Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND APPARATUS FOR DETERMINING CHANGES IN THE LONGITUDINAL DYNAMIC BEHAVIOUR OF A RAIL VEHICLE
Document Type and Number:
WIPO Patent Application WO/2019/030022
Kind Code:
A1
Abstract:
The invention relates to a method for determining changes in the longitudinal dynamic behaviour, in particular of a chassis, of a rail vehicle for identification of a current driving state of the rail vehicle, in which, by means of a monitor (1) using control technology, quantities which are not measurable by a system model (20) of the rail vehicle and which characterise the longitudinal dynamic behaviour are reconstructed and evaluated as a monitored real reference system (10) from a known or metrologically determined input signal (u) and at least one measurement signal (y) from the monitored rail vehicle. The at least one measurement signal (y) of the monitored rail vehicle and a corresponding reconstructed measurement signal (ŷ) of the system model (20) are compared and the deviation determined by means of comparison is tracked recursively by a controller, such that the determined deviation is minimised.

Inventors:
SCHWARZ, Christoph (Bert-Brecht-Str. 27, Eching, 85386, DE)
HECKMANN, Benjamin (Riesengebirgsstr. 17, Poing, 85586, DE)
Application Number:
EP2018/070435
Publication Date:
February 14, 2019
Filing Date:
July 27, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DEUTSCHES ZENTRUM FÜR LUFT- UND RAUMFAHRT E.V. (Linder Höhe, Köln, 51147, DE)
KNORR BREMSE SYSTEME FÜR SCHIENENFAHRZEUGE GMBH (Moosacher Str. 80, München, 80809, DE)
International Classes:
B60T8/17; B60T13/66; B60T17/22
Domestic Patent References:
WO2006113954A12006-11-02
WO2015128147A12015-09-03
WO2015136137A12015-09-17
Foreign References:
DE102012004892A12013-09-12
DE102011113093A12013-03-14
Attorney, Agent or Firm:
PATENTANWÄLTE EUROPEAN PATENT UND TRADEMARK ATTORNNEYS (FINK, NumrichWendl-Dietrich-Str. 14, München, 80634, DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zum Bestimmen von Veränderungen im längsdynamischen Verhalten, insbesondere eines Fahrwerks, eines Schienenfahrzeugs zur Identifikation eines aktuellen Fahrzustandes des Schienenfahrzeugs,

dadurch gekennzeichnet, dass mittels eines regelungstechnischen Beobachters (1) aus einem bekannten oder messtechnisch ermittelten Eingangssignal (u) und zumindest einem Messsignal (y) des beobachteten Schienenfahrzeugs als beobachtetes reales Referenzsystem (10) durch ein Systemmodell (20) des Schienenfahrzeugs nicht messbare und das längsdynamische Verhalten charakterisierende Größen rekonstruiert und ausgewertet werden, wobei das zumindest eine Messsignal (y) des beobachteten Schienenfahrzeugs (10) und ein entsprechendes rekonstruiertes Messsignal (y) des Systemmodells (20) verglichen und die mittels Vergleich ermittelte Abweichung mit einem Regler rekursiv nachgeführt wird, so dass die ermittelte Abweichung minimiert wird.

Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Eingangssignal (u) zusätzlich dem Systemmodell (20) zugeführt wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Eingangssignal (u) und/oder das zumindest eine Messsignal (y) an einer oder mehreren der folgenden Komponenten erfasst werden:

einem Wagenkasten;

einem Fahrwerk des Schienenfahrzeugs;

- zumindest einem Drehgestell des Schienenfahrzeugs;

zumindest einem Radsatz des Schienenfahrzeugs.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das zumindest eine Messsignal (y) zeitgleich auf gegenüberliegenden Seiten des Fahrwerks oder des Drehgestells oder des Radsatzes erfasst wird. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als das Eingangssignal (u) ein Bremsdruck eines Bremsaktuators oder ein Bremsstrom zur Erzeugung einer das Schienenfahrzug verlangsamenden Bremskraft verarbeitet wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als das Eingangssignal (u) eine Antriebskraft oder ein Motorstrom zur Erzeugung einer das Schienenfahrzug beschleunigenden Kraft verarbeitet wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als das zumindest eine Messsignal (y) eine Drehzahl oder Drehzahländerung zumindest eines Radsatzes verarbeitet wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als das zumindest eine Messsignal (y) eine Dehnung eines eine Längskraft übertragenden Bauteils, insbesondere einer Zug-/Druckstange oder eines Drehzapfens oder eines Lemniskatenlenkers oder einer Radsatzführung, verarbeitet wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als das zumindest eine Messsignal (y) ein Federweg in einer oder mehreren Federungsstufen verarbeitet wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auswertung der das längsdynamische Verhalten charakterisierenden Größen einen Vergleich der Größen von aufeinander folgenden Fahrwerken oder Wagenkasten oder Radsätzen umfasst.

