Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METAL COMPOSITION
Document Type and Number:
WIPO Patent Application WO/2020/025413
Kind Code:
A1
Abstract:
The invention refers to a metal composition. Furthermore, the invention refers to a method for additive manufacturing using such metal composition. Furthermore, the invention refers to the use of such metal composition.

Inventors:
HEINZE CHRISTOPH (DE)
JOKISCH TORSTEN (DE)
OTT MICHAEL (DE)
STÖHR BRITTA (DE)
Application Number:
EP2019/069882
Publication Date:
February 06, 2020
Filing Date:
July 24, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
International Classes:
C22C1/04; B22F3/00; B22F3/105; B33Y70/00; C22C32/00
Domestic Patent References:
WO2016012399A12016-01-28
Foreign References:
EP2886225A12015-06-24
EP3345699A12018-07-11
EP2589449A12013-05-08
EP2586887A12013-05-01
Other References:
INCO: "Technical Data ALLOY IN-738 TECHNICAL DATA", 24 June 2002 (2002-06-24), XP055589567, Retrieved from the Internet [retrieved on 20190516]
L. RICKENBACHER ET AL: "High temperature material properties of IN738LC processed by selective laser melting (SLM) technology", RAPID PROTOTYPING JOURNAL, 1 January 2013 (2013-01-01), Bradford, pages 282 - 290, XP055109051, Retrieved from the Internet [retrieved on 20190206], DOI: 10.1108/13552541311323281
HOLT R T: ""Impurities and Trace Elements in "Nickel-Base Superalloys"", INTERNATIONAL METALS REVIEW, METALS SOCIETY, LONDON, GB, vol. 21, no. 1, 1 March 1976 (1976-03-01), pages 1 - 24, XP009173776, ISSN: 0308-4590, DOI: 10.1179/IMTR.1976.21.1.1
Download PDF:
Claims:
Patent claims

1. Metal composition consisting of:

- 7.7 wt.-% to 9.3 wt.-% Co,

- 15.5 wt.-% to 16.6 wt.-% Cr,

- 0.001 wt.-% to 0.13 wt.-% Fe,

- 0 wt.-% to 0.02 wt.-% Mn,

- 1.3 wt.-% to 2.2 wt.-% Mo,

- 2.1 wt.-% to 3.1 wt.-% W,

- 3 wt.-% to 4.22 wt.-% Al,

- 3 wt.-% to 4 wt.-% Ti,

- 0.45 wt.-% to 1.35 wt.-% Nb,

- 0.9 wt.-% to 1.6 wt.-% Ta,

- 0.001 wt.-% to 0.8 wt.-% Hf,

- 0 wt.-% to 0.05 wt.-% Si,

- 0 wt.-% to 0.01 wt.-% P,

- 0 wt.-% to 0.01 wt.-% S,

- 0 wt.-% to 0.31 wt.-% 0,

- 0 wt.-% to 0.01 wt.-% N,

- 0.03 wt.-% to 0.15 wt.-% C,

- 0 wt.-% to 0.03 wt.-% Zr,

- 0.004 wt.-% to 0.015 wt.-% B,

- 0 wt.-% to 1.06 wt.-% Y,

- incidental impurities,

- rest nickel,

based on the total weight of the metal composition.

2. Metal composition according to claim 1, wherein the met al composition contains oxide particles selected from the group consisting of Y2O3 particles and YAIO3 particles.

3. Metal composition according to any of claims 1 to 2, wherein the metal composition contains:

- 3 wt.-% to 4.22 wt.-% Al, 0 wt.-% to 0.31 wt.-% 0 and 0 wt.-% to 1.06 wt.-% Y,

wherein at least 30 wt.-%, more preferred at least 50 wt.-%, even more preferred at least 80 wt.-%, of the

Y is part of metal oxide particles.

4. Metal composition according to any of claims 1 to 2, wherein the metal composition contains:

- 3 wt.-% to 4.22 wt.-% Al,

- 0 wt.-% to 0.31 wt.-% 0,

- 0 wt.-% to 1.06 wt.-% Y,

or wherein at least 30 wt.-% of the Y is part of metal oxide particles .

