBromo- 2-methoxy- LU benzylsulfanyl)-o. x benzyll-piperazin. 1-yiFethanone i Formate"0 2-(2- (4- (z- (5- Bromo-2-methox benzylsulfanyp-..' p * LV benzyl]-piperazin 541. 5108,' -vemaxY-T ethanol;Formate 2- (4- [2- (5-Bromo- 2-methoxy- benzylsu ny)- LW benzyl]-piperazin-552. 5371 1-ylrN-isopropyl- la acetamide; I + Formate {1- [2- (5-Bromo-2- methoxy- benzylsulfanyl)-a o *** benzyl]-pipeddin- 2-yipmethanol ;, s Formate b 1- [2- (5-Bromo-2- methoxy- benzylsulfanyl)- LY benzyl]-2- (N- 521. 523 0.. pyrrolo) methyl- pyrrolidine ; Formate l'- [2- (S-Bromo-2- methoxy- LZ benzylsulfanyl)-535.5499 us O'* benzyl]- [1,4']bipipeCdinyl l + Formate Br 1- [2- (5-Bromo-2- methoxy-~ N benzylsulfanyl)- MA benzyl]-4-549.5768-S 0' cydoheptyl- piperazine; Formate Br N'S 3-(2- [2- (1, 4, 5, 6- Tetrahydro- Myrimidin-2-y)-349. 437 * phenyl]-ethylrl H indole Li N'- (3- (S-Bromo-2 fp methoxy- [l benzylsulfanyt)- MC quinoxalin-2-yl]-521.4827 kA. N,N-diethyl- ethane-12- diamineFormate N'- [3 (5-Bromo-2- methoxy- benzylsulfanyl)- M D quinoxalin-2-yl)-507.4559 ! r' N,N-dimethyl- propane-1,3- diamine;Format 2- (5-Bromo-2- ^""J methoxy , en lsulfanyl)-3- ME [1,4] diazepan-1-yDU5.44 ! quinoxaline ; Formate IN' N- (4-B mo- benzyl)-N', N6-ni) MF dimethyl-N-397.358 naphthalen-1-1 ylmethyl-ethane- 1,2-diamine 3'- (5-Bromo-2- methoxy- benzylsulfanyl)-4 M G (3-morphoSin-4-yl 568. 5396 k * propyl) 3, 4, 5, & y tetrahydro-2H- [1,2'] bipyrazinyl ; Formate {3- [3'- (S-Bromo-2. H methoxy- benzylsulfanyl)- MH 235, 8-teVahyG 526. 5023" * [1, 2'] bipyrazinyl- \" Y1-PaPY dimethyl-amine ; Formate eN' N- (3-Bromo- benzyl)-N-(S i A mi 456.2204 1 * benzyl)-N',N'- I dimethyl-ethane- 1,2-diamine t l \o e ? rn N-(1-Benzyl-8/! w « > pipeddin4-yl)-2-i Ju MJ (naphthalen-1-466.6471 I, * ylmethylsulfanyl)- benzamide i 1 vN,N-Dimethyl-N'- naphthalen-2- MK Ylmethyl-N'-368. 5218-J " * naphthalen-1- ylmethyl-ethane- 1,2-diamine 8-Methyl-3- [2- (naphthalen-1- M L yisulfanylmethyl)-435. 5915 phenyl]-8-aza- bicydo [3.2.1] oct n-3-ol;Formate N 1-Methyl-4- [2- (naphthalen-1- MM ylsulfanylmethyl)-409.5536 phenyl]-pipendin l ll 4-ol ; Formate k 3-[2- (N phthalen 1-''' MN phenyl]-1-aza-421. 5646 C bicyclol2,2. z oa n-3o1 ; Formate inj 1'- [3- (5-Bromo-2- methoxy- benzylsulfanyl)-477.4686CHs o, y * pyrazin-2-yl]- [1,4'] bipipendinyl l g [3(5-Bromo-2- methoxy- MP l. nzylsulfanyl)- 437. 4039 pyrazin-2-yl]- [2- (1 methyl-pyrrolidin- 2-yly-ethyl]-amine ,/ [3- (5-Bromo-2- methoxy- MQ benzyisulfanylj-465. 4576 °°'* MQ pymzin-2-ylF [3- ( methyl-piperidin-1 yl)-propyl]-amine a N- (3-Chloro- N benzyl)-N- (2- MR methoxy-benzyl)-332. 8731 N N', N'-dimethyl- y v ethane-1,2- diamine uNz N- (3Bromo- benzyl)-N', N'- ms dimethyl'N' (4- 381. 