Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR ACQUIRING ONE OR A PLURALITY OF RECYCLABLE MATERIALS FROM SEEDS
Document Type and Number:
WIPO Patent Application WO/2015/155010
Kind Code:
A1
Abstract:
The invention relates to a method for acquiring at least one or a plurality of recyclable materials, in particular phytic acid, from a native material quantity containing phytic acid or phytate, comprising the following steps: providing a native, reduced material quantity containing phytic acid and/or phytate made from seeds containing phytic acid; pre-treating the reduced material quantity in order to obtain a flowable alkaline, preferably alcoholic-alkaline mash; separating of a solid phase, which has phytic acid and/or at least one phytate, from the mash; and isolating of phytic acid and/or at least one phytate from the solid phase.

Inventors:
HRUSCHKA STEFFEN (DE)
ULLMANN DETLEF (DE)
BOSZULAK WLADISLAWA (DE)
Application Number:
PCT/EP2015/056429
Publication Date:
October 15, 2015
Filing Date:
March 25, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEA MECHANICAL EQUIPMENT GMBH (DE)
International Classes:
C07F9/117; A23L1/00
Domestic Patent References:
WO2013001043A22013-01-03
Foreign References:
DE102011050905A12012-12-13
US4668813A1987-05-26
EP1145642A12001-10-17
US20050136162A12005-06-23
DE102011050905A12012-12-13
EP1272048B12008-05-21
Attorney, Agent or Firm:
SPECHT, Peter et al. (DE)
Download PDF:
Claims:
Ansprüche

1 . Verfahren zur Gewinnung wenigstens eines oder mehrerer Wertstoffe aus einem nativen, phytinsäurehaltigen bzw. phytathaltigen Stoffgemenge, wobei der wenigstens eine Wertstoff ein Phytinprodukt, insbesondere Phytinsäure und/oder zumindest ein Phytat ist, mit folgenden Schritten:

- Schritt A: Bereitstellen eines nativen phytinsäurehaltigen und/oder phytathaltigen Stoffgemenges aus phytinsäurehaltigen der phytathaltigen Saaten mit harten, zerbrechbaren Schalen, insbesondere aus Rapsfrüchten, insbesondere als Stoffgemenge aus den vollständigen Saaten oder aus bereits (teil-) entölten Saaten, insbesondere als Expellerschrot oder als Presskuchen, der bei einem Abpressen von Öl insbesondere mit einer Presse als Rückstand der Ölgewinnung verbleibt,

- Schritt B: sofern das Stoffgemenge aus Schritt A noch nicht zerkleinert ist:

Zerkleinern des Stoffgemenges, wobei jedenfalls die Schalen aufgebrochen werden;

- Schritt C: Dispergieren des zerkleinerten Stoffgemenges aus Schritt A) o- der B) mit Wasser oder einer wässrigen Lösung, wobei auf einen Teil zerkleinertes Stoffgemenge vorzugsweise bis zu maximal 8, besonders vorzugsweise bis zu maximal 6, insbesondere maximal 5 Teile Wasser zugegeben werden und wobei das Wasser und das zerkleinerte Stoffgemenge gerührt werden, so dass sich ein fließfähiger Brei bzw. eine Dispersion ergibt;

- Schritt D): Einstellen des pH-Wertes des Breis (I) aus Schritt C) in einen alkalischen Bereich pH > 9,5;

- Schritt E): Zugeben eines wasserlöslichen organischen Lösemittels, vorzugsweise eines wasserlöslichen Alkohols, insbesondere von Ethanol, vorzugsweise in verdünnter Form, zu dem Brei D), insbesondere im Anschluss an das Einstellen des pH-Wertes des Breis im Schritt D); insbesondere derart, dass eine Alkoholkonzentration erreicht wird, die kleiner als 30 % ist, um die Schalen vom Endosperm der Saaten/Früchte zu lösen;

- Schritt F1 ): Abtrennen einer Feststoffphase, welche den überwiegenden Anteil der Schalen aufweist, aus dem Brei aus Schritt E) vorzugsweise in einer Zentrifuge im Zentrifugalfeld; - Schritt F2): Isolieren von Phytinsäure oder eines Phytats aus der Feststoffphase des Schrittes F).

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Schritt F2) folgende Teilschritte aufweist:

- Schritt F2-A): Vermischen der Feststoffphase aus Schritt F1 ) mit Wasser und/oder einer wässrigen Lösung, insbesondere mit verdünnter Salzsäure, derart, dass eine fliessfähige, schalenhaltige und mit Wasser versetzte Phytinsäure- und/oder phytathaltige Phase entsteht, deren pH Wert n einen saueren pH-Wertbereich verschoben ist; und

- Schritt F2-B) Abtrennen einer Feststoffphase, welche den überwiegenden Anteil der Schalen aufweist, von einer phytinsäurehaltigen und/oder phy- tathaltigen Flüssigkeitsphase und

- F2-C) Abtrennen der Phytinsäure aus der phytinsäurehaltigen oder phytathal- tigen Flüssigkeitsphase direkt oder nach dem Durchlaufen eines oder mehrerer weiterer Schritte.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der folgende Teilschritt zwischen den Schritten F2-B und F2-C ausgeführt wird: - F2-B1 ): Verschieben des pH-Wertes der Flüssigkeitsphase aus Schritt F2-B) in einen Bereich mit einem pH-Wert von pH > 5..

4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass ferner folgende weitere Schritte durchlaufen werden:

- Schritt G): Verschieben des pH-Wertes des von Schalen befreiten Breis aus Schritt F) in den pH-Bereich von pH = 4,5 bis pH = 7,2; und

- Schritt H): Trennen des schalenfreien Breis, dessen pH-Wert in Schritt G) ins Saure verschoben worden ist, - vorzugweise in einer Zentrifuge, insbesondere in wenigstens einem Dekanter oder einem Separator in mehrere Phasen, wobei eine dieser Phasen eine globulinhaltige Proteinkonzentratphase ist (Proteinquark).