5. Metal composition according to any of claims 1 to 4, wherein the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.5 wt.-% to 2 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.2 wt.-% to 3.87 wt.-% Al,

- 3.2 wt.-% to 3.7 wt.-% Ti,

- 0.6 wt.-% to 1.1 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.005 wt.-% to 0.6 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.24 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.06 wt.-% to 0.1 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.81 wt.-% Y,

- incidental impurities

- rest nickel,

based on the total weight of the metal composition.

6. Metal composition according to any of claims 1 to 5, wherein the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co, - 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.55 wt.-% to 1.9 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.3 wt.-% to 3.67 wt.-% Al,

- 3.2 wt.-% to 3.3 wt.-% Ti,

- 0.7 wt.-% to 0.9 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.05 wt.-% to 0.2 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.24 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.07 wt.-% to 0.9 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.81 wt.-% Y,

- incidental impurities

- rest nickel,

based on the total weight of the metal composition.

7. Metal composition according to any of claims 1 to 6, wherein the metal composition consists of:

- 7.7 wt.-% to 9.3 wt.-% Co,

- 15.5 wt.-% to 16.6 wt.-% Cr,

- 0.001 wt.-% to 0.13 wt.-% Fe,

- 0 wt.-% to 0.02 wt.-% Mn,

- 1.3 wt.-% to 2.2 wt.-% Mo,

- 2.1 wt.-% to 3.1 wt.-% W,

- 3 wt.-% to 4 wt.-% Al,

- 3 wt.-% to 4 wt.-% Ti,

- 0.45 wt.-% to 1.35 wt.-% Nb,

- 0.9 wt.-% to 1.6 wt.-% Ta,

- 0.001 wt.-% to 0.8 wt.-% Hf,

- 0 wt.-% to 0.05 wt.-% Si,

- 0 wt.-% to 0.01 wt.-% P, 0 wt.-% to 0.01 wt.-% S,

0 wt.-% to 0.025 wt.-% 0,

0 wt.-% to 0.01 wt.-% N,

- 0.03 wt.-% to 0.15 wt.-% C,

- 0 wt.-% to 0.03 wt.-% Zr,

- 0.004 wt.-% to 0.015 wt.-% B,

- 0 wt.-% to 0.03 wt.-% Y,

- incidental impurities

- additionally to the above mentioned components up to 1.3 wt.-% metal oxide particles selected from the group consisting of Y2O3 and YAIO3,

- rest nickel,

based on the total weight of the metal composition.

8. Metal composition according to claim 7, wherein at least 90 wt.-% of the metal oxide particles are Y2O3 particles.

9. Metal composition according to any of claims 1 to 8, wherein the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.5 wt.-% to 2 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.2 wt.-% to 3.7 wt.-% Al,

- 3.2 wt.-% to 3.7 wt.-% Ti,

- 0.6 wt.-% to 1.1 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.005 wt.-% to 0.6 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.02 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.06 wt.-% to 0.1 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B, - 0.001 wt.-% to 0.02 wt.-% Y,

- incidental impurities

- additionally to the above mentioned components up to

1 wt.-% metal oxide particles selected from the group consisting of Y2O3 and YAIO3,

- rest nickel,

based on the total weight of the metal composition.

10. Metal composition according to any of claims 1 to 9, wherein the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.55 wt.-% to 1.9 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.3 wt.-% to 3.5 wt.-% Al,

- 3.2 wt.-% to 3.3 wt.-% Ti,

- 0.7 wt.-% to 0.9 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.05 wt.-% to 0.2 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.02 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.07 wt.-% to 0.09 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.02 wt.-% Y,

- incidental impurities

- additionally to the above mentioned components up to

1 wt.-% metal oxide particles selected from the group consisting of Y2O3 and ceramic particles, preferably AI2O3, and SiCy, more preferred from the group consisting of Y2O3, AI2O3 and Si02,

- rest nickel,

based on the total weight of the metal composition.

11. Metal composition according to any of claims 1 to 10, wherein the metal composition contains no metal oxide parti cles .

12. Method for additive manufacturing, preferably 3D- printing, using a metal composition according to any of claims 1 to 11. 13. Product containing a metal composition according to any of claims 1 to 11, or manufactured from a metal composition according to any of claims 1 to 11, or manufactured according to a method according to claim 12. 14. Product according to claim 13, wherein the product is selected from the group consisting of vanes, blades, heat shields and burners of a streaming engine.

15. Use of a metal composition according to any of claims 1 to 11 for additive manufacturing.

Description:
Description

Metal composition

The invention refers to a metal composition. Furthermore, the invention refers to a method of manufacturing using said met al composition. Furthermore, the present invention refers to a use of said metal composition.

Metals are highly important materials used in modern indus try. This is true despite some people limiting their view to certain materials like plastics that became an essential part of modern life in the past decades metal is and will remain the backbone of modern life. Herein, the metals are almost essentially used in form of their alloys to provide charac teristics tailored specifically to the corresponding needs. The area of alloys is continuously point of further develop ments even on established working fields.

Herein, the area of 3D-printing started to provide a new way of building parts like spare parts. This flexible yet highly exact manufacturing method, however, provides new challenges that have to be solved to provide the products requested. For example, the layerwise build-up process results in problems as established materials for known applications might not al ways perform as well as they do using established production processes used in this context. Herein, such problem becomes of special interest for high performance applications like the use in streaming engines.

The research, for example, within the area of streaming en gines already resulted in a great number of different alloys to address the specific needs in this context. However, the additive manufacturing methods, especially 3D-printing, re quired some additional review to ensure that the specific needs like high reliability under extreme conditions are also addressed when using known metal compositions for such new method of manufacturing. For example, the melting process of the metal composition in a process like SLM differs from the melting of a typically employed casting process as used for, for example, vanes, blades and heat shields. To this point specifically adapting and optimizing the production process parameters might be used to minimize or even negate negative effects of this production method using commonly available alloys. However, it would be very beneficial, if common pro duction parameters could be used for production process with out requiring specifically adapting the process to the spe cifics of each part or at least reducing such required adap tions .

This problem is solved by the products, methods and uses as disclosed hereafter and in the claims. Further beneficial em bodiments are disclosed in the dependent claims and the fur ther description. These benefits can be used to adapt the corresponding solution to specific needs or to solve further problems .

According to an aspect the invention refers to a nickel based metal composition comprising:

- 7.7 wt.-% to 9.3 wt.-% Co,

- 15.5 wt.-% to 16.6 wt.-% Cr,

- 0.001 wt.-% to 0.13 wt.-% Fe,

- 0 wt.-% to 0.02 wt.-% Mn,

- 1.3 wt.-% to 2.2 wt.-% Mo,

- 2.1 wt.-% to 3.1 wt.-% W,

- 3 wt.-% to 4.22 wt.-% Al,

- 3 wt.-% to 4 wt.-% Ti,

- 0.45 wt.-% to 1.35 wt.-% Nb,

- 0.9 wt.-% to 1.6 wt.-% Ta,

- 0.001 wt.-% to 0.8 wt.-% Hf,

- 0 wt.-% to 0.05 wt.-% Si,

- 0 wt.-% to 0.01 wt.-% P,

- 0 wt.-% to 0.01 wt.-% S,

- 0 wt.-% to 0.31 wt.-% 0,

- 0 wt.-% to 0.01 wt.-% N,

- 0.03 wt.-% to 0.15 wt.-% C, - 0 wt.-% to 0.03 wt.-% Zr,

- 0.004 wt.-% to 0.015 wt.-% B,

- 0 wt.-% to 1.06 wt.-% Y,

- incidental impurities,

- Nickel,

based on the total weight of the metal composition. Typically it is preferred that the amount of Nickel is at least 35 wt . - %, more preferred at least 45 wt.-%, even more preferred at least 50 wt.-%.

According to an aspect the invention refers to a metal compo sition consisting of:

