Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METAL CARBOXYLATE SALTS
Document Type and Number:
WIPO Patent Application WO/2008/019091
Kind Code:
A1
Abstract:
A dietary source of mineral in the form of a metal carboxylate is prepared using the acid-base-like reaction. A salt of a carboxylate anion and a by-product cation is reacted in aqueous solution with a salt of a metal cation and a by-product anion under conditions which form a metal carboxylate and the by-product salt. Solutions formed in the reaction may be applied directly to a dry carrier to produce a dry dietary supplement or, alternatively, the solutions may be filtered to remove precipitated by-product salt and the filtrate used as a liquid dietary supplement. Preferably, a reducing agent, such as ascorbic acid, is added to help prevent the oxidation of divalent to trivalent form of a metal salt, when an easily oxidized divalent metal is used as starting material.

Inventors:
GOH SWEE-KENG (SG)
ANTONY JESUADIMAI IGNATIUS XAV (SG)
TAN HAI MENG (SG)
CHOO YEUN-MUN (SG)
Application Number:
PCT/US2007/017386
Publication Date:
February 14, 2008
Filing Date:
August 03, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KEMIN IND INC (US)
GOH SWEE-KENG (SG)
ANTONY JESUADIMAI IGNATIUS XAV (SG)
TAN HAI MENG (SG)
CHOO YEUN-MUN (SG)
International Classes:
C07F1/00; A23K1/00; A23L1/30; C07F7/00; C07F11/00; C07F13/00; C07F15/00
Foreign References:
US5707679A1998-01-13
US6670494B12003-12-30
US7067165B22006-06-27
US7220426B22007-05-22
US5591878A1997-01-07
US5795615A1998-08-18
Attorney, Agent or Firm:
HERINK, Kent (Brown Koehn, Shors & Roberts, P.C.,The Financial Center,666 Walnut Street, Suite 250, Des Moines Iowa, US)
Download PDF:
Claims:
We claim:

1. A process for making a metal carboxylate using the acid-base-like reaction, comprising the steps of:

(a) combining in a basic ammonium salt of a carboxylase and a water-soluble metal salt of Lewis acid property; (b) allowing the mixture to react at a temperature between 22 and 30 °C for a period of between 0 minutes and 15 minutes; and (c) reducing the temperature to between 0 °C and 16 °C for at least 15 minutes.

2. A process as defined in claim 1, wherein the carboxylate moiety is selected from the group consisting of the straight-chain monocarboxylic or polycarboxylic acid possessing 1 to 20 carbon atoms, and including formic acid acetic acid, propionic acid, 2-hydroxypropanoic acid, cicosapentaenoic acid, benzoic acid, 2-hydroxy-1,2,3-propanetricarboxylic acid, 1,2- ethanedicarboxylic acid, trans-1,2-ethanedicarboxylic acid, and hydroxybutancdioic acid.

3. A process as defined in claim 1, wherein thw water-sohible metal salt of Lewis acid proper ty is selectedl fro mhe group consisting of salts of Fc(11 ), l-c(lll), Mg(Il), Cu( 1 Il), Zn(Il) 1 Ci(IlI), Co(H), To(IIl), Mn(II), Mo(II), Mo(Ul), Ca(11), and Sn(1U).

4. A process as de fined in claim 2, wherein the ammonium salt of caiboxylate is former! by the reactioin of the corresponding carboxylic acid and ammonium hydroxide

5. A process as defined in claim 1, further comprising the addition of a reducing agent.

6. A process ;ιs defined in claim 5, wherein the reducing agent is an inoganic or organic compound.

7- A process as defined in claim 6, wherein the organic acid is a food-grade organic

COt)IpOVIlKl,

8. A process as defined in claimi 7, wherein the food-grade organic compound is ascorbic acid.

9. A process for forming a metal carboxylatc and a by-product salt using an acid-base- like reaction, comprising the step of combining in aqueous solution a water-soluble salt having a carboxylate anion and a by-product ammonium cation and a water-soluble salt having a metal enlion and a by-product anion.

10. A process as de fined in claim 9 , , further comprising the step of adjusting the temperature of the reaction from an initial high temperature to a low temperature so that products precipitate out oftho solution.

11. A process as defined in claim 9, wherein tlic by-product anion is selected from lha group consisting of chloride, iodide, sulphate, and phosphate.

12. A process as defined in claim 9, further comprising the slep of adding a reducing agent to the solution.

JJ. A process as defined in claim 12, wherein the organic acid is a food-grade organic compound.

14. A process as defined in claim 13, wherein (the food-grade organic compound is ascorbie acid.

15. A diet ary supplement comprising a filtrate formed by filtering a product formed by the process of claim 1.

16. A dietaryy supplement comprising a produιct formed by (he process υf claim 1 applied to a dry a non-toxic silen , mineral, or cla based carriers, such as silica, vermicυlifc, b entonite or kaolinite

Description:

METAL CARBOXYLATE SALTS

Background of the Invention

[00011 The invention relates generally to dietary sources of metals and carboxylates and, more specifically, to a method for the production of metal carboxylate and its use as a source of dietary supplement.