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass im Schritt H) folgende Phasentrennung in einem oder zwei Schritten, vorzugsweise in einer Zentrifuge, insbesondere in einem Dekanter oder Separator, vorgenommen wird:

- ölhaltige Phase mit Triglyceringehalt;

wässrige Phase mit Albumingehalt; und

die Proteinkonzentratphase (Proteinquark);

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass im Schritt H) folgende Phasentrennung in einem oder zwei Schritten, vorzugsweise in einer Zentrifuge, insbesondere in einem Dekanter oder Separator, in folgende zwei Wertstoffphasen vorgenommen wird:

wässrige Phase mit Albumingehalt und Restölgehalt; und die Proteinkonzentratphase (Proteinquark);

7. Verfahren nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass eine Filtration der Wasserphase aus Schritt H) zur Albumin-Aufkonzentrierung erfolgt, um derart die Albuminphase als Wertstoff zu gewinnen. 8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass eine Proteinkonzentratphase gewonnen wird, die in der Farbeinstufungsskala„RAL" den Werten RAL 1 01 5 oder RAL 1 01 3 zuzuordnen ist oder ein Gemisch dieser beiden Farbstufen ist. 9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als das Stoffgemenge/Ausgangsmaterial„kurz zuvor hergestelltes Zwischenprodukt" verarbeitet wird , d.h. nach der Vorstufe sind nicht mehr als 31 Tage vergangen oder dass als das Stoffgemenge/Ausgangsmaterial„frisches Zwischenprodukt" verarbeitet wird, d.h. nach der Vorstufe dürfen nicht mehr als 3 Tage vergangen sein, vorzugsweise sogar nur weniger als 48 Stunden oder 24 Stunden.

1 0. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als das Stoffgemenge in Schritt A kalt gepressten Material, insbesondere ein kalt gepresster Rapspresskuchen verwendet wird, der bei einer Temperatur kleiner als 70°C, besonders vorzugsweise sogar kleiner als 60°C, gepresst worden ist.

1 1 . Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass einer oder mehrere der Trennschritte der vorstehenden Ansprüche jeweils in einem 3-Phasendekanter oder in zumindest zwei Schritten in 2-Phasendekantern erfolgen.

12. Verfahren zur Gewinnung wenigstens eines oder mehrerer Wertstoffe, insbe- sondere eines Phytinsäureproduktes, vorzugsweise von Phytinsäure und/oder von

Phytat, aus einem nativen, phytinsäurehaltigen bzw. phytathaltigen Stoffgemenge, mit folgenden Schritten:

100) Bereitstellen eines nativen phytinsäurehaltigen und/oder phytathaltigen, zerkleinerten Stoffgemenges aus phytinsäurehaltigen und/oder phytathaltigen Saaten; 200) Vorbehandeln des zerkleinerten Stoffgemenges, um einen fliessfähigen alkalischen, vorzugsweise alkoholisch-alkalischen, Brei zu erhalten;

300) Abtrennen einer Feststoffphase, welche Phytinsäure und/oder zumindest ein Phytat aufweist , aus dem fliessfähigen Brei, vorzugsweise in einer Zentrifuge im Zentrifugalfeld; und

400) Isolieren von Phytinsäure und/oder des Phytats aus der Feststoffphase, insbesondere nach einem Durchlaufen eines oder mehrerer weiterer Schritte.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das native sowie phytinsäurehaltige und/oder phytathaltige, zerkleinerte Stoffgemenge aus phytinsäu- rehaltigen Saaten mit den gesamten Schalen der Saaten oder einem Teil der Schalen der Saaten besteht und dass die Phytinsäure und/oder das Phytat in einen scha- lenhaltigen Feststoff anteil des Stoffgemenges verschoben wird.

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das native sowie phytinsäurehaltige und/oder phytathaltige, zerkleinerte Stoffgemenge aus phytinsäurehaltigen Saaten ohne Schalenanteil besteht und dass die Phytinsäure und/oder das Phytat in einen Feststoff anteil des Stoffgemenges verschoben wird.

15. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Schritt 400) folgende Teilschritte aufweist:

- Schritt 400-A): Vermischen der Feststoffphase aus Schritt 300) mit Wasser und/oder einer wässrigen Lösung, insbesondere mit verdünnter Salzsäure, derart, dass eine fliessfähige, schalenhaltige und mit Wasser versetzte Phytinsäure- und/oder phytathaltige Phase entsteht, deren pH Wert in einen saueren pH-Wertbereich, insbesondere pH < 4, verschoben ist; und

- Schritt 400-B) Abtrennen einer Feststoffphase, welche ggf. den überwiegenden Anteil der Schalen aufweist, von einer phytinsäurehaltigen und/oder phytathaltigen Flüssigkeitsphase und

- F400-C) Abtrennen der Phytinsäure aus der phytinsäurehaltigen oder phytathaltigen Flüssigkeitsphase direkt oder nach dem Durchlaufen eines oder mehrerer weiterer Schritte

16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der folgende Teilschritt zwischen den Schritten F400-B und F400-C ausgeführt wird:

- F400-B1 ): Verschieben des pH-Wertes der Flüssigkeitsphase aus Schritt F400-B) in einen Bereich mit einem pH-Wert von pH > 5 durch eine Lauge. 17. Phytinsäureprodukt, vorzugsweise Phytinsäure oder Phytat, hergestellt aus einem nativen, phytinsäurehaltigen bzw. phytathaltigen Stoffgemenge nach einem Verfahren nach einem oder mehreren der vorstehenden Ansprüche.

Description:
Verfahren zur Gewinnung von eines oder mehrerer Wertstoffe aus Saaten

Die vorliegende Erfindung betrifft ein Verfahren zur Gewinnung wenigstens eines oder mehrerer Wertstoffe aus einem nativen, phytinsäurehaltigen Stoffgemenge.

Es ist bekannt aus Saaten mit harten, zerbrechbaren Schalen, insbesondere aus Rapsfrüchten, eine Proteinphase als Wertstoff phase zu gewinnen. Insbesondere das Verfahren der DE 10 201 1 050 905 A1 ermöglicht es, Proteine mit hoher Reinheit zu gewinnen, da u.a. durch die Erhöhung der Löslichkeit der Proteine offenbar auch Bindungen beispielsweise zu Verunreinigungen aus Zellulose bzw. Schalen und dergleichen gelockert werden. Eine Reihe von Saaten enthält dabei Phytinsäure. Die Phytinsäure unterstützt in den Pflanzen u.a. deren Wachstum, ist aber in der Pro- teinphase nicht unbedingt erwünscht. Sofern das zur Proteingewinnung verwendete Stoffgemenge bzw. das Saatgut Phytinsäure enthält, ist es von Interesse, dieses bzw. die entsprechende Phytinsäure ggf. auch als Phytat vom Protein zu trennen und sie allein für sich oder auch ergänzend zu einer Proteinphase als verwertbare Wertstoffphase zu gewinnen. Vor diesem Hintergrund ist es die Aufgabe der Erfindung, ein Verfahren bereitzustellen, welches eine Gewinnung eines Phytinproduktes, insbesondere Phytinsäure oder Phytat aus einem nativen, phytinsäurehaltigen Stoffgemenge ermöglicht, gegebenenfalls auch zusätzlich zur Gewinnung weiterer Wertstoffe, wie die bereits erwähnte Proteinphase. Die Erfindung löst diese Aufgabe durch die Merkmale des Anspruchs 1 und des Anspruchs 12.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

Das erfindungsgemäße Verfahren zur Gewinnung wenigstens eines oder mehrerer Wertstoffe aus nativen phytinsäurehaltigen Stoffgemengen, wobei der wenigstens eine Wertstoff ein Phytinsäureprodukt, insbesondere Phytinsäure und/oder ein Phytat ist, nach Anspruch 1 weist danach zumindest folgende Schritte auf: Schritt A: Bereitstellen eines nativen phytinsäurehaltigen Stoffgemenges aus phytinsäurehaltigen Saaten mit harten, zerbrechbaren Schalen, insbesondere aus Rapsfrüchten, insbesondere als Stoffgemenge aus den vollständigen Saaten oder aus bereits (teil-) entölten Saaten, insbesondere als Presskuchen, der bei einem Abpressen von Öl insbesondere mit einer Presse als Rückstand der Ölgewinnung verbleibt oder als Expellerschrot, der nach einer Hexanextraktion als Rückstand verbleibt.