Computerprogrammprodukt, das direkt in den internen Speicher einer digitalen Steuereinheit geladen werden kann und Softwarecodeabschnitte umfasst, mit denen die Schritte gemäß einem der vorhergehenden Ansprüche ausgeführt werden, wenn das Produkt auf der Steuereinheit läuft.

Vorrichtung zum Bestimmen von Veränderungen im längsdynamischen Verhalten, insbesondere eines Fahrwerks, eines Schienenfahrzeugs zur Identifikation eines aktuellen Fahrzustandes des Schienenfahrzeugs, umfassend eine Steuereinheit und zumindest eine Sensoreinheit zur Bereitstellung eines jeweiligen Messsignals (y), wobei die Steuereinheit dazu ausgebildet ist, mittels eines regelungstechnischen Beobachters (1) aus einem bekannten oder messtechnisch ermittelten Eingangssignal (u) und dem zumindest einen Messsignal (y) des beobachteten Schienenfahrzeugs als beobachtetes reales Referenzsystem (10) durch ein Systemmodell (20) des Schienenfahrzeugs nicht messbare und das längsdynamische Verhalten charakterisierende Größen zu rekonstruieren und auszuwerten, wobei die Steuereinheit weiter dazu ausgebildet ist, das zumindest eine Messsignal (y) des beobachteten Schienenfahrzeugs (10) und ein entsprechendes rekonstruiertes Messsignal (y) des Systemmodells (20) zu vergleichen und die mittels Vergleich ermittelte Abweichung mit einem Regler rekursiv nachzuführen, so dass die ermittelte Abweichung minimiert wird.

Description:
Verfahren und Vorrichtung zum Bestimmen von Veränderungen im längsdynamischen Verhalten eines Schienenfahrzeugs

Beschreibung

Die Erfindung beschreibt ein Verfahren und eine Vorrichtung zum Bestimmen von Veränderungen im längsdynamischen Verhalten, insbesondere eines Fahrwerks, eines Schienenfahrzeugs zur Identifikation eines aktuellen Fahrzustands des Schienenfahrzeugs. Ferner betrifft die Erfindung ein Computerprogrammprodukt.

Veränderungen im längsdynamischen Verhalten von Fahrwerken in Schienenfahrzeugen sind auf variierende Verschleißzustände, Relativbewegungen zwischen einzelnen Fahrwerkskomponenten und sich ändernde Umgebungsbedingungen, wie z.B. die Umgebungstemperatur, die Temperatur einzelner Komponenten des Fahrwerks, Feuchtigkeit, Verschmutzung, zurückzuführen. Die genannten Effekte haben überwiegend zwei längsdynamisch relevante Aspekte zur Folge. Zum einen sind dies

Schwankungen des Reibwerts zwischen einer Bremsscheibe und einem der Bremsscheibe zugeordneten Bremsbelag oder einem Rad und einem dem Rad zugeordneten Bremsklotz. Zum anderen sind dies Schwankungen des Kraftschlusses zwischen einem Rad oder Radsatz und der Schiene, auf der sich das Schienenfahrzeug bewegt. Die Schwankungen der Längsdynamik können sowohl in einer Beschleunigungs- als auch in einer Bremsphase des Schienenfahrzeugs auftreten.

Hierzu ist es bei modernen Schienenfahrzeugen bekannt, eine Vielzahl von Sensoren vorzusehen und während einer Bremsung oder Beschleunigung ausgeübte Kräfte oder Momente zu erfassen. Die Kenntnis der Beschleunigungs- oder Bremskräfte oder Beschleunigungs- oder Bremsmomente kann für die Steuerung oder Regelung einer Bremsung oder Beschleunigung genutzt werden, um insbesondere Schleuder- (Durchdrehen) oder Blockierzustände von Rädern zu vermeiden und einen möglichst großen Kraftschluss zwischen und Rad und Schiene für die Bremsung oder Beschleunigung wirksam zu nutzen. Das Vorsehen einer Vielzahl von Sensoren an einem Schienenfahrzeug ist jedoch teuer und erfordert erhebliche Wartungsarbeiten, da diese unterschiedlichsten Umwelteinflüssen ausgesetzt sind.

Die Bestimmung eines potentiellen Bremsvermögens wird bei Schienenfahrzeugen üblicherweise auf der Basis von Parametern durchgeführt, die den schlimmsten zu erwartenden Zustand des Fahrzeugs darstellen, um stets ausreichend Sicherheitsreserven garantieren zu können. Dies hat den Nachteil, dass sich aus dem berechneten Bremsvermögen unter Umständen Bremsrestriktionen ergeben können, die den wirtschaftlichen Betrieb des Schienenfahrzeugs erschweren. Beispielsweise kann ein zu gering angenommenes Bremsvermögen zu einer unnötigen Geschwindigkeitsbegrenzung auf bestimmten Streckenabschnitten führen.

Aus der DE 10 2011 113 093 AI ist eine Steuereinrichtung für eine Bremsanlage eines Schienenfahrzeugs bekannt, deren Bremsanlage eine kraftschlussabhängige Reibungs- bremsvorrichtung umfasst. Die Steuereinrichtung ist dazu ausgelegt, eine während einer Bremsung ausgeübte Bremswirkung basierend auf einem Bremsdruck und mindestens einem weiteren Parameter zu bestimmen. Dadurch kann auf Bremskraftsensoren oder Bremsmomentensensoren zur Bestimmung der Bremswirkung verzichtet werden. Als weiterer Parameter wird insbesondere eine Verzögerung, eine Fahrzeuggeschwindigkeit oder mindestens eine Raddrehzahl erfasst, um basierend auf diesem die Fahrzeuggeschwindigkeit oder bei Veränderungen der Raddrehzahl eine Beschleunigung oder Verzögerung des zugeordneten Rads zu ermitteln.

Aus der WO 2015/128147 AI ist ein Verfahren bekannt, mit dem eine praxisnahe Ermittlung des Bremsvermögens ermöglicht wird. Dies erfolgt dadurch, dass ein Zu- standsmesswert ermittelt wird und bei der Berechnung des Bremsvermögens dieser Zustandsmesswert und mindestens ein weiterer Messwert herangezogen werden. Dies kann beispielsweise der Raddurchmesser oder die Fahrzeugmasse oder ein Luftdruck in der Luftfederung sein. Der weitere Messwert gibt den Zustand des Fahrzeugs oder einer Fahrzeugkomponente des Fahrzeugs an.

Existierende Kraftschlussregelungsverfahren gehen von bestimmten Annahmen bezüglich der Betriebsbedingungen im Hinblick auf die Verschmutzung der Schiene, klimatische Bedingungen und dergleichen aus und optimieren den Kraftschluss zwischen Rad und Schiene unter diesen Annahmen. Zwar können dadurch hohe Schlupfwerte vermieden werden. Jedoch wird zur Verbesserung der Adhäsion zwischen Rad und Schiene in der Regel gesandet. Dies führt wiederum zu einem erhöhten Verschleiß der Räder und Fahrschienen.

Aus der WO 2015/136137 AI ist ein Verfahren bekannt, bei dem in einem Modus ein Kraftschluss optimiert und einem anderen Modus die Schlupfleistung reduziert wird. Bei Letzterem wird der Abrieb an der Kontaktfläche zwischen dem Rad und der Fahrschiene reduziert.

Diese aus dem Stand der Technik bekannten Verfahren sind damit auf die Kenntnis bestimmter Parameter angewiesen. Dadurch können diese Verfahren in Abhängigkeit des Fahrwerks und des Fahrwerksaufbaus unter Umständen nicht zum Einsatz gelangen. Aufgrund von teilweise schnell wechselnden Reibbedingungen ist darüber hinaus ein manuelles, erfahrungsbasiertes Regeln von Brems- bzw. Antriebskraft notwendig, um Bremswege einzuhalten und den Verschleiß der Radsätze und Schienen sowie der Antriebs- und Bremskomponenten gering zu halten.

Es ist Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung anzugeben, mit denen Veränderungen im längsdynamischen Verhalten eines Schienenfahrzeugs, insbesondere eines Fahrwerks, auf einfachere Weise und unabhängig vom Fahrwerksaufbau bestimmt werden können.

Diese Aufgabe wird gelöst durch ein Verfahren gemäß den Merkmalen des Patentanspruchs 1, ein Computerprogrammprodukt gemäß den Merkmalen des Patentanspruchs 11 und eine Vorrichtung gemäß den Merkmalen des Patentanspruchs 12. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Patentansprüchen.