[00021 Dietary minerals, including iron, copper, manganese, magnesium, selenium, and zinc, are essential trace elements in human and animal nutrition and the deficiency of one or more of these minerals is a common nutritional problem. However, the absorption of many of these minerals in the biological system is significantly higher if offered from an organic source. Organic minerals in the form of metal carboxylates are proven to have superior bioavailability in the biological system.

[00031 Bertsch et al. and Martinez et al. (United States Patent No. 2,848,366; British Patent 1,328,494) reported the prepration of ferrous fumarate, in which the preferred water- soluble fumaric salt, sodium fumarate was reacted with the preferred water-soluble ferrous salt, ferrous sulphate at high temperature (70 °C to 94 °C), in a displacement reaction to produce ferrous fumarate.

[00041 Other prior arts approches involving the preparation of iron carboxylate salts include classical acid-base reaction (United States Patents No. 5,795,615; United States Patents No. 5,591,878; United States Patent No. 4,700,000), and oxidation reaction (United States Patent No. 2,904,573).

[00051 In the reported prior art processes which utilize the classical acid-base neutralization reaction, the acid component, carboxylic acid, was reacted with the base component, a basic metal salt of carbonate, hydroxide, or oxide, to produce metal carboxylate.

[00061 In the reported prior art process which utilizes the oxidation reaction, powdered iron is heated with a monoferrous acid citrate to produce the desired ferrous citrate complex, accompanied with an increase in the oxidation state of iron from 0 to 2+, corresponding to an oxidation of iron to ferrous iron, respectively.

[00071 The present invention discloses a process for the preparation of metal carboxylates utilizing a different approach from those of the reported prior art. An acid-base-like reaction route is utilized in the preparation of metal carboxylate, in which the acid and base properties of the starting materials are different from those previously reported in prior arts, for example, United States Patents No. 5,795,615, United States Patents No. 5,591,878, and United States Patent No. 4,700,000.

[0008] The basic component used in the present invention is an ammonium salt of carboxylate and the acid component is a metal salt having the property of a Lewis acid, and the reaction proceeds at controlled temperatures.

Summary of the Invention

F00091 The present invention discloses an efficient and safe process for the preparation of metal carboxylates, which process proceeds at carefully controlled temperatures. [00101 The instrinsic chemical characteristic and hence the function of the starting materials in the present disclosure uses a different approach from those of the prior art. In addition, the reaction conditions, such as the reaction temperature, have been carefully optimized to give preferred results.

[00111 The invention consists of the use of an acid-base-like reaction to make metal carboxylates. A basic ammonium salt of a carboxylate and a water-soluble metal salt of Lewis acid property are combined and allowed to react at room temperature initially, followed by reaction at a reduced temperature wherein the metal carboxylate is formed. [00121 An excess molar ratio of carboxylic acid is added to ammonium hydroxide and the mixture is allowed to react, which results in the formation of the basic ammonium salt of the carboxylate. The water-soluble metal salt is added to the ammonium carboxylate base and the mixture is allowed to react at controlled temperatures, resulting in the formation of the metal carboxylate.

[0013] In the case of iron, a reducing agent may be added to the reaction mixture to prevent the rapid oxidation of ferrous, Fe(II) to ferric, Fe(III), when a water-soluble ferrous salt is used.

[00141 In a preferred embodiment, the basic ammonium salt of carboxylate is a water- soluble ammonium carboxylate salt and the water-soluble metal salt of Lewis acid property is a metal chloride.

Brief Description of the Drawings

[0015] Fig. 1 is the X-ray diagram of iron propionate prepared from the present process. [00161 Fig. 2 is a chart of the Fourier transform infrared (FTIR) spectrum of iron propionate prepared from the present process.

[00171 Fig. 3 is the X-ray diagram of copper propionate prepared from the present process.

[00181 Fig. 4 is the X-ray diagram of manganese propionate prepared from the present process.

Detailed Description of Preferred Embodiments f0019] The present invention relates to the preparation of metal carboxylates. The carboxylate component being the carboxylate moiety of the straight-chain monocarboxylic or polycarboxylic acid possessing 1 to 20 carbon atoms. The metal component is a water-soluble metal salt of Lewis acid property, with oxidation state of 2+ and 3+, corresponding to divalent and trivalent metal, respectively.

[0020] The proposed reaction mechanism between the ammonium carboxylate salt and divalent and trivalent metal salt are given below.