7429 methyl-benzyl)- ethane-1, 2- diamine N- (3Bromo-- benzyl)-N', N'- dimethyl-N- naphthalen-2- ylmethyl-ethane- 1,2-diamine ion' I N- (3-Bromo- benzyl)-N',N'- .... d! methy!-N- (4- QCI-OC 1 * dimethyl-N- (4- methyl-benzyl)- ethane-1,2- diamine N-Benzyl-N- (2- methoxy-benzyl)- MV N N'-dimethyl-298. 4283 ; W * ethane-1, 2- diamine onae N-Benzyl-N- (2- chloro-benzylr MW N', N'-dimethyl- 302.8468 NN" ethane-1,2-| Cl CL diamine I N-Benzyl-N', N'- dimethyl-N- napntnaen-t-318.4619\N~Nm * ylmethyl-ethane- 1,2-diamine N- (5-Bromo-2- methoxy-benzyl)- N', N'-dimethyl-N- MY 427. 3843 11 ylmethyl-ethane- 1.2-diamine \t N/ 8-Methyl-3-[2-N/ (naphthalen-1- MZ Ylsulfanylmethyl)-31. 5462 ! ** phenyl]-8-aza- bicydo [3. 2. 1] oct- s f-\ 2-ene \ I-Ethyl-3- [2- (naphthalen-1-Afi NA ylsulfanylmethyl)-423.5805 \" phenyl]-piperidin-s 3-ol;Formate u M 1-Methyl-4- [2- (naphthalen-l- NB yisulfanylmethyl)-391. 5384 phenyl]-1, 2, 3, 6- tetrahydro- pyridine;Formaté 2-Phenyl- cydopropanecart tj NC oxylic 372. 5102. 1., dimethylamino- ethyl)-naphthalen 1-ylmethyl-amide ' N-Anthracen-9 I ylmethyl-N', N'- ND dimeNyl-N-418.5817 X) N) * naphthalen-1- ylmethyl-ethane- 1,2-diamine uNz N,N-Dimethyl- N', N'-bis- NE naphthalen-t-368. 5218'"* ylmethyl-ethane-/ 1, 2-diamine N- (2-Methoxy- o naphthalen-1- ylmethyl)-N', N'- NF dimethyl-N-N naphthalen-1- ylmethyl-ethane-' 1,2-diamine i i 1- (2- (5-Bromo-2- methoxy NG benzylsulfanyl)-4 440.8315 k¢t, XO * chloro-benzyl]- piperidine N - (3-Fluoro-2- (2- naphthalen-1-yl-ll l NH ethyl)-phenyl]-368.8806 < A <, *** 1,4,5,b-tetrahydr F t pyrimidine ; HCI - i 3- (3, 4-Dichloro- phenyl)-1- (2- imethylami'no- ethyl)-1- naphthalen-1- ylmethyl-urea 3- (3. 5-Dichloro- phenyl)-1- (2- dimethylamino- ethyl)-1- phthalen-l- ylmethyl-urea Dimethylamino- ethyl)-1- NK naphthalen-1-415.4584 4) iXi ylmethyl-3- (2- trifluoromethyl- phenyl)-urea Dimethylamino- NL mthoxy 377. 4864 --phenyl)- 1-naphthalen-l- ylmethyl-urea Dimethylamino- NM ethyl)-l-375. 5139 NM naphthalen-1-35. 5139 ytmethyl-3 phenethyl-urea 1- (2- Dimethylamino- thyl)-l- NN napohthalen-l-313. 443 ures urea Dimethylamino- ethyl)-3- (4- methoxy-benzy)-39. 5133 1-naphthalen-1- ylmethyl-urea 3- (3-Cyano- phenylrl- (2- dimethylamino- ethyl)-1- naphthalen-l- ylmethyl-urea O 3- (2, r. Dichloro- pyridin-4-yi)-l- (2- dimethylamino-417. 3374 r * ethyl)-1- naphthalen-1- ylmethyl-urea [2- (Naphthalen-2. o ylmethylsulfanyl)- nu * NR 2 yl-ethyl ester, formate [2-(Naphthalen-2 ylmethylsulfanyl)- phenyl]-carbamic * NS acid 1-aza-464.5897 (* bicyGo [2. 2. 2] oct- v y^ 3-yi ester ; formate [2-(S-Bromo-2-°\°w methoxy- benzylsulfanyp-** phenyl]-carbamic acid2-pipendin-1 yl-ethyl ester ow [2- (5-Bromo-2- methoxy-0 0 benzylsulfanyl)- NU phenyl)-carbamic 523. 