Es wird ein Verfahren zum Bestimmen von Veränderungen im längsdynamischen Verhalten, insbesondere eines Fahrwerks, eines Schienenfahrzeugs zur Identifikation eines aktuellen Fahrzustands des Schienenfahrzeugs vorgeschlagen. Das Verfahren zeichnet sich dadurch aus, dass mittels eines regelungstechnischen Beobachters aus einem bekannten oder messtechnisch ermittelten Eingangssignal und zumindest einem weiteren Messsignal des beobachteten Schienenfahrzeugs als beobachtetes reales Referenzsystem durch ein Systemmodell des Schienenfahrzeugs nicht messbare und das längsdynamische Verhalten charakterisierende Größen rekonstruiert und ausgewertet werden, wobei das zumindest eine Messsignal des beobachteten Schienenfahrzeugs und ein entsprechendes rekonstruiertes Messsignal des Systemmodells verglichen und die mittels Vergleich ermittelte Abweichung mit einem Regler rekursiv nachgeführt wird, so dass die ermittelte Abweichung minimiert wird.

Durch die Nutzung eines regelungstechnischen Beobachters benötigt das vorgeschla- gene Verfahren nur wenige Messsignale. Insbesondere können solche Messsignale verwendet werden, die bereits in einer konventionellen Brems- oder Antriebssteuerung verwendet werden. Das Verfahren erlaubt eine Charakterisierung der Fahrwerksdyna- mik in allen Antriebs- und Bremsszenarien, wie z.B. Vollbremsung, Betriebsbremsung und bei ausreichender Auflösung des zumindest einen Messsignals, auch Gleitschutzeingriff bei einem reibwertabhängigen Bremsen.

Die Möglichkeit, verschiedene sensorisch ermittelte Messsignale zu benutzen, erlaubt es, je nach Bauart des Fahrwerks eine einfach zugängliche und somit wartungsfreundliche und kostengünstige Ausführung zur Bestimmung von Veränderungen im längsdynamischen Verhalten zu realisieren. Durch die geringe Anzahl von benötigten Sen- soren zur Bereitstellung des zumindest einen Messsignals und der Möglichkeit, diese flexibel zu positionieren, kann der Aufwand für Sensoren und für die Verlegung von Anschlussleitungen minimiert werden.

Das Verfahren kann für die Messung von Schwankungen in der Längsdynamik von Schienenfahrzeugen, insbesondere für deren Fahrwerke (z.B. Drehgestelle), von Personenzügen verwendet werden. Eine Anwendung in Güterwagenfahrwerken ist ebenso möglich, vorausgesetzt, es ist eine Stromversorgung für die zur Bereitstellung des zumindest eines Messsignals erforderlichen Sensoreinheiten gewährleistet. Unter einem Schienenfahrzeug wird im Allgemeinen ein spurgebundenes Fahrzeug verstanden, wie eine Lokomotive, ein Triebzug, ein Triebwagen, eine Straßenbahn, ein U-Bahn-Fahrzeug, ein Wagon, wie ein Personen- bzw. Reisezug- und/oder Güterwagen. Eine zur Verzögerung des Schienenfahrzeugs genutzte Bremse kann auf eine Bremsscheibe eines Rads oder eines Radsatzes oder auf die Lauffläche eines Rades (Klotzbremse) wirken. Dabei kann die Bremse mit einem Rad, einem Radsatz oder einer Mehrzahl von Rädern wirkverbunden sein. Die Bremse kann aus einer Mehrzahl von Bauteilen oder Elementen aufgebaut sein, insbesondere kann die Bremse eine Brems- Scheibe, zumindest einen mit der Bremsscheibe wirkenden Bremsbelag, eine Bremszange, die wirkverbunden mit dem Bremsbelag ist, sowie einen Krafterzeuger umfassen. Die Bremszange kann mittels zweier Lagerstellen mit einer Konsole schwenkbar verbunden sein, wobei die zwei Lagerstellen in einem Lagerabstand voneinander angeordnet sind. Die Bremsscheibe weist eine Drehachse auf, die einen Abstand zu der (näheren) ersten der zwei Lagerstellen aufweist, wobei dieser Abstand als Einbaumaß bezeichnet werden kann. Dabei kann unter dem Einbaumaß ein horizontaler Abstand bezogen auf den Einbau verstanden werden. Die Konsole kann mit einem Chassis des Schienenfahrzeugs fest verbunden sein.

Eine Betätigung der Bremse kann in Reaktion auf ein Bremssignal erfolgen. Das Bremssignal kann ein Bremsanforderungssignal oder ein Signal einer Bremsanforderung darstellen. Bei einer Betätigung der Bremse kann ein Reibelement der Bremse, beispielsweise der Bremsbelag oder der Bremsklotz, einer bei der Drehung des Rads in Radumfangs- bzw. Radbewegungsrichtung des Rads oder Radsatzes des Schienenfahrzeugs wirkenden Kraft entgegenwirken. Auf diese Weise kann ein Bremsmoment von dem Bremsbelag auf die Bremsscheibe und somit auf das Rad oder von dem Bremsklotz auf das Rad erzeugt werden.