Schritt B: Sofern das Stoffgemenge aus Schritt A noch nicht zerkleinert ist: Zerkleinern des Stoffgemenges, wobei jedenfalls die Schalen aufgebrochen werden;

Schritt C: Dispergieren des zerkleinerten Stoffgemenges aus Schritt A) o- der B) mit Wasser oder einer wässrigen Lösung, wobei auf einen Teil zerkleinertes Stoffgemenge vorzugsweise bis zu maximal 8, besonders vorzugsweise bis zu maximal 6 Teile, insbesondere bis zu maximal 5 Teile, Wasser zugegeben werden und wobei das Wasser und das zerkleinerte Stoffgemenge gerührt werden, so dass sich ein fließfähiger Brei bzw. eine Dispersion ergibt; Schritt D): Einstellen des pH-Wertes des Breis (I) aus Schritt C) in einen alkalischen Bereich von pH > 9,5;

Schritt E): Zugeben eines wasserlöslichen organischen Lösemittels, insbesondere eines wasserlöslichen Alkohols, insbesondere von Ethanol, zu dem Brei D), insbesondere im Anschluss an das Einstellen des pH-Wertes des Breis im Schritt D); insbesondere derart, dass eine Alkoholkonzentration erreicht wird, die kleiner als 30 Vol.% ist, um die Schalen vom Endosperm der Saaten/Früchte zu lösen;

Schritt F1 ): Abtrennen einer Feststoffphase, welche den überwiegenden Anteil der Schalen aufweist, aus dem Brei aus Schritt E), vorzugsweise in einer Zentrifuge im Zentrifugalfeld;

Schritt F2): Isolieren von Phytinsäure oder von Phytaten aus der Feststoffphase des Schrittes F).

Nachfolgend wird zumeist Phytinsäure und deren Gewinnung beschrieben. Allerdings versteht sich, dass auch die Salze der Phytinsäure, die sogenannten Phytate, gewinnbar sind oder ggf. in gelöster Form vorliegen. Je nach pH-Wert kann Phytinsäure oder ein Phytat vorliegen.

Hinsichtlich der Reihenfolge der Schritte B), C) und D) ist der Anspruch 1 nicht einschränkend zu verstehen. Die Schritte B), C) und D) können auch gleichzeitig oder in vertauschter Reihenfolge durchgeführt werden. Bevorzugt wird aber die zeitliche Abfolge B), dann C) und dann D).

Als Ausgangsmaterial wird das native Stoffgemenge aus Saaten (Samen) mit harten, zerbrechbaren Schalen, insbesondere aus ganzen Saaten/Früchten von Kreuzblütengewächsen (Brassicaceae), insbesondere von Rapsfrüchten, bereitgestellt. Nach Schritt A kann der Schalenanteil in besonders bevorzugter Ausgestaltung noch 100% des Schalenanteils der ungeschälten Saat enthalten. Es ist aber auch die Verarbeitung einer Saat mit einem niedrigeren Schalenanteil denkbar.

Erfindungsgemäß hat sich wider Erwarten gezeigt, dass sich durch die Vorbehandlung der Schritte C), D) und E) Phytate oder die Phytinsäure der Saat in gewinnbarer Form einer schalenhaltigen Feststoffphase zuordnet. Dies macht es möglich, nach dem Abtrennen der Schalenfraktion aus der Feststoffphase gemäß Schritt F1 ), aus der Feststoffphase mit der Phytinsäure und der Schalenfraktion die Phytinsäure als Wertstoff direkt oder - und dies ist besonders vorteilhaft - nach einem Durchlaufen weiterer Verfahrensschritte als Wertstoff zu gewinnen. Nach einer besonders vorteilhaften Variante dieses Verfahrens weist der Schritt F2) dazu folgende Teilschritte auf:

- Schritt F2-A): Vermischen der Feststoffphase aus Schritt F1 ) mit Wasser und/oder einer wässrigen Lösung, insbesondere mit verdünnter Salzsäure, derart, dass eine fliessfähige, schalenhaltige und mit Wasser versetzte phytin- säure- und/oder phytathaltige Phase entsteht, deren pH Wert n einen saueren pH-Wertbereich, vorzugsweise pH < 4, verschoben ist; und

- Schritt F2-B) Abtrennen einer Feststoffphase, welche den überwiegenden Anteil der Schalen aufweist, von einer phytinsäurehaltigen und/oder phy- tathaltigen Flüssigkeitsphase und - F2-C) Abtrennen der Phytinsäure aus der phytinsäurehaltigen oder phytathaltigen Flüssigkeitsphase.

Durch das Vermischen der Feststoffphase aus dem Schritt F1 ) mit Wasser oder einer wässrigen Lösung und das Verschieben des pH-Wertes ins Saure, insbesondere auf einen Wert pH < 5,1 , ergibt sich in einfacher Weise ein Feststoff-

/Flüssigkeitsgemisch, dessen Flüssigkeitsphase jedenfalls einen wesentlichen Anteil an der Phytinsäure enthält, die in der Saat als Ausgangsprodukt enthalten war.

Sodann ist der folgende weitere Teilschritt zur Gewinnung der Phytinsäure in Schritt zwischen den Schritten F2-B) und F2-C) vorteilhaft:

- Schritt F2-B1 ): Verschieben des pH-Wertes der Flüssigkeitsphase aus Schritt F2-B1 ) in einen weniger sauren Bereich, vorzugsweise mit einem pH- Wert von pH > 5.

Derart kann die Phytinsäure auf einfache Weise als Phytinsäureprodukt gewonnen werden und auch - ggf. nach dem Abtrennen des Schrittes F2 - in relativ reiner Form isoliert werden.

Insgesamt ergibt sich damit in einfacher Weise die Möglichkeit zur Gewinnung von Phytinsäure aus der phytinsäurehaltigen Saat bzw. dem aus der Saat hergestellten phytathaltigen Zwischenprodukt.

Die Erfindung schafft ferner auch das allgemeinere Verfahren zur Gewinnung wenigstens eines oder mehrerer Wertstoffe, insbesondere eines Produktes, vorzugsweise von Phytinsäure oder Phytat, aus einem nativen, phytinsäurehaltigen Stoffge- menge, mit folgenden Schritten:

100) Bereitstellen eines nativen phytinsäurehaltigen und/oder phytathaltigen, zerkleinerten Stoffgemenges aus phytinsäurehaltigen Saat und/oder phytathaltigen Saaten-Zwischenprodukten ;

200) Vorbehandeln des zerkleinerten Stoffgemenges, um einen fliessfähigen alkali- sehen, vorzugsweise alkoholisch-alkalischen, Brei zu erhalten; 300) Abtrennen einer Feststoffphase, welche Phytinsäure und/oder zumindest ein Phytat aufweist, aus dem fliessfähigen Brei, vorzugsweise in einer Zentrifuge im Zentrifugalfeld; und

400) Isolieren von Phytinsäure und/oder zumindest eines Phytats aus der Fest- Stoffphase nach einem Durchlaufen weiterer Schritte.

Hierbei ist es wiederum besonders vorteilhaft, wenn das native phytinsäurehaltige, zerkleinerte Stoffgemenge aus phytinsäurehaltigen Saaten mit den gesamten Schalen oder einem Teil der Schalen (insbesondere mehr 30%, vorzugsweise mehr als 50%) der Saaten besteht und dass im Schritt des Vorbehandelns die Phytinsäure in einen schalenhaltigen Feststoff anteil des Stoffgemenges verschoben wird. Es ist aber auch die Verarbeitung eines Stoffgemenges ohne Schalenanteil möglich. So ist es auch zweckmäßig, wenn das native sowie phytinsäurehaltige und/oder phytathal- tige, zerkleinerte Stoffgemenge aus phytinsäurehaltigen Saaten ohne deren Schalen besteht und dass die Phytinsäure und/oder zumindest ein Phytat zunächst in einen Feststoff anteil des Stoffgemenges verschoben wird

Um die Phytinsäure zu gewinnen, ist es vorteilhaft, wenn der Schritt 400) folgende Teilschritte aufweist: - Schritt 400-A): Vermischen der Feststoffphase aus Schritt 300) mit Wasser und/oder einer wässrigen Lösung, insbesondere mit verdünnter Salzsäure, derart, dass eine fliessfähige, schalenhaltige und mit Wasser versetzte Phytinsäure- und/oder phytathaltige Phase entsteht, deren pH Wert n einen saueren pH-Wertbereich verschoben ist; und

- Schritt 400-B) Abtrennen einer Feststoffphase, welche ggf. den überwiegenden Anteil der Schalen aufweist, von einer phytinsäurehaltigen und/oder phytathaltigen Flüssigkeitsphase und

- F400-C) Abtrennen der Phytinsäure aus der phytinsäurehaltigen oder phytathaltigen Flüssigkeitsphase direkt oder nach dem Durchlaufen eines oder mehrerer weiterer Schritte

Dabei wird weiter vorzugsweise folgender Teilschritt zwischen den Schritten F400-B und F400-C ausgeführt: - F400-B1 ): Verschieben des pH-Wertes der Flüssigkeitsphase aus Schritt F400-B) in einen Bereich mit einem pH-Wert von pH > 5.

Anspruch 17 betrifft zudem ein Phytinsäureprodukt, vorzugsweise Phytinsäure oder Phytat, hergestellt aus einem nativen, phytinsäurehaltigen bzw. phytathaltigen Stoff- gemenge nach einem Verfahren nach einem oder mehreren er vorstehenden Ansprüche.

Der Schritt des Vorbehandelns umfasst dabei vorzugsweise die Schritte C) bis E). Die Schritte des Abtrennens und Gewinnens der Phytinsäure können zudem wieder, wie vorstehend beschrieben, mehrere Teilschritte aufweisen. Zu den Schritten A) bis F1 ) ist noch Folgendes anzumerken.

Schritt A:

Das Stoffgemenge im Sinne dieser Anmeldung kann aus den vollständigen, jedoch gebrochenen Saaten bestehen.

Alternativ kann das Stoffgemenge aber auch aus einem bereits entölten Produkt be- stehen, insbesondere aus einem„Zwischenprodukt", d.h. aus einem Presskuchen, der nach einer„Vorstufe", z.B. dem Abpressen von Öl, insbesondere mit einer Presse (z.B. einer Schneckenpresse) als Rückstand der Ölgewinnung verbleibt.

Besonders bevorzugt wird als das Ausgangsmaterial„kurz zuvor gewonnenes Zwischenprodukt" verarbeitet, d.h. nach der Vorstufe dürfen nicht mehr als 31 Tage ver- gangen sein.

Die Saat kann frisch geerntet oder aber Tage, Wochen oder Monate alt sein, die Zwischenstufe (das Pressen) sollte kurz oder sogar unmittelbar vor der weiteren Verarbeitung stattfinden, damit sich nach der Ölgewinnung das Material - die Saat - nicht zu stark verändert hat. Ganz bevorzugt wird als das Ausgangsmaterial„frisches Material" verarbeitet, d.h. nach eine Vorstufe bzw. Vorbearbeitung (Ölgewinnen) dürfen nicht mehr als 3 Tage vergangen sein, vorzugsweise sogar nur weniger als 48 Stunden oder 24 Stunden oder 12 h oder weniger als 1 h.

Mit Material aus einem Zeitraum kurz nach der Vorstufe werden gute oder und mit frischem Material in der Regel nochmals bessere Ergebnisse hinsichtlich der Aus- beute und der Reinheit der Wertprodukte erzielt.

Der Presskuchen kann einen Restölgehalt aufweisen, der auch bei 20 Vol% oder mehr liegen kann. Trotz derart hoher Restölgehalte ist die Gewinnung auch einer Proteinphase mit der Erfindung auf einfache Weise realisierbar.

Schritt B: Sofern es noch nicht zerkleinert vorliegt: Zerkleinern des Stoffgemenges aus Schritt a) zum Aufbrechen der Schalen. Sofern ein Presskuchen verwendet wird, wird dieser aufgebrochen, idealerweise unmittelbar nach dem Pressen, noch warm. Derart wird ein zerkleinertes Material - eine Art Granulat - aus dem Presskuchen erzeugt. Das zuvor durch einen Pressvorgang (teil-) entölte Stoffgemenge wird in der Regel nur zerkleinert, beispielsweise zermahlen oder es werden jedenfalls die Schalen aufgebrochen.

Schritt C:

Das bereitgestellte und zerkleinerte Stoffgemenge aus Schritt A) oder B) wird mit Wasser dispergiert. Auf einen Teil "zerkleinertes Produkt" werden vorzugsweise bis zu maximal 8, vorzugsweise bis zu maximal 5 Teile Wasser zugegeben. Sodann werden Wasser und zerkleinertes Produkt gerührt, so dass sich ein fließfähiger Brei bzw. eine Dispersion ergibt. Das Rühren erfolgt vorzugsweise für 15 min oder mehr, auch mehr als 30 min, insbesondere für mehr als 1 h. Alternativ oder zusätzlich zu Wasser kann auch eine wässrige Lösung genutzt werden. Diese kann weitere gelös- te organische oder anorganische Bestandteile (z.B. Salze oder wasserlösliche organische Lösemittel) enthalten.

Schritt D) Als Nächstes erfolgt ein Einstellen des pH-Wertes des Breis (I) aus Schritt C) in einen alkalischen Bereich; Vorzugsweise wird der pH-Wert des Breis bzw. der Dispersion mit Lauge auf pH 10 bis 1 1 eingestellt. Dabei wird (vorsichtig) das Rühren fortgesetzt. Die Verrührzeit beträgt 15 min oder mehr, vorzugsweise mehr als 30 min, vorzugsweise liegt sie bei 1 h oder darüber.

Schritt E)

In diesem weiteren Schritt erfolgt ein Zugeben mindestens eines wasserlöslichen organischen Lösemittels im Anschluss an das Einstellen des pH-Wertes des Breis im Schritt D. Vorzugsweise wird die Dispersion, deren pH-Wert in den alkalischen Bereich eingestellt worden ist, mit dem Alkohol Ethanol (vorzugsweise 30-60%ig) auf eine Alkoholkonzentration von 15-20 Vol.% oder weniger, insbesondere 12 Vol.% an Ethanol gebracht. Entsprechend der Wassermenge des verwendeten Alkohols kann die Wassermenge in Schritt C um das im Alkohol, insbesondere im 30-60%igen Ethanol enthaltene Wasser, reduziert werden. Damit lösen sich die Schalen vom Ko- tyledon mit dem Restöl und können abgetrennt werden, insbesondere zentrifugal.

Die Schritte C-E werden vorzugsweise nacheinander ausgeführt, können alternativ auch gemeinsam, also zeitgleich, ausgeführt werden. Denn für die Gewinnung der Phytinsäure ist die Reihenfolge weniger entscheidend. Dieses zeitgleiche Zufügen kann z.B. durch Zugabe von verdünnter Ethanollösung erfolgen, in welcher NaOH gelöst vorliegt. In diesem Fall erfolgen sowohl die Zugabe eines Alkohols, von Wasser oder einer wässrigen Lösung und das Verschieben in den basischen pH-Wert durch Zugabe der oben-genannten Mischung als eine Kombination der Schritte C-E.

Schritt FD

Im Schritt F) erfolgt daher ein Abtrennen einer Feststoffphase, welche den überwiegenden Anteil der Schalen umfasst, vorzugsweise in einer Zentrifuge im Zentrifugalfeld aus dem Brei bzw. es erfolgt ein Klären des Breis von Schalen-Feststoffanteilen insbesondere in einem Dekanter. Die leichtere Phase einer zentrifugalen Phasentrennung wird nachfolgend auch gelegentlich als Oberlauf bezeichnet und die Feststoffphase als schwere Phase. Eine Mittelphase läge entsprechend bzgl. ihrer Dichte dazwischen.

Es ist ein besonderer Vorteil des erfindungsgemäßen Verfahrens, dass sich im An- schluss an den Schritt F) aus den in diesem Schritt getrennten Phasen weitere Wertstoffe gewinnen lassen. Dies wird aus der weiteren Beschreibung deutlich werden.

Eine weitere Wertphase lässt sich aus dem Oberlauf gewinnen (also aus der Flüssigkeitsphase).

Dazu werden nach dem Schritt F1 ) folgende weitere Schritte durchlaufen: Schritt G)

Der jedenfalls weitestgehend schalenfreie Brei des Oberlaufes aus Schritt F1 ) wird ebenfalls weiterverarbeitet. Vorzugsweise erfolgt dabei eine Ausfällung des gelösten Proteinanteiles aus dem schalenfreien Brei, der zusammen mit dem un- oder angelösten Protein-Teil eine Fraktion bildet, den Quark. Der pH-Wert wird dabei wieder weiter in den sauren Bereich verschoben, insbesondere in den pH-Bereich von pH = 4,5 bis pH = 7.

Schritt H)

Sodann wird der schalenfreie Brei des Oberlaufs, dessen pH-Wert wieder ins Saure verschoben worden ist, - vorzugweise in einer Zentrifuge, insbesondere in wenigstens einem Dekanter oder in einem Separator - in einem oder zwei Schritten in Wertstoffphasen getrennt, von denen eine Phase eine konzentrierte Proteinphase ist.

Besonders bevorzugt erfolgt eine Trennung in folgende zwei oder drei Phasen:

ölhaltige Phase;

wässrige Phase (Polyphenol-, Kohlenhydrat- und Sinapinsäurehaltig);

- Proteinkonzentratphase (nachfolgenden auch„Proteinquark" genannt) oder

wässrige Phase mit Albumingehalt und Restölgehalt; und Proteinkonzentratphase (Proteinquark);

Die Zwei-Phasentrennung wird dann gewählt, wenn das Rohmaterial relativ stark entölt ist und/oder im Feststoff gebunden vorliegt oder wenn kein intensiver Sche- rungseinfluss für die Flüssigkeitsphase in Schritt 1 ausgeführt worden ist. Die Zugabe von Wasser oder Alkohol oder Lauge oder dgl. kann auch in Teilschritten erfolgen. Das Öl als leichtere Phase enthält Triglyceride und ist einer der gewinnbaren Wertstoffe. Vorzugsweise liegt die Temperatur während sämtlicher Verfahrensschritte unter 60°C, insbesondere unter 50°C, vorzugsweise, zwischen 40 °C und 50°C, wodurch sich besonders wertvolle z.T. temperatursensible Produkte schonend gewinnen lassen. Die Denaturierung der Proteine ist ein temperatur- und zeitabhängiger Prozess. Hinzu kommt die Bedingung im alkoholischen Milieu. Die Proteindenaturierung geht umso schneller, je höher die Temperatur ist. In wässriger Umgebung ist bei Wärmeinwirkungen von 45-50 °C keine irreversible Proteindenaturierung zu erwarten. Das ändert sich aber mit der Alkoholkonzentration. Schon bei Umgebungstemperatur ist bei hochkonzentriertem Alkohol eine Proteinausfällung zu beobachten.

Je geringer nun die Alkoholkonzentration ist, umso höher muss die Temperatur sein, um die Proteine zu denaturieren. Oder umgekehrt: je wässriger die Alkoholkonzentration ist, umso höher darf die Arbeitstemperatur sein, ohne dass die Proteine irreversibel geschädigt werden.

Man wird also (für reines Wasser) eine möglichst hohe, d.h. möglichst an 60°C heranreichende Temperatur wählen, um möglichst viele Stoffe in Lösung zu bringen, wie Proteine, Lecithine, Glycolipide etc.. Damit können die Zellulose, das Lignin und Stoffe wie Natrium oder Ca-Phytate als schwer- oder unlösliche Bestandteile der oder mit der Schalenfraktion abgetrennt werden. Es ist jedoch darauf zu achten, dass die Temperatur entsprechend den Prozessparametern Zeit und Alkoholkonzentration (ggf. Druck) hinreichend niedrig bleibt. Die gefällten Proteine liegen als Proteinquark vor (schwere Phase). Sie bilden einen weiteren der gewinnbaren Wertstoffe. Diese Phase kann gut zu Pulver getrocknet werden. Insgesamt wird eine auch optisch ansprechende und daher gut weiter verwertbare Proteinkonzentratphase gewonnen, die in einer Farbeinstufungsskala RAL den Werten RAL 1015 (Hellelfenbein) oder RAL 1013 (Perlweiß) oder einem Gemisch dieser beiden Farbtöne zuzuordnen ist. Als RAL-Farbe werden normierte Farben bezeichnet (RAL GmbH, Tochter des RAL- Institutes) Jeder Farbe ist eine vierstellige

Farbnummer zugeordnet. Theoretisch kann für das Verfahren jeder Presskuchen verwendet werden.

Die vorteilhafte Temperaturangabe zu den Verfahrensschritten A) bis H) bezieht sich nicht auf die Presstemperatur beim Erzeugen des Presskuchens bei der Ölerzeu- gung. Je höher die Temperatur bei den vorangegangen Prozessschritten war, umso brauner wird die Proteinphase bzw. Quarkfraktion. Dies liegt einerseits an der Mail- lard-Reaktion von Zuckern mit Proteinen, andererseits an der Phenoloxidation. Gegenüber der DE 10 201 1 050 905 A1 wird insbesondere durch die Verwendung optimiert ausgewählten Ausgangsmaterials (vorzugsweise kalt gepresster Raps- Presskuchen, vorzugsweise sehr frisch) ein besonders ansprechendes, besonders gut weiterverwertbares Produkt gewonnen.

Besonders vorteilhaft ist die Verwendung kalt gepressten Materials, insbesondere eines kalt gepressten Rapspresskuchens (Temperatur beim Pressen vorteilhaft klei- ner als 70°C, besonders vorzugsweise sogar kleiner als 60°C) als Ausgangsmaterial bzw. als das bereitgestellte Stoffgemenge. Warm gepresstes Material wird beim Pressen deutlichen höheren Temperaturen (bis über 100° C) ausgesetzt. Durch die Verwendung kalt gepressten Materials als Ausgangsmaterial für das erfindungsgemäße Verfahren kann eine Proteinphase bzw.„Protein- bzw. Quarkphase" mit deut- lieh besseren Eigenschaften (insbesondere hinsichtlich der Farbe deutlich heller und daher besser verarbeitbar, mit deutlich höherem Wasserbindevermögen beispielsweise von 1 Anteil Quarkpulver + 3 Anteile Wasser und mit deutlich besserer Ausbeute gewonnen werden als bei der Verwendung warm bzw. heiß gepressten Aus- gangsmaterials. Dies wurde im Stand der Technik bisher nicht erkannt. Denn gängige Rapspressverfahren zielen auf eine hohe Ölausbeute, weshalb beim Pressen gern höhere Temperaturen verwendet werden. Als Nebeneffekt ist festzustellen, dass Polyphenol abgebaut wird, was an sich vorteilhaft für die Proteinfraktion wäre. Beim erfindungsgemäßen Verfahren stellt der originale, also nicht reduzierte, Poly- phenolgehalt im kalt gepressten Kuchen aber dennoch kein Problem für das Endprodukt dar, da die polyphenolischen Verbindungen im Wesentlichen nicht in der Quarkphase zu finden sind, da sie in die Wasserphase übergehen. So ist die Quarkphase, die nach dem erfindungsgemäßen Verfahren aus einem zuvor mit Hexan zusätzlich entöltem Presskuchen gewonnen wurde eher dem RAL-Ton 1024 ockergelb oder 1014 Elfenbein zuzuordnen. Die Verarbeitung erfolgt vorzugsweise unter Umgebungsdruck. Auch in der Wasserphase sind noch wertvolle Inhaltsstoffe enthalten, insbesondere ist sie relativ stark albuminhaltig. Sinnvoll und vorteilhaft ist insofern eine Einengung bzw. Konzentration z.B. durch Filtration der Wasserphase aus dem vorhergehenden Schritt zur Albumin-Aufkonzentrierung, um derart die Albuminphase als weiteren Wertstoff zu gewinnen.

Eine besonders vorteilhafte Verfahrensvariante sei anhand des folgenden Beispiels erläutert.

Schritte A, B): Ausgangsmaterial ist bei diesem Beispiel bereitgestellter ge- presster Rapskuchen (oder auch Sonnenblumenschrot oder Leguminosenmehl), idealerweise schonend und kalt gepresst, mit typischen Restölgehalten von 10%; auch höher stellt kein Problem dar). Der Kuchen wird aufgebrochen, idealerweise unmittelbar nach dem Pressen, noch warm. Schritt C): Das Kuchengranulat wird mit Wasser dispergiert (1 Teil Kuchen und max. 6 Teile Wasser) und ist vorsichtig zu rühren (1 h). Schritt D): Diese Dispersion ist nach oder während des Schrittes B) mit Lauge, vorzugsweise NaOH-Lauge, auf pH 10 bis 1 1 einzustellen und vorsichtig zu rühren, vorzugsweise 15 min bis 1 h. Schritt E) Die Dispersion aus Schritt D) ist mit EtOH (Ethanol) (vorzugsweise 30- 60%ig) auf eine 12%ige EtOH - Konzentration zu bringen, somit wird die Wassermenge, um das in diesem 30-60%igen EtOH enthaltene Wasser reduziert.

Schritt F1 ) Im Ethanol lösen sich die Schalen vom Endosperm (Kotyledon) mit dem Restöl und können mit der Phytinsäure, die sich überraschend an der Schalenfraktion bzw. schalenhaltigen Feststoffphase als Teil der Feststoffphase sammelt, beispielsweise zentrifugal abgetrennt werden.

Es ist denkbar, das Verfahren auch mit anderen wasserlöslichen organischen Löse- mittein, so z.B. mit anderen wasserlöslichen Alkoholen, wie z.B. Isopropanol, durchzuführen.

Im Verfahren einsetzbar ist auch Calziumhydroxid. Hierbei wird Ca-Phytat erzeugt, das schwerer als ein-Na Phytat löslich ist. Bei dieser finalen pH-Verschiebung vom sauren in den weniger sauren Bereich bis neutralen Bereich wird die gelöste Phytinsäure als Phytat ausgefällt und somit aus dem Fluid abtrennbar beispielsweise durch Zentrifugation, Gravitation oder Filtration.

Versuch 1 :

Eine in vorstehend beschriebener Weise mit den Schritten A) bis F1 ) gewonnene phytinsäurehaltige Schalenfraktion wurde weiterverarbeitet, um Phytinsäure zu gewinnen.

Hierzu wurden 220 g der Schalenfraktion mit 300 g Wasser bei Raumtemperatur (hier 20°C) in einem Schritt F2-A) vermischt. Die Reaktionszeit betrug 5 min. Nach 5 min wurde der pH-Wert des SchalenTWassergemischs mittels Salzsäure (hier 1 1 ,1 g Salzsäure bzw. HCl, 10%ig) ins Saure verschoben auf pH = 3,7 (Schritt F2-B). Die Reaktionszeit betrug 5 min.

Ein Schleudertest zeigte, dass sich im Becherglas ganz unten eine Schalenphase von ca. 30 % des Volumens der Probe absetzte. Über dieser lag eine gelbe Proteinphase von ca. 15% Anteil am Volumen, über welcher sich wiederum eine trübe, gelbliche Wasser-Alkohol-Phytinsäurephase mit einem Anteil von 54% am Volumen sammelte. Über dieser sammelte sich schließlich eine nicht eindeutig bestimmbare Schwimmschicht, die ca. 1 % des Volumens im Becherglas ausmachte (Schritt F2- C1 ).

Im industriellen Maßstab kann die Feststoffphase aus der Wasser-Alkohol- Phytinsäurephase durch ein Absetzen lassen aber auch auf andere Weise, so zentrifugal insbesondere im Dekanter abgetrennt werden.

Es ist vorteilhaft, wenn sodann ein Verschieben des pH-Wertes der Flüssigkeitsphase aus Schritt F2-C1 ) in einen weniger saueren, vorzugsweise neutralen, Bereich erfolgt. Im Versuch erfolgte dies durch Zugabe von 0,87g Natronlauge (1 6%ig) zu der gelben Wasser-Alkohol-Phytinsäurephase. Im Schleudertest sammelte sich im Be- cherglas unten Phytinsäure, die einen Anteil von ca. 5 % (Vol. %) an der Flüssigkeitsphase hatte, über welcher sich eine Wasser/Alkoholphase absetzte, die einen Anteil von ca. 94% an der Flüssigkeitsphase hatte. Über dieser sammelte sich schließlich eine nicht eindeutig bestimmbare Schwimmschicht, die ca. 1 % des Volumens im Becherglas ausmachte (Schritt F2-C1 ).

Insgesamt können aus der Schalenfraktion aus Schritt F1 ) derart einige Gramm an Phytinsäure gewonnen werden.

Der Phytinsäuregehalt im Rapspresskuchen liegt typischerweise bei 3 - 4 Gew % der Trockenmasse des Rapspresskuchens. Durch Verwendung geschälter Saaten erhöht er sich, beispielsweise auf ca. 6 - 7Gew % der Trockenmasse des Presskuchens. Damit erhöht sich der schalenspezifischen Phytinsäuregehalt bei Verwendung von Saaten im Rapspresskuchen, die noch einen Teil ihrer ursprünglicher Schalen enthalten (z.B. 30% oder mehr der Schalen) entsprechend.

Versuch 2:

Eine in vorstehend beschriebener Weise mit den Schritten A) bis F1 ) gewonnene phytinsäurehaltige Schalenfraktion wurde wiederum weiterverarbeitet, um Phytinsäure zu gewinnen. Hierzu wurden 100 g der Raps-Schalenfraktion mit 150g Wasser bei Raumtemperatur (hier 20°C) in einem Schritt F2-A) vermischt. Die Reaktionszeit betrug 5 min. Nach 5 min wurde der pH-Wert des Schalen-/Wassergemischs mittels Salzsäure (hier 3,4 g Salzsäure bzw. HCl, 10%ig) ins Saure verschoben auf pH = 3,7 (Schritt F2-B). Die Reaktionszeit betrug wiederum 5 min.

Ein Schleudertest zeigte, dass sich im Becherglas ganz unten eine Schalenphase von ca. 30% des Volumens der Probe absetzte. Über dieser lag eine gelbe Proteinphase von ca. 20% Anteil am Volumen, über welcher sich wiederum eine etwas dunklere Phytinsäurephase mit einem Anteil von 3% am Volumen sammelte. Über dieser sammelte sich eine Wasser-/Alkoholphase von ca. 47 Vol%. Die Phytinsäurephase lässt sich wiederum separat abtrennen

Ergänzend kann aus der Flüssigkeitsphase aus Schritt F1 ) jeweils jedenfalls eine Proteinphase gewonnen werden.

Sinnvoll ist hierzu eine Ausfällung vom Protein durch Ansäurern der leichten Phase aus dem Oberlauf auf vorzugsweise pH = 4,5 bis 7,2. Diese leichte Phase weist nach der Separation vor dem Ansäuern zunächst einen pH-Wert von vorzugsweise 9,7 bis 10,5 auf.

Die Trennung in eine Öl - Wässrige Phase - Proteinkonzentratphase (Proteinquark) oder die Trennung in eine Öl/Wasserphase und Proteinkonzentratphase kann unterstützt werden durch eine intensive Scherung, um die Ölfreisetzung zu erleichtern. Sodann erfolgt vorzugsweise eine Abtrennung der gefällten Proteine als Quark in der schweren Phase, welche in der Regel die Feststoffphase oder die sogenannte Quarkphase ist. Zudem können ggf. Triglyceride als leichtes Öl aus dem Oberlauf, also der leichten Phase, insbesondere zentrifugal und ggf. eine Filtration der Was- serphase zur Albumin-Aufkonzentrierung gewonnen werden.

Als besonders vorteilhaft zu erwähnen ist die Nasstrennung der Schalen von den gelösten und gequollenen Proteinen bei parallel stattfindender Verdrängungsextraktion der Triglyceride (Ölphase) aus Öl- oder restölhaltigem Presskuchen oder Le- guminosen Mehl und parallel verlaufender Polyphenolextraktion.

Die besonderen Vorteile des Verfahrens sind:

Es sind geringe Verdünnungen und damit geringe Volumenströme im Prozess durch das vorbeschriebene Verfahren realisierbar bei gleichzeitig geringem Lösungsmittelabfall.

Es ergibt sich eine höhere Polyphenolkonzentrationen während der Extraktion in der wässrigen Phase (Verfahrensschritte 2 bis 5),

Native temperaturempfindliche Proteine sind zudem im Endprodukt enthalten, da der Prozess bei max. 50-55°C oder weniger umgesetzt wird.