[00211

[00221

[00231 The approach taken in the present invention is different from those reported in prior art. For example, the carboxylate and metal components in the present invention are basic and acidic in property, respectively, contrary with those reported in the prior art. The carboxylate used in the present invention is the basic ammonium salt of straight-chain monocarboxylate or polycarboxylate possessing 1 to 20 carbon atoms. The metal used in the present invention is water-soluble divalent or trivalent metal salt of Lewis acid property. [00241 The process involves reacting a carboxylic acid in excess molar ratio with ammonium hydroxide, resulting in the formation of the basic ammonium salt of the carboxylate. The water-soluble metal salt is added to the ammonium carboxylate base and the mixture is allowed to react at room temperature in the initial period, followed by reaction at a lower temperature in a chiller.

[00251 The temperature is carefully controlled through out the process in the present invention, in which at the reaction was carried out at room temperature (22-30 °C) in the initial period, followed by reaction at lower temperature (0-16 °C). [00261 A reducing agent maybe also added in the reaction mixture to prevent the rapid oxidation of divalent metal (M 2+ ) to trivalent metal (M 3+ ), when an easily oxidized divalent metal is used, such as ferrous salt.

[00271 The products of the present invention have applicability as sources of metal in dietary supplements for humans and other animals. Accordingly, it is preferred that the

starting materials, as well as the by-product are acceptable for consumption at the levels it is present in the completed reaction either before or after purification step. [00281 The preferred embodiment of the present invention uses the ammonium salt of carboxylate as the basic carboxylate salt. The carboxylates component being the carboxylate moiety of the straight-chain monocarboxylic or polycarboxylic acid possessing 1 to 20 carbon atoms, such as formic acid, acetic acid, propionic acid, 2-hydroxypropanoic acid, eicosapentaenoic acid, benzoic acid, 2-hydroxy-l,2,3-propanetricarboxylic acid, 1,2- ethanedicarboxylic acid, trans- 1,2-ethenedicarboxylic acid, and hydroxybutanedioic acid. [0029] While the metal chloride is the preferred water-soluble divalent or trivalent metal salt of Lewis acid property, other metal salts can be used, such as metal iodide, metal sulphate, and metal phosphate.

[00301 Additionally, the preferred water-soluble salt of Lewis acid property is divalent and trivalent, such as Fe(II), Fe(III), Mg(II), Cu(II), Zn(II), Cr(III), Co(IT), Co(IH), Mn(II), Mo(II), Mo(III), Ca(II), and Sn(II).

[00311 A reducing agent can be added to the reaction mixture to help prevent the oxidation of metal from oxidation state of 2+ to 3+, when divalent metal is used. While any compatible reducing agent could be used, such as many inorganic and organic compounds, food-grade organic compounds are preferred, including sodium metabisulfite and, in particular, ascorbic acid, in that ascorbic acid is believed to improve the bioavailability of iron in dietary supplements, one of the important applications of the products of the present invention.

[00321 The products of the present process may be administered as liquid dietary supplements, preferably by first passing the solution through a filter to remove any particulates. Alternatively, the products may be applied to a non-toxic silica, mineral, or clay based carriers, such as silica, vermiculite, bentonite or kaolinite, to produce a dry dietary supplement. The product may or may not be filtered prior to application to the carrier.

Example 1

[00331 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3:1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and a ferrous chloride solution (prepared from ferrous chloride solid and water), in a relative molar ratio of 2.1:1 were mixed together. To this mixture 10% w/w of 10% ascorbic acid solution was added and the reaction was allowed to

proceed at room temperature in the initial period. The reaction was allowed to proceed at lower temperature (below 16 0 C). Both the desired product and the by-product, which are iron propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 2

[0034] Pure propionic acid and ammonium hydroxide solution (27%) in 1.3:1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionic, the basic component in the present invention. Ammonium propionate prepared from the previous step and ferrous chloride solution (prepared from ferrous chloride solid and water), in a relative molar ratio of 2.1:1 were mixed together. To this mixture 10% w/w of 10% sodium metabisulfite solution was added to prevent the oxidation of ferrous to ferric form. The reaction was allowed to proceed at room temperature in the initial period. The reaction was than proceed at lower temperature (below 16 0 C). Both the desired product and the by-product, which are iron propionate and ammonium chloride, respectively precipitated out from the reaction solution.