4522 C'I'. acid1-aza- bicydo [2 2 2] oct- 3-yl ester, formate [2-(SBromo-2- methoxy- benzylsulfany) 3 NV 2-methyl-584.8751. (2-ethyl- pipendin-1-yl)-i 1 propyl]-amine; 2HCI 1- [2- (5-Bromo-2- methoxy- NW benzylsulfanyl)-3 514. 7407 9ts O *** chloro-benzyl]- piperazine ; 2HCI 1 b 1- [2- (5-Bromo-2- methoxy- benzylsulfanyl)-s * NX ch ! oro-benzy ! j-488. 834.-" pyrrolidin-3-ol; O_ ~ L Formate (1- [2- (5-Bromo-2- methoxy-o benzylsulfanyl)- NY chloro-benzyl]-502. 8609-s-* pyrrolidin-2-y- methanol ; Formate 1-[2-(S-Bromo-2-a 0, methoxy- NZ benzylsulfanyl) 3 458. 8077 1 'S ,. ^ * . _. 1 i o. chloro-benzyl]- azetidine; Formate 1-[2-(S-Bromo-2-b ~~ methoxy- benzylsulfanyl)-'s * chloro-benzylf pyffolidin-3-ol ; Formate [2-(Naphthalen-1 >, ! ylmethylsulfanyl)- phenyl]-carbamic OB aåd 1-aza-464.5897 C s bnGyz. 2. 2, oct- 3-ylester; Formate [2-o naphthalen-1- ylmethylsulfanyl)- OC phenyt]-carbamic 478. 6166 acid 1-aza-s bicydo [2.2.2] oct- 3-yl ester, Formate [2- (2-Methyl- naphthalen-1-NN N< ylmethylsulfanyl)- OD phenyl]-carbamic 480.6325 v sr * acid 2-piperidin-1 yl-ethylester; Formate {1-[2-(S-Bromo-2 s, methoxy-o benzylsulfanyl)-i OE chtoro-benzyl]-502.8609 5 1 * pyrrolidin-2-yl)- methanol ; -ri Formate y! methy). fr) Naphthalen-2- ylmeNyl-. OF naphthålen-t-4085866 w * ylmethyl- (2- piperidin-1-yl- ethylf amine 4-tert-Butyl-N- naphthalen-1- OG ylmethyl-N- (2- 428. 6177 pipeddin-1-yl-' ethyl)-benzamide I N,N-Dimethyl-N'- naphthalen-2- OH vimetnyi-N'-3g2, 5487', * naphthalen-1- ylmethyi-propane l, 1,3 diamine I N- (5-Bromo-2- methoxy-benzyl)- N',N'-dimethyl-N- t) N ylmethyl-propan 1,3diamine s 1-Naphthalen-1 ylmethyl-3- Q, phenethyM- (2-gglQgQ , OJ phenethyl-l- (2- 468. 1052 piperidin-1-yl-r" ethyl)-thiourea ;'1 s- HCI | t iHCI 3- (4- Dimethylamino- phenyl)-1-(3- ( dimethylamino- ProPYO-1-457'. naphth. len-l- ylmethyl-thiourea HCI 4-[2-(S-Bnomo-2-o methoxy- benzylsulfanyl)- chloro- OL benzytamino]-573.9397 fwf ** piperidine-l- carboxylic and o ethylester ; Formate 1-[2-(S-Bromo 2->) methoxy- benzylsulfanyl)-3- cnoro-benzyl]-' pymolidin-3-° kfiK ylamine ; 2HCI ON Naphthalen-1-yl-311. 8535 ethyl)-phenylj- ethylamine;HCI Naphthalene-2- sulfonic acid (2- f-\) 00 dimethylamino-418. 5597 CB-S-N ethyl)-naphthalen 1-ylmethyl-amide 1- [2- (S-Bromo-2- methoxy- benzylsulfanyl)-3 5 OP chloro-benzyl} 2 1 516 8877 ClNJ * methoxymethyl- pyrrolidine; Formate (2-Hexyloxy- phenyl)-carbamic acid2-pipendin-1 491. 6758 ;"'r"'_ ** yi-l-pipefidin-l-491. 6758 ylmethyl-ethyl ester ; Formate f c 3-[2-(SBromo-2-o methoxy- OR benzylsulfanyl)-444. 8192 ** benzyloxyl- pyrrolidine ; HCI d ro3- [2- (5-Bromo-2- methoxy- OS benzylsulfanylr 444. 