- 7.7 wt.-% to 9.3 wt.-% Co,

- 15.5 wt.-% to 16.6 wt.-% Cr,

- 0.001 wt.-% to 0.13 wt.-% Fe,

- 0 wt.-% to 0.02 wt.-% Mn,

- 1.3 wt.-% to 2.2 wt.-% Mo,

- 2.1 wt.-% to 3.1 wt.-% W,

- 3 wt.-% to 4.22 wt.-% Al,

- 3 wt.-% to 4 wt.-% Ti,

- 0.45 wt.-% to 1.35 wt.-% Nb,

- 0.9 wt.-% to 1.6 wt.-% Ta,

- 0.001 wt.-% to 0.8 wt.-% Hf,

- 0 wt.-% to 0.05 wt.-% Si,

- 0 wt.-% to 0.01 wt.-% P,

- 0 wt.-% to 0.01 wt.-% S,

- 0 wt.-% to 0.31 wt.-% 0,

- 0 wt.-% to 0.01 wt.-% N,

- 0.03 wt.-% to 0.15 wt.-% C,

- 0 wt.-% to 0.03 wt.-% Zr,

- 0.004 wt.-% to 0.015 wt.-% B,

- 0 wt.-% to 1.06 wt.-% Y,

- incidental impurities,

- rest nickel, preferably at least 54 wt.-% Ni, more pre ferred at least 55 wt.-% Ni,

based on the total weight of the metal composition. According to another aspect the present invention refers to a method for additive manufacturing, preferably 3D-printing, using an inventive metal composition.

According to another aspect the invention refers to a product containing an inventive metal composition, or manufactured from an inventive metal composition, or manufactured accord ing to an inventive method according.

According to another aspect the invention refers to a use of an inventive metal composition for additive manufacturing, preferably 3D-printing.

To simplify understanding of the present invention it is re ferred to the detailed description hereafter. However, the invention is not to be understood being limited to these pre ferred embodiments as they represent embodiments providing additional benefits to solve specific problems or fulfilling specific needs. The scope of protection should be understood to be only limited by the claims attached.

According to one aspect the present invention refers to an alloy as described above. Surprisingly, the inventive alloy provides at least a greatly simplified production process re quiring little to no adaptions of the production procedure to process the alloys while maintaining their excellent proper ties being essential, for example, for their use in streaming engines. As such applications have high requirements like high reliability of the parts used therein like vanes and blades, simplifying such production procedure also reducing the amount of required adaptions simultaneously reduces the risks resulting from new designs and, thus, also increases safety and opens the possibility to further optimize the de sign of corresponding parts.

According to further embodiments of the present invention it is preferred that the amount of Mn is less than 0.01 wt.-%, based on the total weight of the metal composition. Such al- loys typically provided a more generic applicability of these alloys in additive manufacturing.

According to further embodiments of the present invention it is preferred that the metal composition contains

- 1.5 wt.-% to 2.0 wt.-%, more preferred 1.55 wt.-% to

1.9 wt.-%, even more preferred around 1.7 wt.-%, Mo, and/or

- 1.5 wt.-% to 2.0 wt.-% W,

based on the total weight of the metal composition. Typical ly, it is preferred that both components are selected from the aforementioned ranges in the inventive metal composi tions, especially its alloys. Especially in this case the re sulting products typically provide a significantly increased overall stability.

According to further embodiments of the present invention it is preferred that the metal composition contains

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe, and/or

- 0.06 wt.-% to 0.1 wt.-%, more preferred 0.07 wt.-% to 0.09 wt . -% , C,

based on the total weight of the metal composition. Typical ly, it is preferred that all of the aforementioned components of the inventive metal compositions are selected according to these ranges. Such metal compositions typically provide, for example, an improved applicability and increased resistance.

According to further embodiments of the present invention it is preferred that the metal composition contains

- 0 wt.-% to 0.02 wt.-% 0, and/or

- 0 wt.-% to 0.005 wt.-% N,

based on the total weight of the metal composition. Typical ly, it is especially preferred that the oxygen and nitrogen content of the inventive metal composition are selected ac cording to the aforementioned ranges. It was noted that espe cially products manufactured by 3D printing using such metal compositions typically provided a more reliable high quality. For example, they seem to provide a lower chance of cracks even without optimizing the layerwise production scheme.

According to further embodiments of the present invention it is preferred that the metal composition contains

- 3.2 wt.-% to 3.87 wt.-% Al,

- 3.2 wt.-% to 3.7 wt.-% Ti,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.005 wt.-% to 0.6 wt.-%, more preferred 0.05 wt.-% to 0.2 wt . -% , Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.005 wt.-% N,

- 0.001 wt.-% to 0.02 wt.-% Zr, and/or

- 0.007 wt.-% to 0.012 wt.-% B,

based on the total weight of the metal composition. Typical ly, it is preferred that at least 3, more preferred at least 5, even more preferred all, of the aforementioned components of the inventive metal compositions are selected according to the aforementioned ranges. Such metal compositions typically especially provided an improved behavior of the metal melt as being especially important, for example, for 3D-printing man ufacturing processes like selective laser melting or electron beam melting.

Unless explicitly specified otherwise the wt.-% of the compo nents of a metal composition as specified herein consisting of multiple components preferably amount to 100 wt.-% based on all components contained therein, whether these components are explicitly mentioned or not. Embodiments disclosing more specific ranges for a limited number of these components are only to limit the ranges of these specific components, while the wt.-% of the amounts of all components of such more re stricted metal composition should still amount to 100 wt.-% also after including the more specific ranges of such specif ic embodiments. The term "incidental impurities" as used herein refers to ad ditional components of the metal composition resulting from especially impurities of the base materials used to produce the metal composition. For example technical grade metals typical include small amounts impurities of other metals not influencing, preferably at least not negatively influencing, the properties of the resulting alloy. In this context, it is especially referred to the alloy resulting from processing the inventive metal composition using the additive manufac turing process as disclosed herein resulting, for example, from melting the metal composition by a laser used during se lective laser melting. Typically, it is preferred that such incidential impurities amount up to 1 wt.-%, more preferred up to 0.6 wt.-%, even more preferred up to 0.4 wt.-%, based on the total weight of the metal composition. Additionally or alternatively it is in further embodiments preferred that the amount of each of such incidental impurity is at most

0.2 wt.-%, more preferred at most 0.13 wt.-%, even more pre ferred at most 0.1 wt.-%, based on the total weight of the metal composition.

According to further embodiments of the present invention it is preferred that the metal composition contains oxide parti cles selected from the group consisting of Y 2 O 3 particles and YAIO 3 particles. Such particles typically increase the over all strength of the product resulting from said metal compo sition.

According to further embodiments of the present invention it is preferred that the metal composition contains:

- 3 wt.-% to 4.22 wt.-% Al, 0 wt.-% to 0.31 wt.-% 0 and 0 wt.-% to 1.06 wt.-% Y,

- more preferred 3.2 Wt.-% to 3.87 wt.-% Al, 0 wt.-% to 0.24 wt.-% 0, and 0 wt.-% to 0.81 wt.-% Y,

- even more preferred 3.2 wt.-% to 3.47 wt.-% Al, 0 wt.-% to 0.24 wt.-% 0 and 0 wt.-% to 0.81 wt.-% Y, wherein at least 30 wt.-%, more preferred at least 50 wt.-%, even more preferred at least 80 wt.-%, of the Y is part of metal oxide particles.

According to further embodiments of the present invention it is preferred that the metal composition comprises:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.5 wt.-% to 2 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.2 wt.-% to 3.87 wt.-% Al,

- 3.2 wt.-% to 3.7 wt.-% Ti,

- 0.6 wt.-% to 1.1 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.005 wt.-% to 0.6 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.24 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.06 wt.-% to 0.1 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.81 wt.-% Y,

- incidental impurities

- Nickel,

based on the total weight of the metal composition. Typically it is preferred that the amount of Nickel is at least 38 wt . - %, more preferred at least 49 wt.-%, even more preferred at least 55 wt.-%. Such alloy typically provided especially ben eficial results for providing components of a streaming en gine being used in the fluid stream.

According to further embodiments of the present invention it is preferred that the metal composition contains at least 0.005 wt.-% Fe and/or at least 0.005 wt.-% Hf. Such metal compositions typically provide an improved processability for additive manufacturing.