Example 3

ϊ00351 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3:1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and magnesium chloride solution (prepared from magnesium chloride solid and water), in a relative molar ratio of 2.1 : 1 were mixed together and the reaction was allowed to proceed at room temperature in the initial period. The reaction was than proceed at lower temperature (between 0 °C and 16 °C). Both the desired product and the by-product, which are magnesium propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 4

[00361 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3:1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and copper chloride solution (prepared from copper chloride solid and water), in a relative molar ratio of 2.1 : 1 were mixed together and the reaction was allowed to proceed at room temperature in the initial period. The reaction was than proceed at lower temperature (between 0 0 C and 16 0 C). Both the desired product and the by-product,

which are copper propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 5 f 00371 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3 : 1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and manganese chloride solution (prepared from manganese chloride solid and water), in a relative molar ratio of 2.1:1 were mixed together and the reaction was allowed to proceed at room temperature in the initial period. The reaction was than allowed to proceed at lower temperature (between 0 °C and 16 °C). Both the desired product and the by-product, which are manganese propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 6

[00381 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3 : 1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and zinc chloride solution (prepared from zinc chloride solid and water), in a relative molar ratio of 2.1 : 1 were mixed together and the reaction was allowed to proceed at room temperature in the initial period. The reaction was than allowed to proceed at lower temperature (between 0 0 C and 16 °C). Both the desired product and the byproduct, which are zinc propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 7 f 00391 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3:1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and cobalt chloride solution (prepared from cobalt chloride solid and water), in a relative molar ratio of 2.1 : 1 were mixed together and the reaction was allowed to proceed at room temperature in the initial period. The reaction was than proceed at lower temperature (between 0 0 C and 16 °C). Both the desired product and the by-product, which are cobalt propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 8

[00401 Pure propionic acid and ammonium hydroxide solution (27%) in 1.3 : 1 molar ratio, respectively, were allowed to react at room temperature, which resulted in the formation of ammonium propionate, the basic component in the present invention. Ammonium propionate prepared from the previous step and chromium chloride solution (prepared from chromium chloride solid and water), in a relative molar ratio of 2.1 : 1 were mixed together and the reaction was allowed to proceed at room temperature in the initial period. The reaction was allowed to proceed at lower temperature (between 0 0 C and 16 0 C). Both the desired product and the by-product, which are chromium propionate and ammonium chloride, respectively, precipitated out from the reaction solution.

Example 9

[00411 The iron propionate from example 1 was crystallized from the reaction solution and was subjected to X-ray crystallography analysis. A total of 26704 reflections were collected by the φ and ω scans up to θ max of 27.50° on a CCD area detector at 295 K using MoK « (λ = 0.717073 A) radiation. The crystal dimensions are 0.54 x 0.32 x 0.24 mm. A total of 8810 reflections with/> 2σ(i) were observed. The structure was solved using SHELX-97 software. All non-hydrogen atoms were refined anisotropically by full matrix least squares refinement to R = 0.0540, wR = 0.1242 for the observed reflections, w = fc/(F 0 2 ) + (0.0663P) 2 + F 5 J '1 , where P = (F 0 2 + 2F c 2 )/3. The crystal structure is given in Fig. 1. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of the iron propionate is given in Fig. 2.

[0042] The ammonium chloride from example 1 was crystallized from the reaction solution. The X-ray powder database confirmed the molecular integrity of the ammonium chloride crystal.

[00431 The copper propionate from example 4 was crystallized from the reaction solution. Single crystal x-ray diffraction analysis gave the crystal structure of copper propionate as in Fig. 3.

[00441 The manganese propionate from example 1 was crystallized from the reaction solution and the crystal structure is given in Fig. 4.

Example 10

[0045] A variety of dry and liquid finished products can be made following the teachings of the present invention. The preferred embodiment of the process involves three primary steps: (i) Preparing the ammonium propionate by neutralization of propionic acid with ammonium hydroxide; (ii) preparing of the iron propionate by reacting the ammonium propionate and ferrous chloride in the presence of ascorbic acid in an optimized temperature system; and (iii) preparing the dry product by spraying the liquid product on a carrier. [0046] In the first step 1.3 molar equivalent of propionic acid was admixed with 1 molar equivalent of ammonium hydroxide at room temperature. The resulting ammonium propionate was mixed with aqueous ferrous chloride solution in 2.1 : 1 molar ratio, respectively, and aqueous ascorbic acid solution. The reactants are allowed to react at room temperature in the initial period. The reaction was than allowed to proceed at lower temperature (between 0 0 C and 16 0 C). To make the liquid product, the reaction mixture may be filtered and the supernatant packaged or alternatively the reaction mixture is packaged directly. The dry product is made by mixing 1.9 parts of reaction mixture (liquid product without filtration), 1 part of carrier and 0.19 part of ascorbic acid. These ingredients are mixed in a ribbon blender until a uniform blend is achieved.

[00471 The present invention discloses a process to produce metal carboxylates. The process approach taken in the present invention is different from those reported in prior art in many aspects. The foregoing description and drawings comprise illustrative embodiments of the present inventions. The foregoing embodiments and the methods described herein may vary based on the ability, experience, and preference of those skilled in the art. Merely listing the steps of the method in a certain order does not constitute any limitation on the order of the steps of the method. The foregoing description and drawings merely explain and illustrate the invention, and the invention is not limited thereto, except insofar as the claims are so limited. Those skilled in the art that have the disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention.