Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MEMS MICROPHONE AND METHOD FOR SENSING TEMPERATURE
Document Type and Number:
WIPO Patent Application WO/2018/177816
Kind Code:
A1
Abstract:
It is proposed to integrate a temperature-sensing element in or on the ASIC die of a MEMS microphone to enable an audio mode and a temperature-sensing mode in parallel. A method for easily switching between these two modes and for outputting both digital output signals at the same common output pad is given allowing to use the footprint of a conventional microphone.

Inventors:
ZOU LEI (DK)
ROMBACH PIRMIN HERMANN OTTO (DK)
PETERSEN HENNING (DK)
Application Number:
PCT/EP2018/057041
Publication Date:
October 04, 2018
Filing Date:
March 20, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EPCOS AG (DE)
International Classes:
H04R19/00; H04R3/00
Foreign References:
US20160277844A12016-09-22
US20170023429A12017-01-26
Other References:
None
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (DE)
Download PDF:
Claims:
Claims

1. MEMS microphone comprising

- a MEMS transducer and

- an ASIC die, both arranged in

- a package, the package having

- a sound hole

wherein

- a temperature-sensing element is integrated in or on the ASIC.

2. The MEMS microphone of claim 1, further comprising

a pre-amplifier (AMP) and an analog-to-digital- converter, both integrated in or on the ASIC die wherein the analog-to-digital-converter provides at its output a second digital output signal for signals originating from the temperature-sensing element.

3. The MEMS microphone of claim 2,

wherein the analog-to-digital-converter is adapted to convert a first analog input signal from the MEMS transducer and a second analog input signal from the temperature-sensing element to optionally provide at its output a first or a second digital output signal for signals originating from the MEMS transducer and from the temperature-sensing element respectively.

4. The MEMS microphone of one of the foregoing claims, wherein the temperature-sensing element is embodied as a resistive element or a transistor in or on the ASIC die . The MEMS microphone of one of the foregoing claims, wherein the sound hole is adapted to allow exposing of the temperature-sensing element to the ambient

temperature .

The MEMS microphone of one of the foregoing claims, comprising switching means for switching the ADC between a temperature sensing mode and a microphone mode, wherein the microphone is adapted to produce and deliver, dependent on the state of the switching means, the first or the second digital output signal to a respective one of two separate output signal pads at the MEMS microphone or to a common output signal pad. 7. The MEMS microphone of one of the foregoing claims,

comprising a clock frequency input, and a frequency detector that is coupled to the clock frequency input and to the switching means,

wherein the frequency detector is adapted to detect a first and a second clock frequency and to control the switching means dependent on the detection of first or second clock frequency.

The MEMS microphone of one of the foregoing claims, comprising a supply current source adapted to couple a supply current to the ADC, wherein the supply current strength is dependent on the operation mode of the ADC to take into account the higher amount of current required for the microphone mode.

9. Electronic device comprising a MEMS microphone of one of the foregoing claims.

10. he electronic device of the foregoing claim,

selected from a mobile communication unit, a smart phone, a tablet computer, a smart watch or a headset.

11. The electronic device of the foregoing claim,

wherein first and second output signal share a single output pad.

12. A method of sensing a temperature with the MEMS

microphone of claim 1, comprising the steps

- coupling a first clock frequency fl or a second clock frequency f2 to a clock input of the MEMS microphone, wherein

- the first frequency fl is assigned to a

microphone operation mode

- the second frequency f2 is assigned to a temperature sensing mode

- fl » f2

- detecting the frequency of the clock with a

frequency detector

- producing a first digital output signal relating to a first analog input signal provided by the

MEMS transducer if the clock frequency is the first frequency fl

- producing a second digital output signal relating to a second analog input signal provided by the temperature sensing means if the clock frequency is the second frequency f2.

13. he method of claim 12,

wherein the first analog signal inputis an amplified signal originating from microphone transducer

wherein the second analog signal input is originating from temperature sensing means

wherein dependent on the clock frequency these two analog input signals areconverted to first or second digital output signal respectively by an analog-digital converter (ADC) .

14. he method of claim 12 or 13,

wherein the frequency detector detects whether the clock frequency is

a) above a first threshold or

b) below a second threshold

and assigns in case of a) the clock frequency to the first frequency fl and couples the amplified signal to the analog-digital converter (ADC) , and in case of b) assigns the clock frequency to the second frequency f2 and couples the second analog input signal (or the amplified signal?) to the analog-digital converter (ADC) .

Description:
Description

MEMS microphone and method for sensing temperature In order to sense temperature with a microphone a standard stand-alone temperature sensor and the microphone can be assembled on the same module. The module then requires two analog-digital converters to digitally read out the

temperature signal and the audio signal, respectively, which are both analog input signals originating from the

temperature sensor and the microphone transducer. The stand ¬ alone temperature sensor is usually an ASIC sealed inside a package and covered with a molding mass or a glob top

material that both prevent ambient air to get into direct contact with the temperature sensor on the ASIC.

It has been proposed to integrate such an stand-alone

temperature sensor on the base of a BJT (bipolar junction transistor within a smart phone. The sensor is build-in within the smart phone casing and has thus no direct contact with ambient air. Hence, the sensor needs time to equalize temperature and detects ambient temperature only with delay.

It is an object to provide a temperature sensor with improved sensing speed that can easily be integrated in mobile

electric devices like smart phones, tablets etc.

These and other objects are met by a MEMS microphone with an integrated temperature sensing element according to claim 1.

Further embodiments of the microphone as well as an

electronic device with an incorporated microphone and a method for sensing the temperature with the microphone can be taken from further claims.

Integrating a temperature-sensing element within a MEMS microphone has superior advantages. The temperature-sensing element can be embodied on or in the ASIS that is already present in the MEMS microphone besides the MEMS transducer. Moreover, the sound hole in the microphone package not only provides access of sound waves but is also a good thermic conductor and allows excellent exposure of the temperature- sensing element to the ambient air and thus, quick response to any temperature change. The reason is that the ASIC within the package does not require any sealing means like

conventional stand-alone temperature sensors that could reduce the thermos-conductivity and the exposure to the air. Therefore, temperature can be measured with high accuracy. No additional space is required for the temperature-sensing element neither on the ASIC nor outside the microphone package .

The temperature-sensing element can be embodied as a

resistive element or a transistor, e.g. a bipolar junction transistor BJT . Both embodiments can be realized in or on the ASIC die. They convert an analogue temperature to an

electrical signal that can be read out or can be further processed .

According to an embodiment, the MEMS microphone further comprises a pre-amplifier and an analog-to-digital-converter, that are both integrated in or on the ASIC die. The analog- to-digital-converter provides at its output a second digital output signal for signals originating from the temperature- sensing element. In this connection, terms like first, second and higher numbers are identification and differentiation between different ones within a multitude of elements of the same kind. However, a second or higher number does not explicitly require the presence of a respective first one.

The analog-to-digital-converter of the MEMS microphone is adapted to convert a first analog input signal from the MEMS transducer and a second analog input signal from the

temperature-sensing element to optionally provide at its output a first or a second digital output signal for signals originating from the MEMS transducer and from the

temperature-sensing element respectively. Hence, the MEMS microphone provides digital output signals only that can easily be processed further. The second output signal can be coupled to an app or to a monitor to be displayed optically. The first output signal may be amplified or filtered.

The MEMS microphone can have only one analog digital

converter such that both applications, i.e. the audio

application and the temperature sensor application use the same analog digital converter. Therefore, switching means for switching the analog digital converter between the

temperature sensor mode and the audio mode can be present and be realized within the ASIC.

Alternatively, two analog digital converter can be present, one for converting first analog input signals to first digital output signals in the audio mode, and the other one for converting second analog input signals to second digital output signals in the sensor mode. However, these two analog digital converters need more costly chip area on the ASIC and require a higher amount of power during operation. The microphone can be adapted to produce and deliver,

dependent on the state of the switching means, the first or the second digital output signal to a respective one of two separate output signal pads at the MEMS microphone.

Advantageously a single output signal pad can function as a common output pad. The advantage is that in addition to the pads on the footprint of the MEMS microphone no further pad is necessary. Hence, the microphone does not need a modified package in view of a conventional MEMS microphone without sensor function. This requires very low additional costs when compared with a microphone without temperature sensor

function. Compared with an additional stand-alone temperature sensor cost savings are substantial. The system is compliant with standard digital MEMS microphone pad frame or footprint.

In case of a common output pad, means for triggering the desired output signal should be present. It is possible to use the conventional clock signal to trigger the desired output signal or switch between sensor mode and audio mode.

A frequency detector is coupled to the clock frequency input and to the switching means. The frequency detector is adapted to detect a first and a second clock frequency and, as a result of the detected frequency, to control the switching means dependent on whether a first or second clock frequency is applied to the clock frequency input and detected by the frequency detector. This very flexible method reduces

hardware costs compared with other switching or triggering methods .

A supply current source present in the MEMS microphone can be adapted to couple a supply current to the analog digital converter, wherein the supply current strength can be made dependent on the operation mode of the analog digital converter to take into account that the audio mode requires an amount of current higher than of the sensor mode. This helps saving energy and enhances the running time of the microphone or a mobile electronic device the microphone is incorporated in. Moreover, the low energy consumption of the temperature sensing elements TSE ensures low self-heating of the ASIC that is negligible when measuring the ambient temperature outside of the microphone.

Such a mobile electronic device may be a smart phone, a tablet computer, a headset or a smart watch.

It is advantageous to arrange the MEMS microphone with the sensor function in such a device at a low power area where no other elements, which are high current consuming, are

neighbored, that produce substantial self-heating which could adversely influence the accuracy of the sensor function. So, the risk of self-heating can be minimized.

Best results are achieved when incorporating the MEMS microphone with integrated temperature sensing function in a headset. There, it is separate and distant of any highly current consuming element like a tablet computer or a smart phone.

In the following, the invention will be explained in more detail with reference to exemplary embodiments and the accompanied drawings .

The drawings are schematically only and not drawn to scale. Some elements may be depicted enlarged for better

understanding . Figure 1 shows a cross-section through a MEMS microphone arranged in a package. Figure 2 shows functional blocks of an ASIC that is usable in a MEMS microphone.

Figure 3 shows functional blocks of an ASIC that is usable in a MEMS microphone according to the invention.

Figure 4 shows the process flow of a method for sensing a temperature with an MEMS microphone according to the

invention . Figure 5 shows the functional blocks of a sigma/delta analog digital converter that can be used with an MEMS microphone according to the invention.

Figure 6 shows an electronic device equipped with an MEMS microphone according to the invention.

Figure 1 shows a conventional MEMS microphone MMC comprising a MEMS transducer TRD and an ASIC DIE both arranged on a common carrier PCB . Both components are arranged in the same package PKG. The package may seal against the carrier to enclose a cavity for example by mounting a cap on the carrier that encloses MEMS transducer TRD and ASIC DIE. A sound hole SOH is conducted through the package PKG, for example through the upper covering or through the carrier PCB. Outer contact pads may be arranged on the bottom of the carrier PCB.

Figure 2 shows functional blocks of an ASIC DIE that is usable in a conventional MEMS microphone. The MEMS transducer produces an analog input signal INA that is coupled to an input of the ASIC. An analog pre-amplifier AMP produces an amplified analog signal that is converted to a digital output signal by an analog digital converter ADC that may be a ΣΔ (sigma delta) ADC. In case of high amplitude, input signals the pre-amplifier can be bypassed by closing respective switches to enable the bypass BYP. A current/voltage

reference generator GEN supplies pre-amplifier AMP and analog digital converter ADC with a respective current or voltage. Further components of auxiliary circuits AUX are summarized in a further building block. Besides analog input, INA and digital signal output OUT at least three other pads are required for the operation of the ASIC DIE: There are pads for supply voltage VDD, ground GND and clock frequency input CFI.

ASIC and MEMS may be electrically connected by bonding wires or by conductor lines that are guided on the surface of the carrier or inside the carrier if realized as multilayer board.

Figure 3 shows functional blocks of an ASIC DIE that is usable in a MEMS microphone according to the invention. The other components of the MEMS microphone MMC do not require any adaption as the invention is fully incorporated in the

ASIC DIE. As usual an analog input signal INA produced by the MEMS transducer TRD is coupled to an analog pre-amplifier AMP. The temperature is sensed by temperature sensing

elements TSE that produce a second analog input signal that is a measure for the sensed temperature. Amplified analog audio signal and second analog input signal are both fed to a switching means SWM arranged as an interface between the analog signal sources and the analog digital converter ADC. The switching means SWM can switch between two channels CHI and CH2 to deliver the desired signal to the analog digital convert ADC. According to a preferred embodiment, the

switching means are controlled by frequency detector DET that is configured to detect whether a first or a second clock frequency is applied to the clock frequency input CFI . A first clock frequency opens first channel CHI for the audio signal while a second clock frequency opens second channel CH2 for the sensor signal of the temperature sensing elements TSE. The switching means SWM may be realized_as an active switch. If no audio signal is operated, the MEMS microphone may operate in the temperature-sensing mode. In this mode, very low current is required to for the operation of the analog digital converter ADC. Hence, a current control CTR controls supply current of the analog digital converter ADC at a low level if the second clock frequency is detected by the frequency detector DET at the clock frequency input CFI . Adversely, the supply current of the analog digital converter ADC at a high level if the first clock frequency is detected for enabling audio mode.

In this embodiment only one analog digital converter ADC and one digital output signal pad is required that are already present in the ASIC of a conventional MEMS microphone. The above explained additional components of the invention are easily to integrate in the ASIC and do not require lot of surface of semiconductor ASIC DIE. This allows realization of the additional temperature-sensing mode at low cost.

Additional current consumption for the sensor mode is very low. Moreover, it produces a minor amount of heat such that the temperature can be sensed accurately. Further, the ASIC needs no higher volume such that the same package size can be used like for a conventional MEMS microphone. Figure 4 shows the process flow for a new method for sensing a temperature with an MEMS microphone according to the invention .

In the first step 1, a clock frequency is applied to the clock frequency input and coupled to a frequency detector. A first clock frequency may be selected for example at about 1 GHz. A second clock frequency may be selected for example at about 10 kHz. In the example, any other frequency may be selected as a first frequency fl if fl > 768 kHz and any other frequency may be selected as a second frequency f2 if f2 <20 kHz. In step 2, the frequency detector is configured to detect whether a first or a second frequency is applied.

In step 3, a switching means opens first channel CHI if fl > 768 kHz to proceed with step 4, or switches to second channel CH2 if f2 < 20 kHz and to proceed with step 5.

Alternatively, it is possible to configure the frequency detector at step 2 to deliver a parameter "1" at step 4 or a "0" at step 5 dependent on the detected clock frequency. At step 10, the first channel CHI is enabled if the parameter equals 1. The parameter "1" issued at 4 further enables a current source control at step 9 to provide a large current to the analog digital converter ADC. In the other case at step 6, the second channel CH2 is enabled if the parameter equals 0. If parameter "0" is issued at 5 a current source control at step 7 is enabled to provide only a small current to the analog digital converter ADC. The analog digital converter ADC operates in a microphone or audio mode at step 11 thereby consuming a large current if first channel CHI is enabled. If second channel CH2 is enabled the analog digital converter ADC, operates in the sensor mode at step 8 if the second channel CH2 is enabled.

In the above method of switching a MEMS microphone between an audio mode and a temperature sensor mode according to the invention the clock frequency is selected dependent of the bandwidth of the incoming analog signal. In the audio mode, the maximal expected signal bandwidth of first channel CHI is 20kHz. Hence, first channel CHI is a fast speed channel and a higher clock frequency is set to fl > 768 kHz. A parameter output 1 enables current control to provide a high current (e.g. >100μΑ) to the analog digital converter ADG thereby enabling high speed converting at the analog digital

converter ADG. In the sensor mode, the maximal expected signal bandwidth of second channel CH2 is 100Hz. Hence, second channel CH2 is a low speed channel and a slow clock frequency is set that f2 <20 kHz. A parameter output 0 enables current control to provide a low supply current (e.g. <50μΑ) to the analog digital converter ADG to support a low speed converting at the analog digital converter ADG.