An especially beneficial metal composition typically provid ing very good results for 3D-printing production processes is listed below. This metal composition provided, for example, excellent results for selective laser melting and selective laser sintering manufacturing processes. According to further embodiments of the present invention it is preferred that the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.5 wt.-% to 2 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.2 wt.-% to 3.87 wt.-% Al,

- 3.2 wt.-% to 3.7 wt.-% Ti,

- 0.6 wt.-% to 1.1 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.005 wt.-% to 0.6 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.24 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.06 wt.-% to 0.1 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.81 wt.-% Y,

- incidental impurities

- rest nickel, preferably at least 57 wt.-% Ni, more pre ferred at least 58 wt.-% Ni,

based on the total weight of the metal composition. It is typically preferred that the incidential impurities amount up to 1 wt.-%, more preferred up to 0.6 wt.-%, even more pre ferred up to 0.4 wt.-%. According to further embodiments of the present invention it is preferred that the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.55 wt.-% to 1.9 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.2 wt.-% to 3.67 wt.-% Al,

- 3.2 wt.-% to 3.3 wt.-% Ti,

- 0.7 wt.-% to 0.9 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.05 wt.-% to 0.2 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.24 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.07 wt.-% to 0.09 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.81 wt.-% Y,

- incidental impurities

- rest nickel, preferably at least 58 wt.-% Ni, more pre ferred at least 59 wt.-% Ni,

based on the total weight of the metal composition.

Typically, it was further especially preferred that certain components are included in the metal composition in the form of oxide particles, while reducing the amount of other ox ides. These stable oxide particles seem to increase the over all strength while being at least not completely melted or dissolved under typical manufacturing conditions. According to further embodiments of the present invention it is pre ferred that the metal composition consists of:

- 7.7 wt.-% to 9.3 wt.-% Co,

- 15.5 wt.-% to 16.6 wt.-% Cr,

- 0.001 wt.-% to 0.13 wt.-% Fe, - 0 wt.-% to 0.02 wt.-% Mn,

- 1.3 wt.-% to 2.2 wt.-% Mo,

- 2.1 wt.-% to 3.1 wt.-% W,

- 3 wt.-% to 4 wt.-% Al,

- 3 wt.-% to 4 wt.-% Ti,

- 0.45 wt.-% to 1.35 wt.-% Nb,

- 0.9 wt.-% to 1.6 wt.-% Ta,

- 0.001 wt.-% to 0.8 wt.-% Hf,

- 0 wt.-% to 0.05 wt.-% Si,

- 0 wt.-% to 0.01 wt.-% P,

- 0 wt.-% to 0.01 wt.-% S,

- 0 wt.-% to 0.025 wt.-% 0,

- 0 wt.-% to 0.01 wt.-% N,

- 0.03 wt.-% to 0.15 wt.-% C,

- 0 wt.-% to 0.03 wt.-% Zr,

- 0.004 wt.-% to 0.015 wt.-% B,

- 0 wt.-% to 0.03 wt.-% Y,

- incidental impurities

- additionally to the above mentioned components up to

1.3 wt.-% metal oxide particles selected from the group consisting of Y2O3 and YAIO3, more preferred from the group consisting of Y2O3,

- rest nickel, preferably at least 54 wt.-% Ni, more pre ¬ ferred at least 55 wt.-% Ni,

based on the total weight of the metal composition.

According to further embodiments of the present invention it is preferred that at least 90 wt.-%, more preferred 98 wt.-%, even more preferred at least 99 wt.-%, of the metal oxide particles are Y2O3 particles. It was noted that these parti ¬ cles are especially useful for typical applications like se ¬ lective laser melting.

A further especially beneficial metal composition typically providing very good results for 3D-printing production pro cesses is listed below. Herein, the alloy resulting from the specified components optionally including metal oxide parti ¬ cles typically provided especially beneficial results for highly stressed components used, for example, in gas tur bines. According to further embodiments of the present inven tion it is preferred that the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn,

- 1.5 wt.-% to 2 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.2 wt.-% to 3.7 wt.-% Al,

- 3.2 wt.-% to 3.7 wt.-% Ti,

- 0.6 wt.-% to 1.1 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.005 wt.-% to 0.6 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.02 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.06 wt.-% to 0.1 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.02 wt.-% Y,

- incidental impurities

- additionally to the above mentioned components up to

1 wt.-% metal oxide particles selected from the group consisting of Y 2 O 3 and YAIO 3 , more preferred from the group consisting of Y 2 O 3,

- rest nickel, preferably 57 wt.-% Ni, more preferred at least 58 wt.-% Ni,

based on the total weight of the metal composition.

According to further embodiments of the present invention it is preferred that the metal composition consists of:

- 8 wt.-% to 9 wt.-% Co,

- 15.7 wt.-% to 16.3 wt.-% Cr,

- 0.005 wt.-% to 0.1 wt.-% Fe,

- 0 wt.-% to 0.01 wt.-% Mn, - 1.55 wt.-% to 1.9 wt.-% Mo,

- 2.4 wt.-% to 2.8 wt.-% W,

- 3.3 wt.-% to 3.5 wt.-% Al,

- 3.2 wt.-% to 3.3 wt.-% Ti,

- 0.7 wt.-% to 0.9 wt.-% Nb,

- 1.1 wt.-% to 1.4 wt.-% Ta,

- 0.05 wt.-% to 0.2 wt.-% Hf,

- 0 wt.-% to 0.03 wt.-% Si,

- 0 wt.-% to 0.001 wt.-% P,

- 0 wt.-% to 0.001 wt.-% S,

- 0 wt.-% to 0.02 wt.-% 0,

- 0 wt.-% to 0.005 wt.-% N,

- 0.07 wt.-% to 0.09 wt.-% C,

- 0.001 wt.-% to 0.02 wt.-% Zr,

- 0.007 wt.-% to 0.012 wt.-% B,

- 0.001 wt.-% to 0.02 wt.-% Y,

- incidental impurities

- additionally to the above mentioned components up to

1 wt.-% metal oxide particles selected from the group consisting of Y2O3 and ceramic particles, preferably AI2O3, and SiCy, more preferred from the group consisting of Y2O3, AI2O3 and SiCy,

- rest nickel, preferably 58 wt.-% Ni, more preferred at least 59 wt.-% Ni,

based on the total weight of the metal composition.

According to further embodiments of the present invention it is preferred that the metal composition contains no metal ox ide particles. Such metal compositions are typically more easily prepared.

According to another aspect the invention refers to a method for additive manufacturing, preferably 3D-printing, using an inventive metal composition. For such applications the in ventive metal compositions proved to be especially benefi cial. Herein, the alloy as specified by the components of the metal composition above optionally including metal oxide par ticles provide a typically highly reliable product using dif- ferent means of additive manufacturing, preferably 3D- printing, and different parameters and/or building processes of such method.

According to further embodiments of the present invention it is preferred that the method of additive manufacturing is se lected from the group consisting of selective laser melting (SLM) , selective laser sintering (SLS) , electron beam melting (EBM) and binder jetting.

According to further embodiments of the present invention it is preferred that the metal composition is used as powder. Herein, a mixture of different powder can be used like, for example, a first powder containing the inventive alloy and a second powder containing the metal oxide particles or the metal oxide particles and further inventive alloy, or the first powder contains a part of the components of the in ventive alloy and the second powder contains the metal oxide particles and the rest of the components of the inventive al loy.

According to another aspect the present invention refers to a product containing an inventive metal composition, or manu factured from an inventive metal composition, or manufactured according to an inventive method.

According to further embodiments of the present invention it is preferred that the product is a powder to be used in addi tive manufacturing, preferably 3D-printing. It was noted that the inventive metal composition can be easily used to provide a metal composition powder being very efficiently used in ex isting devices for additive manufacturing and especially 30- printing .

According to further embodiments of the present invention it is preferred that the product is selected from parts of a streaming engine, preferably a gas turbine. Herein, the high flexibility resulting from the improved characteristics of the metal composition combined with its high quality of prod uct manufactured herewith is very beneficial for especially such application.

According to further embodiments of the present invention it is preferred that the product is adapted to contact the fluid stream of the streaming engine. Examples for such streaming engines are steam turbines and gas turbines, especially gas turbines. Such components are highly stressed and benefit greatly from the inventive metal compositions.

According to further embodiments of the present invention it is preferred that the product is selected from the group con sisting of vanes, blades, heat shields and burners of a streaming engine, more preferred of a steam turbine or gas turbine, even more preferred of a gas turbine.

According to another aspect the present invention refers to a use of an inventive metal composition for additive manufac turing, preferably 3D-printing. Especially, a layerwise structured production process as used in 3D-printing benefits greatly from the inventive metal composition.

According to further embodiments of the present invention it is preferred that the method of additive manufacturing is se lected from the group consisting of selective laser melting (SLM) , selective laser sintering (SLS) , electron beam melting (EBM) and binder jetting. For these applications especially good results have been obtained.