Es sind insgesamt vergleichsweise hohe Proteinausbeuten mit bis zu 70% erzielbar, wobei bis zu 45% aus der„Quarkphase" und ca. 22-24% aus der Albuminphase gewonnen werden können.

Es kann ein höherwertiges Endprodukt (Proteingemisch) gewonnen werden, weil Schalenreste, sowie Polyphenole, Kohlenhydrate, Phytinsäure und/oder Phytate, Legnin und Zellulose vollständig entfernt oder abgereichert sind. Die Proteinphase enthält„natives" Protein, dessen quellfähiger Anteil nach der Gewinnung quellfähig bleibt und dessen wässrig lösbarere Anteile nach der Gewinnung wasserlöslich bleiben. Die Proteinphase ist zudem nahezu triglyceridfrei und weist nur geringe Restölwerte auf, hauptsächlich Polarlipide.

Das gute Milieu für Mikroorganismenwachstum durch die leichte Alkoholkonzentrati- on vereinfacht die Prozesshygiene

Der Alkohol kann verdünnt im Kreislauf gefahren werden.

Anstelle der Extraktion unerwünschter Stoffe aus dem stark entölten, feinst zerkleinerten Ausgangsmaterial Rapsschrot oder Rapskuchen -wie bei den gängigen Ver- fahren üblich-, erfolgt hier zunächst eine Abtrennung der Schalen im Nassen. Dies wird in einem mehrstufigen Prozess dadurch gelöst, dass zunächst der Kuchen aufgebrochen wird, ohne die Kernbruchstücke noch weiter zu zerkleinern.

Insbesondere ist es vorteilhaft, die Schalen möglichst groß zu belassen. Vorzugsweise sollten sie einen mittleren Durchmesser von 0,5 mm oder mehr aufweisen.

Öltröpfchen brauchen nicht größer sein, wichtig sind nicht einzelne Moleküle oder kleine Molekülverbände, sondern„Partikel".

Dann wird Wasser zugegeben und im Alkalischen wird vorsichtig gerührt. Damit wird der wasserlösliche Teil der Proteine gelöst, ein anderer Teil quillt. Die Zugabe von wässrigem Alkohol verdrängt das freie Triglycerid als spezifisch leichte Phase aus der Dispersion. Die Lecithine, insbesondere Phosphatidylcholine, sind bei geringen Alkoholkonzentrationen löslich (siehe EP 1272048 B1 und zugehörige Patentfamilie).

In dieser Kombination Lauge-wässriger Alkohol sind die zwei oder drei Phasen

1 ) Schwer = Schalen und 2) Leicht = Protein-Lecithin-Polyphenol- Kohlenhydrat zusammen mit ölhaltigem Schaum; oder 1 ) Schwer = Schalen, 2) Mitte = Protein-Lecithin-Polyphenol- Kohlenhydrat 3) Leicht = Triglycerid, vorteilhaft trennbar, so im Versuch im Becherglas oder im industriellen Maßstab vorzugsweise zentrifugal. Je besser die Abtrennung der Schalen gelingt, umso geringer sind die Proteinverluste und umso reiner ist das Endprodukt. Selbst die durch Wasserzugabe auf das bis zu 7 fache gequollene Schale ist schwerer als die Proteine in der alkoholisch- wässrigen Dispersion. Dies ist essentiell für eine Trennung durch Gravitation. Er- schwert wird die Trennung aber durch ein festes Kleben der proteinhaltigen Aleuron Körper(Wabenschicht) an den Schalen. Diese Zellen sind dickwandig. Da die Zellmembran fast aller Zellen Lecithine enthält (neben Proteinen und anderen), kann nun durch geeignete Maßnahmen das Kleben durch ein„In-Lösung-Bringen" der Lecithine minimiert werden. Konkret wird dies dadurch erreicht, dass die wässrige Phase eine Alkoholkonzentration von 5-40 Vol. % aufweist, (siehe Schritte S2-S4), idealerweise 12% bis 20%.

Entscheidend dafür ist bereits die Qualität des Ausgangsmaterials. Gewöhnlich ist bei kalt gepresstem Kuchen der Restölgehalt höher. Dies stört bei dem hier dargestellten Verfahren nicht. Im Gegenteil: Äußerst hilfreich ist die schönende Pressung, je moderater die Presstemperatur und desto geringer ist der Pressdruck, umso leichter ist eine nachfolgende Trennung von Schalen und Kotyledon (Keimblätter, das Kerninnere).

Das Verfahren ist auch mit„gewöhnlichem" d.h. heiß gepresstem Presskuchen anwendbar. Nur werden hierbei die Ausbeuten an Proteinen entsprechend geringer. Die beiliegenden Zeichnungen, Fig. 1 und Fig. 2 erläutern ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens.

Die Bereitstellung und das optionale Zerkleinern gemäß den Schritten A und B sind zur Vereinfachung nicht im Detail dargestellt.

Ausgehend von einer Zugabe von Wasser, NaOH und Ethanol, die vorzugsweise getrennt zugegeben werden, aber auch gemeinsam zugegeben werden können, erfolgt eine Trennung in eine schwere schalenhaltige Phase und in einen Oberlauf. Die weitere vorteilhafte Gewinnung von Wertstoffen aus dem Oberlauf wird insbesondere in Fig. 2 beschrieben. In Fig. 1 wird zur schweren schalenhaltigen Phase verdünnte Salzsäure HCl (Schritt F2-A) zugegeben. Die Verarbeitung erfolgte dabei Raumtemperatur auf und beispielsweise bei einem pH-Wert von 3,7.

Die nunmehr dispergierte Phase wird sodann in eine Schalenfraktion und in eine Oberlauffraktion getrennt, wie dies zuvor in Schritt F2-B beschrieben wurde.

Sodann wird die Oberlauffraktion durch Zugabe von Lauge (z.B. NaOH-Lauge oder Ca(OH)2 oder KOH ) in einen weniger sauren pH-Bereich vorzugsweise zwischen 5,5 und 7 verschoben. Je nachdem ob es rein um die Gewinnung der Phytinsäure als Phytat geht oder auch um eine zusätzliche Gewinnung von Proteinen aus dieser Fraktion entspricht die Lauge-Zugabe dem Schritt F2-B1 .

Schließlich werden analog zu den Schritten H und F2-C Feststoffe, z.B. Protein von Wasser und Phytinsäure getrennt. Optional kann eine zweite Reinigung (Trennen von Phytinsäure und Wasser in einem Schritt F2-D durchgeführt werden.

Fig. 2 zeigt die Gewinnung weiterer Wertprodukte zusätzlich zur Phytinsäure. Diese Gewinnungsschritte wurden zuvor beschrieben.