Figure 5 shows a possible configuration of an analog digital converter ADG that is a second-order sigma delta ADG that may be used together with the invention. Such a sigma delta analog digital converter ADG comprises a first subtract SCT1, a first integrator INT1, a second subtract SCT2, a second integrator INT2, and a quantizer QNT that is sampled with a clock at clock frequency input CFI, and a digital-to-analog converter DAC. The input of the first subtract SCT1 is connected with the analog input of the analog digital converter ADG and the output of the digital-to-analog converter DAC. The difference of the two inputs is provided to the first integrator INT1. The input of the second subtract SCT2 is connected with the output of the first subtract SCT1 the output of the digital-to-analog converter DAC. The difference of the two inputs is provided to the second integrator INT2. The output of the second integrator INT2 is quantized by the quantizer QNT, which is clock sampled. The quantized output is coupled to the digital-to- analog converter DAC to generate loop feedback signals. In such a second order analog digital converter the two integrators INT1, INT2 are consuming most of the supplied current. In general, they are realized as an operational amplifier. The current control block at steps 7 and 9 in figure 4 adjusts the current supplied to the amplifiers. If supply current is set high a high bandwidth can be reached resulting in a high-speed analog to digital converting operation. If the supply current is set low, a low bandwidth and a low speed analog to digital converting operation results. The current control is set based on the clock frequency applied to the quantizer QNT and the frequency detector DET.

Figure 6 shows the implementation of the MEMS microphone MMC in an electronic device ELD, i.e. a smart phone in the depicted example. The electronic device ELD comprises a transmitter, a power amplifier PA and an antenna that represent high-energy consuming parts that are expected to produce substantial amount of self-heating . It is advantageous to place these high power-consuming components in a high power area HPA of the electronic device ELD to reserve a low power area LPA where no such high power consuming components are present. According to the size of conventional electronic devices alike smart phones reaching 12 to about 20 cm, the microphone can be placed far away from the high power area in the low power area LPA where no self- heating is expected and an accurate operation of the

temperature sensing elements TSE is possible. Further power consuming components like a digital signal processor DSP, a monitor MON and a speaker SPK could be arranged in the high power area HPA.

The MEMS microphone MMC is arranged inside the casing of the electronic device ELD. A recess is feed through the casing matching with the sound hole of the microphone MMC. Hence, sound waves SOW as well as outside ambient atmosphere of a current temperature TMP can intrude into the microphone package through recess and sound hole SOH to impact on MEMS transducer TRD and temperature sensing elements TSE on the ASIC DIE as well.

As an alternative, the MEMS microphone with temperature sensing elements can be placed in a headset that is

connectable with the electronic device by plug. Dependent on whether first or second channel is enabled in the microphone analog sensor signals or analog audio signals are delivered by the headset to the digital signal processor DSP. The integrated microphone of the electronic device (smart phone or table for example) can then be by-passed. Because of the greater distance of the headset with the microphone from the high power consuming components in the device, no or lower self-heating is expected allowing a more accurate temperature sensing .

The invention has been explained on a small number of embodiments but is not restricted to the embodiments and the exemplary figures. Further combinations of features that are shown in different embodiments can represent not-shown embodiments lying within the scope of the invention.

List of elements and reference symbols

1 - 11 process steps

ADC analog-to-digital-converter

AUX auxiliary circuit

BYP Bypass

CFI clock frequency input

CHP charge pump

CTR current control

DAC digital-to-analog converter

DET frequency detector

DIE ASIC die

DSP digital signal processing

ELD electronic device

f1, f2 first and a second clock frequency

GEN current voltage reference generator

HPA high power area of ELD

INT1, 2 first and second integrator

LPA low power area of ELD

MCM MEMS microphone

MIF microphone interface

MON monitor

OUT output of ADC

PA power amplifier

PAAMP pre-amplifier

PCB carrier board

PKG package

QNT quanti zer

SOH sound hole

SOW sound wave

SPK speaker

STR1, 2 first and second subtract SWM switching means

TMP ambient atmosphere having a temperature

TRD MEMS transducer

TSE temperature sensing element