8192's ** benzyloxy]- pyrrolidine ; HCI d 2- [2- (SBromo-2- methoxy- OT benzylsulfanyl)-458. 8461 benzyloxymethyl] pyrolidine ; HCI 2- [2- (Naphthalen f ! OU yisulfanylmethyl)-369. 9574 phenyl]- piperidine ; HCI v 3- [2- (SBromo-2- methoxy- OV benzylsulfanyl)-396. 3482'" benzylamino]- propan-1-ol 3a3- [2- (5-Bromo-2- 3- [2- (5-Bromo-2-J methoxy- OW benzylsulfanyt)-424. 402 benzylamino]-3-s methyl-butan-1-o 1 a w 1- [2- (5-Bromo-2- ethoxy- OX Denzyl5ui añyl)-408. 3592 d O * benzyl]-pyrrolidin- oe wJ 1 1- [2- (5-Brom2- methoxy- benzylsulfanyl)-48. 3592I I * benzyl]-pyrrolidin 3-0l II I d 0 {1- [2- (5-Bromo-2-j methoxy- OZ benzylsulfanyl)-422.3861 * benzyl]-pyrrolidin 2-yl}-methanol e O E1/ iii {1- [2- (5-Bromo-2- methoxy- PA benzylsulfanyl)-422. 3861 benzyl]-pyrrolidin- 2-ylmethanol e HO{1-[2-(Naphthale ~) 1- ylsulfanylmethyl), benzylfpipeddin- 2-yikmethanol; wtxp Formate v2- [2- (Naphthalen 1- ylsulfanylmethyl) PC pYolidin-1-yl]-386.5628 ethyl-N- pyrrolidine ; Formate N N N-pymolyl-[1-(2-/ N-pyrro- [1- (2-- PD naphthaien-i yi 308 4668. \ * ethyl)-pyrrolidin-2 ylmethyl]-amine 1-(2-Naphthalen- 1-yl-ethyl} | o PE pipendine-2-297.3972 ß * carboxylic acid methylester j) 5 (3-Bromo-benzyl) (1-ethyl-pyrrolidin PF 2-ylmethyl)-437. 4227, * naphthalen-1- ylmethyl-amine '' 3 [2- (SBromo-2- methoxy-iiow s PG benzysultanyy. 458.8461 ; O ** benzyloxy]- piperidine;HCI d (5-Bromo-2- methoxy-benzyl)- PH Wethyl-pyrtolidin 467. 449 * 2ylmethyl)- naphthaten-1- ytmethyl-amine A(1-Ethyl-pyrrolidi 2-ylmethyl)- P'"r408.5866 i= * methyl naphthalen-l- ylmethyl-amine 2- [2- (5-Bromo-2- methoxy- PJ benzylsulfanyl)-458 8461 ** benzyloxymethyl] pyrro!! d! ne: HC! tJ pynolidine ; HCI (OBromo benzyl l N i \ (3imidazol-1-yl- PK propy !)- 434. 3788'" naphthalen-1- ylmethyl-amine a ' (,' (3-Imidazol-1-yl- ProPYI) _ l'7 > naphthalen-2- PL ymetnyi-405. 5426 naphthalen-1- ylmethyl-amine [2-(Naphthalen1- ylmethylsulfanyl) i N o J phenyl]-carbamic PM acid 2-piperidin-I 563.7657 lo yl-1-piperidin-1- ylmethyl-ethyl ester, Formate (2- (Naphthalen-1. ylmethylsulfanyt)- phenyl]-carbami PN add 2-426.5408 t * dimethylamino- ethylester, Formate N 1-[2- (Naphthalen I'JNn I PO YSUlfanylmethyl)-3g4. 542 S ** benzyl]- piperazine; Formaté [3(2-Methyl- piperidin-1-yl)- propyl]-z PP (naphthalen-1-464 6764, + ** ylsulfanytmethyl)- benzyl]-amine; Formate // NI 1-[3-Chloro-2. (naphthalen-1-l s PQ ylsulfanylmethyl)-419.4168' benzyl]- piperazine ; HCI I XN k 41 i<NH1- [3-Fluoro-2- (2- PR naphthalen-1-yl-3g4. 9234 F *"* ethyt)-benzyl]- piperazine ; HCI I ro (1-[3Chloro-2- (naphthalen-1- PS ylsulfanylmethyl) 458 0253 IA'* benzyl]-piperidin- 2-y¢methanol ; Formate N,N-Dimethyl-N'No (2-naphthalen-l- yl-ethyl)-N'- PTnaphthalen-1- PT o 428.5787 * ylmethyl-ethane- 1,2-diamine ; Formate r (1- [2- (5-Bromo-2- methoxy- methoxy-rq chlorbenz yl)-3 70. 8577 piperidin-2-yl}-o methanol {1-[2-(2-, 2 M% Naphthalen-1-yi- PV ehyl)-benzylj-405. 5414 * piperidin-2-yl}- methanol; Formate /\e/\ N NH Naphthalen-1-yl- PW ethyl)-benzyl]-3765029 piperazine; Formate [3- (2-Mothyl- pipeddin-1-yl)- PX naphthaten-1-yl-446. 6373 naphthalen-1-yl-y ethyl)-benzyl]- amine;Formate 1- [2- (2- , _, 2_, 2. Naphthalen-1-yl- PY ethyl)-benzyl]-376.5029 w ; ** pymolidin-3-1/ ylamine ; Fortnate N 11 A5-Dimethyl-2- [2 N5, (2-naphthaten-l- PZ yi-ethyl)-phenyl]- 4,5-dihydro-1H- imidazole / NEZ 2-[3-Fluoro-2- (2- naphthalen-1-yl- H ethyl)-phenyl]-5, 5 dimethyl-4, S dihydro-1 H- imidazole N-1 2- [2- (5-Bromo-2- methoxy- benzylsulfanyl)-sOMe QB3s5-difluoro-F t 1 *** phenyl]-1,4,5,& tetrahydro- pyrimidine er 2- [2- (5-Bromo-2- methoxy- benzylsulfanyl)- 33, 5 difluoro-rs OM-** phenyl]-5, 5- p dimethyt-4, 5- dihydro-t H- imidazole Br N 14 N 3-(2-Naphthalen- 1-yl-ethyl)-2- QD'L, QD tetrahydro- pyrimidin-2-yl)- phenylamine N III c Amino- [2- (2- naphthaten-1-yl- ethyl)-phenyl]- acetonitrile N lit 1-f2-(2- ! Naphthalen-1-yl- QF ethyl)-phenyll- ethane-1,2- diamine 2- [2- (5-Bromo-2-K') methoxy- H benzytsulfanyl)-0 phenyl]-4-methyl- 4,5-dihydro-1 H- imidazole Br r2- [2- (S-Bromo-2- methoxy benzylsulfanyl) 3 fiuoro-phenylj-4- s o *** methyl-4, 5- dihydro-lH- imidazole B, 2- [2- (S-Bromo-2- methoxy- N benzylsulfanyl)-3 chloro-phenyl]-4- methyl-4,S cy ^ dihydro-1H- imidazole B, 2- [2- (SBromo-2- methoxy- m N benzylsulfanyl)- QJ3, 4-difluon> F T S OMe *** phenyl-1,4,5,Fm F > tetrahydro- pyrimidine B, 2- [3-Fluoro-2- H N HN (naphthalen-1- ylsulfanylmethyl)-rN QK phenyl]-5. 5- dimethyl-4, 5- dihydro-lh-F imidazole N 2q2-[2-(S-Bromo N<j 2-methoxy- m1 phenyl)-1-methyl/oz *** QL ethyl]-pheny- 1,4,5,&teVahyd pyrimidine/ e, 2- [2- (5-Bromo-2- methoxy benzyl sulfanyl)-3-nuoro-a-H o/* tri8uoromethyLDhenyl 4,4-dimethyl-4, 5- dihydro-lH-imidazole 2 (SBromo-2- methoxy-banzyl sullanylr3-fluoro4-, o/* crno. omamy4pnanyi 5,5-CimethyFt 4, 5, & tatrahydrpyrimidine N2. [3-Methoxy-2- (2 naphthalen-1-yi-il H ethylphenyl]- *** 1,4,5,&teVahydr pyrimidine pynm) d! ne T OH 2- [2- (5-Bromo-2- methoxy- on benzylsulfanyl)-3 rs o'*** 1,4,5,y pynmidin-S-ol r er N 2- {2- [2- (5-Bromo- J 2-methoxy- phenyl)-ethyl]-3- melhoxy-pheny¢o 1,4, 5, &teVahyd pyrimidine ex TABLE 5 Salt Molecular Structu Molecular Structure Weight Weight 0 Parent 347. 5242 Parent 466. 6471 JJ J r-O, coj Parent 331.9091 Parent 508.7277 %, Ç !) r / \ N I Parent 333.4453 F 377.3244y' I s'w/ I cl. s (I lI I nazi Y,'-.NH"---N--' U U 9, Parent 646. 0503 Y'-Parent 406.5921 L. CI : N I j rr- I Formate 513.4192 Parent 348. 4882 s : 0 N. INN/ -s Formate 533.4937 Parent 404.5762 S I s N Formate595.5646 Parent 312. 4552 v_/, zon ''w"J HO 525. 9799s oParent 348. 4882 \/- "6nu \ J Formate 530.4901 Parent 328.4546 Q/06 oN o_ w i N Formate 599.6367 Parent 372. 3079 L -0 rS k .. o-"" ( u. Formate 579.5194 Parent 377. 3244 I, I- /Y !) '' Formate 590.5457 Parent 337.2916 1 f N__N,, _y_. cri 0 N, i \ H I Formate 568.4987 Parent 458.6678 0 ( I fez Formate 535.5096 Parent 353. 5078 o% Parent 561. 5456 Parent 362.4717 X, Ns , o p r\ rr"-°<t.-° non Formate 559.5316 Formate 468. 5781 la--0 Hz J Formate 534.4815 Formate 527.4406 ! I I 0 j"'o 1 Formate 507 4559 Formate 468. 5781 (Y fTY"'v NH, Formate 493. 429 ! 1Formate 502.8609 os"\0)'°H " a, a . il, i y, b Parent 591.6'153 Formate 516.8877= ! rrYrY" Parent 527.5285 Formate 482. 605 N HAN CNs o ; Formate 483.4339 Parent 321. 2376 s ex & /I ,.". Parent 178.2774 Parent 454.6122 tl ¢ nu N/V mye 0 B/I/ i Parent 426.1942 Parent 513. 4747 C + : :'r a & N // I Parent 392.2957 Parent 432.9709 (' "nazi I r"--/k. L Parent 649.6519 Parent 467.449 0 ou r a, / I ar% Formate 333. 2297 ! Parent 382.5267 tu. an I i^ i Me Formate 595.5646 Parent 398. 5261 ", s I o, p -1 0 a . J Parent 377.3244 HCI 451. 0753 Non Cl% N 1 Parent 298. HCI 418. 0454 N CA4 mi - " Parent 404.5762 HCI 443. 0552 ion, , s- Parent 447.6446 HCI 442.024 N o o' i No NH---J Parent 402. 5603 Parent 508. 4765 \_ i v/ . r Parent 549.5346 Parent 508. 4765 L. ?. ' ? fez YT Formate581. 5377 2. 5034 y N han o Formate443. 3691 N s Parent 522. 5034 wo I i N IQ ! ^ \ N y _ o ! ri cXVY (i T Formate485.4497"5 Parent 522. 5034 g o.J \N_ O Formate523. 4986 N 5 Parent 428. 5524b" _d e N FN-11Nil 0 S-N Formate 457. 396"S Parent 374. 528 Ber Zou -. Na o/-\ ru- I-N Formate 529.4595 Parent 387. 5029 \\ 0 nif ri'O N- Formate 338.4092), Pa_t 294 4396/) >NX u.'0 Formate 340.3808 Parent 353.3024 C cru ' osa Formate J W 0. s 472 673 i Nu Y " nry Parent 293. 4118 Formate 467. 388 v"w "T 0 I I'N Ni Parent 336.4003 Parent 278. 3538 \ - 0. 0 NU 0 --u ^ _NN / Parent 454. 4283 Parent 378. 4742 Paye57452 Or" ;/ \ "r-" Parent 357.4552 r"Y"°'Parent 406.528""" rY°r"i LQLJ Q D. R I Parent 386.4903 Parent 464. 4051 N I SJ ruz Parent 393.5096 Parent 296.4558 C" \. UUJ "U 0 I /N O O NJ0"<' Parent 364.4473 Formate 443.3855 h 1 p N Formate A, 0 , 1 e t), i ; 10 J Formate 400.5897 Parent 343.4717 CN NU Nu nrv / Ck vC Parent 430.5902 Not N Determined nu i rl Not Not oot i r8 sot,Determined Determined C 2C NH I \/ nu \ I/H Not Not Determined Determined \ I UT cl O Not'Not N HÑ Determined Determined c LJ Q 00CLO Not Not Determined Determined c6c6 Nos nif Not zozo Determined Determined C., o Hz o x Not tr" Determined cl

Example 3: cAMP Assay for MC4-R Antagonist Activity Method MC4 Receptors are expressed in stably transfected K293 cells. The cells are incubated in DMEM base medium (10% FBS, 1X glutamine, and 0.4 mg/ml G418) at 37°C, in an atmosphere of 6.0% C02 and 90% relative humidity. Two days before the experiment, the cells are trypsinized and 200 p1 ofthe cell suspension (138,000 cells/ml) is deposited into 96-well Costar cell culture plates.

The test compounds are then dissolved in DMSO creating a 30mM stock solution, which is subsequently diluted to 180,650,20,6.6,2.2 uM in OPTI-MEM (GIBCO-BRL) media with 50 uM IBMX (isobutylmethylxanthine, Sigma) minutes before the experiment.

The media is then thoroughly removed from the cell culture plates through a 12-channel straight manifold. 90 nl of OPTI-MEM media with 50 uM IBMX is added to each well (McHale et al. FEBS Letters 345 (1994) 147-150). The plate is then placed in an incubator set at 37 °C, 6.0% C02 and 90% relative humidity. After 15 minutes of incubation, 90 nl of the test compound solutions (or a control solution of OPTI-MEM and IBMX) are added and the plates are incubated for another 10 minutes.

20 u. l of the ligand MSH solution in OPTI-MEM is then added. The cell plates are incubated for an additional hour at 37 °C.

After the incubation, the media mixture is removed by 12-channel straight manifold. 60 ul of 70% ethanol is added to each well. The plates are then placed on a shaker for 30 minutes to extract the cAMP. The amount of cAMP is detected by the cyclic AMP [125I] Biotrak SPA screening assay system (Amersham).

The system involves adding 50 111 of 1X assay buffer into each well of an OptiPlate-96 (Packard). 50 ul of the tracer solution (cAMP-125I) is added into each well. 5 nl of the cAMP extract is added into the mixture, followed by the addition of cAMP antiserum and 50 ul of SPA PVT-antibody binding beads. The plates are then covered with TopSeal-A (Parkard) and incubated at room temperature for up to fifteen hours before being analyzed using a TOPCOUNT machine.

Example 4: In Vivo Assay for MC4-R Antagonist Activity The following in vivo assay was used to test the effects of MC4-R antagonists on mice.

Male lean C57BL/6J mice were individually housed in macrolon cages (22 i 2C° ; 12: 12 h light/dark cycle with lights off at 6 pm). Tap water and mouse chow diet were given ad libitum. Mice were stereotaxically implanted with a chronic guide cannula aimed to the third ventricle (intracerabroventricular) one week prior to testing.

It had been previously determined that food deprived lean mice which had been injected with 0.1 nmol of MT II (a MC4-R agonist) prior to refeeding showed decreased feeding response within 1 hour of injection (Figure 1). In previous experiments using peptidic MC4-R antagonists, it has been shown that the decreased feeding response of MT II treated food-deprived mice can be reversed by the intracerabroventricular injection of MC4-R antagonists.

In this experiment, food deprived lean mice were injected intracerabroventricularly with either Compound N or Compound 0, at a dose of 15 nmol prior to injection of MT II at the dose of 0.05 nmol.

The results of the experiment are shown in Figures 2 and 3. Figure 2 shows that administration of 15 nmol of Compound N partially reverses the effect of the administration of the MC4-R agonist, MT II. Figure 3 shows that administration of Compound O did not significantly effect the food intake of mice treated with MT II.

Example 5: cAMP Assay for MC Receptor Agonist Activity (cAMP Assay) The cAMP assay identifies compounds which have agonist activity against MC receptors. It is used to identify the selectivity of agonist which selectively antagonize receptors of interest. The following method is outlined for MC4-R, but corresponding procedures were used for the other MC receptors, MC1-R, MC3-R, and MC5-R.

Method MC4 Receptors are expressed in stably transfected HEK293 cells. The cells are incubated in DMEM base medium (10% FBS, 1X glutamine, and 0.4 mg/ml G418) at 37°C, in an atmosphere of 6.0% C02 and 90% relative humidity. Two days before the experiment, the cells are trypsinized and 200 u. l of the cell suspension (138,000 cells/ml) is deposited into 96-well Costar cell culture plates.

The test compounds are then dissolved in DMSO creating a 30mM stock solution, which is subsequently diluted to 180,650,20,6.6,2.2 uM in OPTI-MEM (GIBCO-BRL) media with 50 pM IBMX (isobutylmethylxanthine, Sigma) minutes before the experiment.

The media is then thoroughly removed from the cell culture plates through a 12- channel straight manifold. 90 ul of OPTI-MEM media with 50 uM IBMX is added to each well (McHale et al. FEBS Letters 345 (1994) 147-150). The plate is then placed in an incubator set at 37 °C, 6.0% C02 and 90% relative humidity. After 15 minutes of incubation, 90 ul of the test compound solutions (or a control solution of OPTI-MEM and IBMX) are added and the plates are incubated for another 10 minutes. 20 1 of the ligand MSH solution in OPTI-MEM is then added. The cell plates are incubated for an additional hour at 37 °C.

After the incubation, the media mixture is removed by 12-channel straight manifold. 60 p1 of 70% ethanol is added to each well. The plates are then placed on a shaker for 30 minutes to extract the cAMP. The amount of cAMP is detected by the cyclic AMP [l25I] Biotrak SPA screening assay system (Amersham). The system involves adding 50 ul of 1X assay buffer into each well of an OptiPlate-96 (Packard).

50 1 of the tracer solution (CAMP-1251) is added into each well. 5 PI of the cAMP extract is added into the mixture, followed by the addition of cAMP antiserum and 50 Vtl of SPA PVT-antibody binding beads. The plates are then covered with TopSeal-A (Packard) and incubated at room temperature for up to fifteen hours before being analyzed using a TOPCOUNT machine.

Compounds O, N, AG, AL, and AM were found to be at least 100 fold more selective for MC4-R than MC1-R, MC3-R and MC5-R.

INCORPORATION BY REFERENCE The entire contents of all references and patents cited herein are hereby incorporated by reference. The entire contents of U. S. Patent 5,908,609 and all its references also expressly incorporated herein.

EQUIVALENTS Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.