Die Bremse kann Teil einer pneumatischen, insbesondere einer elektropneumatischen, Bremsanlage oder einer hydraulischen, insbesondere einer elektrohydraulischen Bremsanlage sein. Eine solche Bremse kann mehrere wie oben beschriebene Bremsen umfassen. Die Bremse kann auch eine elektrisch betätigte Bremse sein, bei der ein elektrischer Bremsstrom in eine Bremskraft zur Betätigung von Reibelementen umgesetzt wird. Zweckmäßigerweise wird das Eingangssignal nicht nur dem beobachteten realen Referenzsystem, sondern zusätzlich dem Systemmodell zugeführt, damit das Systemmodell, das das beobachtete reale Referenzsystem nachbildet, das Messsignal des Systemmodells rekonstruieren kann. In einer zweckmäßigen Ausgestaltung werden das Eingangssignal und/oder das zumindest eine Messsignal an einer oder mehreren der folgenden Komponenten des Schienenfahrzeugs erfasst: an einem Wagenkasten; an einem Fahrwerk des Schienenfahrzeugs; (an zumindest einem Drehgestell des Schienenfahrzeugs;) an zumindest einem Radsatz des Schienenfahrzeugs. Die Erfassung des zumindest einen Messsignals mit einem jeweiligen Messsensor kann damit an verschiedenen Stellen des Schienen- fahrzeugs erfolgen, z.B. solchen Stellen, welche je nach Bauart des Schienenfahrzeugs oder Fahrwerks besonders einfach zugänglich und/oder vor Umwelteinflüssen geschützt sind. Dadurch lässt sich die Vorrichtung besonders wartungsfreundlich und kostengünstig realisieren. Zweckmäßigerweise ist vorgesehen, dass das zumindest eine Messsignal zeitgleich auf gegenüberliegenden Seiten des Fahrwerks oder des Wagenkastens oder des Radsatzes erfasst wird. Die Kombination zweier Sensoreinheiten an seitlich gegenüberliegenden Stellen des Fahrwerks oder des Wagenkastens oder des Radsatzes ermöglicht es, die Einflüsse einer Bogenfahrt eindeutig von längsdynamischen Effekten einer Bremsung oder Beschleunigung des Schienenfahrzeugs zu trennen.

Als das Eingangssignal können ein Bremsdruck eines Bremsaktuators oder ein Bremsstrom zur Erzeugung einer das Schienenfahrzeug verlangsamenden Bremskraft verarbeitet werden. Die Bremskraft kann dann in Abhängigkeit von einer, durch Anpressen eines durch den Bremsaktuator bewegten Bremsbelags oder Bremsklotzes auf eine Bremsscheibe oder auf ein Rad erzeugten, Normalkraft und von einem Reibwert entstehen. Hierdurch ist es möglich, Veränderungen im längsdynamischen Verhalten bei einem Bremsvorgang zu ermitteln. Wird als das Eingangssignal eine Antriebskraft oder ein Motorstrom zur Erzeugung einer das Schienenfahrzeug beschleunigenden Kraft verarbeitet, so kann ein Antriebsszenario, bei der das Schienenfahrzeug beschleunigt wird, bewertet werden.

Als das zumindest eine Messsignal kann eine Vielzahl von unterschiedlichen Mess- großen mit Hilfe eines oder mehrerer Messsensoren erfasst werden. Ebenso ist eine Kombination gleicher oder unterschiedlicher Messsignale möglich. Als das zumindest eine Messsignal kann z.B. eine Drehzahl oder Drehzahländerung zumindest eines Radsatzes erfasst werden. Die messtechnische Erfassung einer Drehzahl oder Drehzahländerung ermöglicht eine hochpräzise Bestimmung der das längs- dynamische Verhalten charakterisierenden Größen, da die Drehzahl oder Drehzahländerung unmittelbar mechanisch mit den das längsdynamische Verhalten charakterisierenden Größen zusammenhängen.

Als das zumindest eine Messsignal kann alternativ oder zusätzlich eine Dehnung eines eine Längskraft übertragenden Bauteils, insbesondere einer Zug-/Druckstange oder eines Drehzapfens oder eines Lemniskatenlenkers oder einer Radsatzführung, verarbeitet werden. Dehnungen können beispielsweise durch einen Messstreifen und andere bekannte Sensor einheiten erfasst werden. Als das zumindest eine Messsignal kann alternativ oder zusätzlich ein Federweg in einer oder mehreren Federungsstufen verarbeitet werden. Federwege können z. B. mit Hilfe von optischen Sensoreinheiten, einer Seilzugmessung oder induktiv arbeitenden Tauchankern erfasst werden. Die Auswertung der das längsdynamische Verhalten charakterisierenden Größen um- fasst gemäß einer zweckmäßigen Ausgestaltung einen Vergleich der Größen von aufeinanderfolgenden Fahrwerken oder Wagenkasten oder Radsätzen. So können Informationen von in Fahrtrichtung des Schienenfahrzeugs vorauslaufenden Fahrwerken oder Wagenkasten oder Radsätzen, wie z.B. geänderte Bedingungen bezüglich des Kontakts zwischen Rad und Schiene, als Vorhersage für nachfolgende Fahrwerke oder Wagenkasten oder Radsätze verarbeitet werden. Durch einen Vergleich der Resultate von aufeinanderfolgenden Fahrwerken oder Wagenkasten oder Radsätzen kann ermittelt werden, ob Veränderungen im längsdynamischen Verhalten streckenbedingt sind oder fahrzeugseitige Ursachen haben. Änderungen im längsdynamischen Verhalten, die zeitversetzt an mehreren Fahrwerken oder Wagenkasten oder Radsätzen auftreten, lassen auf streckenseitige Einflüsse schließen. Hierzu zählen beispielsweise witterungsbedingte Änderungen des Reibwertes beim Kontakt zwischen Rad und Schiene. Veränderungen im längsdynamischen Verhalten, die demgegenüber nur bei einzelnen Fahrwerken oder Wagenkasten oder Radsätzen auftreten, lassen auf fahr- zeugseitige Einflüsse des betreffenden Fahrwerks oder Wagenkastens oder Radsatzes schließen.

Damit erlaubt das Verfahren bezüglich des Verschleißes von Rädern oder Bremseinheiten eine kontinuierliche Überwachung, da fortwährend Änderungen im längsdynamischen Verhalten erfasst und aufgezeichnet werden (können).

Das Verfahren ist besonders für solche Schienenfahrzeuge geeignet, bei denen quasistatische Umgebungsbedingungen vorliegen oder der qualitative, zeitliche Verlauf der Änderungen bekannt ist. Obwohl es insbesondere für Fahrwerke und Radsätze von Personenzügen bevorzugt einsetzbar ist, ist eine Anwendung in Güterwagenfahrwer- ken ebenso möglich, vorausgesetzt eine Stromversorgung der Vorrichtung zum Bestimmen von Veränderungen im längsdynamischen Verhalten, insbesondere der Steuereinheit und der zumindest einen Sensoreinheit, ist sichergestellt.

Das Verfahren schafft ferner ein Computerprogrammprodukt, das direkt in den inter- nen Speicher einer digitalen Steuereinheit geladen werden kann und Softwarecodeabschnitte umfasst, mit denen die Schritte des hierin beschriebenen Verfahrens ausgeführt werden, wenn das Produkt auf der Steuereinheit läuft. Das Computerprogrammprodukt kann in Gestalt einer CD-ROM, einer DVD, eines USB-Sticks oder anderen Speichermedien verkörpert sein. Das Computerprogrammprodukt kann auch in der Form eines über ein (drahtloses oder leitungsgebundenes) Netzwerk ladbares Signal vorliegen.

Die Erfindung schafft ferner eine Vorrichtung zum Bestimmen von Änderungen im längsdynamischen Verhalten, insbesondere eines Fahrwerks, eines Schienenfahrzeugs zur Identifikation eines aktuellen Fahrzustandes des Schienenfahrzeugs. Die Vorrichtung umfasst eine Steuereinheit und zumindest eine Sensoreinheit zur Bereitstellung eines jeweiligen Messsignals. Die Steuereinheit ist dazu ausgebildet, mittels eines regelungstechnischen Beobachters aus einem bekannten oder messtechnisch ermittelten Eingangssignal und dem zumindest einen Messsignal des beobachteten Schienenfahrzeugs als beobachtetes reales Referenzsystem durch ein Systemmodell des Schienen- fahrzeugs nicht messbare und das längsdynamische Verhalten charakterisierende Größen zu rekonstruieren und auszuwerten. Die Steuereinheit ist weiter dazu ausgebildet, das zumindest eine Messsignal des beobachteten Schienenfahrzeugs und ein entsprechendes rekonstruiertes Messsignal des Systemmodells zu vergleichen und die mittels Vergleich ermittelte Abweichung mit einem Regler rekursiv nachzuführen, so dass die ermittelte Abweichung minimiert wird.

Die erfindungsgemäße Vorrichtung weist die gleichen Vorteile auf, wie diese vorstehend in Verbindung mit dem erfindungsgemäßen Verfahren beschrieben wurden. Zusammenfassend sieht die vorliegende Erfindung die Kombination verschiedener Sensorsignale in einem regelungstechnischen Beobachter vor. Mittels des regelungstechnischen Beobachters ist es möglich, durch die Synthese eines bekannten oder messtechnisch ermittelten Eingangssignals und zumindest eines Messsignals sowie einer modellbasierten Schätzung der Dynamik des Schienenfahrzeugs eindeutig den ak- tuellen Fahrzustand des Schienenfahrzeugs zu identifizieren. Die anhand des modellbasierten Ansatzes ermittelte Dynamik des Fahrwerks des Schienenfahrzeugs wird über einen Abgleich mit den messtechnisch erfassten Messsignalen rekursiv ange- passt, so dass die berechnete Dynamik mit der tatsächlichen Dynamik des Schienenfahrzeugs korreliert. Das Verfahren erlaubt eine Charakterisierung der Fahrwerksdy- namik in allen Antriebs- und Bremsszenarien, wie z.B. Vollbremsung, Betriebsbremsung sowie Gleitschutzeingriff bei reibwertabhängigem Bremsen.

Die Erfindung wird nachfolgend näher anhand eines Ausführungsbeispiels erläutert. Es zeigen: Fig. 1 eine schematische Darstellung eines Blockschaltbilds eines regelungstechnischen Beobachters, wie er in dem erfindungsgemäßen Verfahren zum Einsatz kommt;

Fig. 2 eine graphische Darstellung, die einen Vergleich eines tatsächlichen und eines mittels des erfindungsgemäßen Verfahrens ermittelten Reibwerts in Abhängigkeit der Zeit zeigt; und

Fig. 3 eine Graphik, welche eine zeitabhängige, translatorische Längsgeschwindigkeit des Schienenfahrzeugs in Abhängigkeit des in Fig. 2 gezeigten Reibwertverlaufs zeigt.

Das nachfolgend beschriebene Verfahren zum Bestimmen von Veränderungen im längsdynamischen Verhalten kommt bei einem in den Figuren nicht näher gezeigten Schienenfahrzeug zum Einsatz. Ein solches Schienenfahrzeug weist ein oder mehrere Glieder auf, die miteinander beweglich verbunden sind. Zum Verbinden der Fahrzeugglieder ist eine Kopplungsvorrichtung vorgesehen. Je nach Ausgestaltung des Schienenfahrzeugs, kann jedes Fahrzeugglied zwei Fahrwerke aufweisen, an denen jeweils zumindest ein Radsatz vorgesehen ist. Alternativ kann ein Schienenfahrzeug mit zwei Fahrzeuggliedern auch drei Fahrwerke aufweisen, an denen jeweils zumindest ein Radsatz vorgesehen ist. Üblicherweise umfasst ein Fahrwerk zwei Radsätze. An den Radsätzen der Fahrwerke sind jeweils Räder vorgesehen, die auf einer Schiene laufen.

An dem Schienenfahrzeug kann eine Vielzahl von Sensor einheiten (kurz: Sensoren) vorgesehen sein. Das Schienenfahrzeug kann z.B. einen oder mehrere Sensoren zur Bestimmung der Fahrzeuggeschwindigkeit und/oder einer Beschleunigung oder Verzögerung des Schienenfahrzeugs in Fahrzeuglängsrichtung aufweisen. Die Beschleunigung kann eine positive Beschleunigung in Folge einer das Schienenfahrzeug beschleunigenden Kraft oder eine negative Beschleunigung in Folge einer das Schienenfahrzeug verlangsamenden Bremskraft sein. Die (positive oder negative) Beschleunigung kann eine Gesamtbeschleunigung des Schienenfahrzeugs sein. Ist ein Beschleunigungssensor an einem jeweiligen Fahrzeugglied angebracht, kann die Beschleunigung auch die jeweilige (positive oder negative) Beschleunigung des jeweiligen Fahrzeugglieds sein. Die Beschleunigung kann beispielsweise eine an einem Fahrwerk oder an einem Wagenkasten des Schienenfahrzeugs auftretende Verzögerung sein. Die Beschleunigung kann basierend auf Geschwindigkeitsdaten bestimmt werden. Aus einem zeitlichen Verlauf und/oder einer Änderung der Fahrzeuggeschwindigkeit lässt sich auf die Verzögerung schließen. Dabei kann die Verzögerung dadurch bestimmt werden, dass der Verlauf der Geschwindigkeit in Zeitabschnitten betrachtet wird, die kleiner sind als die Dauer einer (positiven oder negativen) Beschleunigung. Es kann somit vorgesehen sein, dass jedem Fahrzeugglied und/oder jedem Fahrwerk mindestens ein Beschleunigungssensor zugeordnet ist. Derartige Sensoren sind häufig zur Überwachung von Fahrtzuständen vorgesehen, so dass bereits vorhandene Sensoren verwendet werden können, um die (positive oder negative) Beschleunigung zu bestimmen.

Zum Bestimmen der Fahrzeuggeschwindigkeit können beispielsweise eine Radaranlage, eine optische Sensoreinrichtung und/oder eine Kommunikationseinrichtung zum Empfangen von Satellitendaten vorgesehen sein, mit welcher eine Steuereinrichtung des Schienenfahrzeugs verbindbar oder verbunden sein kann.

Darüber hinaus können Sensoren zur Bestimmung von Drehzahlen und Drehzahländerungen zumindest eines Radsatzes vorgesehen sein. Die Bestimmung der Raddrehzahl kann beispielsweise zur Bestimmung einer Bremswirkung verwendet werden und ist in vielen Schienenfahrzeugen bereits verbaut. Ebenso ist vorstellbar, dass die Fahr- zeuggeschwindigkeit basierend auf Raddrehzahldaten bestimmt wird. Dabei kann aus einzelnen Rädern oder Radsätzen zugeordneten Raddrehzahldaten eine dem zugeordneten Rad oder der zugeordneten Radachse zugeordnete Geschwindigkeit, beispielsweise eine Umlaufgeschwindigkeit oder Radgeschwindigkeit, bestimmt werden. Neben Raddrehzahldaten kann der Radius des Rads berücksichtigt werden. Aus einer Raddrehzahländerung zumindest eines Radsatzes kann beispielsweise auf eine (positive oder negative) Beschleunigung bei einem zugeordneten Radsatz oder einer zugeordneten Radachse geschlossen werden. Ein derartiges Schienenfahrzeug kann mit Sensoreinheiten zur Erfassung von Nickbewegungen einzelner Bauteile um die Fahrzeugquerachse versehen sein. Derartige Sensoreinheiten sind vorzugsweise einer jeweiligen Fahrzeugquerachse zugeordnet. Beispielsweise können hierzu Beschleunigungssensoren verwendet werden, welche eine Beschleunigung um die Fahrzeugquerachse erfassen.

Das Schienenfahrzeug kann darüber hinaus mit zumindest einer Sensoreinheit versehen sein, welche einen Federweg in jeweiligen Federungsstufen eines Fahrzeugglieds des Schienenfahrzeugs erfasst. Derartige Sensoren können optisch, mittels Seilzugmessung oder durch induktive Tauchanker realisiert sein.

Mittels Längskraftsensoren, z.B. Dehnungsmessstreifen, können Dehnungen von längskraftübertragenden Bauteilen ermittelt werden. Eine derartige Sensoreinheit kann einer jeweiligen Zug-/Druck-Stange, einem jeweiligen Drehzapfen oder Lemniskaten- lenker oder einer jeweiligen Radsatzführung zugeordnet sein.

Ferner können den Fahrwerken oder den an den Fahrwerken angeordneten Reibbremseinrichtungen einer kraftschlussabhängigen Reibungsbremsvorrichtung zugeordnete Bremsdrucksensoren oder Bremsstromsensoren und/oder Bremswirkungssensoren wie Bremskraft- oder Bremsmomentsensoren vorgesehen sein. Allgemein kann ein Bremsdrucksensor oder Bremsstromsensor als einer Reibbremseinrichtung zugeordnet angesehen werden, wenn er es vermag, einen individuell die Reibbremseinrichtung betätigenden Bremsdruck oder Bremsstrom zu erfassen. Ein Bremskraftsensor oder ein Bremsmomentsensor kann als einer Reibbremseinrichtung oder einem durch die Reibbremseinrichtung zu bremsenden Radsatz zugeordnet angesehen werden, wenn er es vermag, eine durch die Reibbremseinrichtung ausgeübte Bremskraft oder ein entsprechendes Bremsmoment zu erfassen. Mittels des nachfolgend beschriebenen regelungstechnischen Beobachters ist es möglich, die in einem Zugverband eines Schienenfahrzeugs häufig unterschiedlichen Fahr- werksaufbauten mit einem einheitlichen Modell-basierten Algorithmus abzubilden. Eine eindeutige Abschätzung der Fahrwerksdynamik des Schienenfahrzeugs kann durch eine Kombination einer Mehrzahl von Messsignalen sichergestellt werden.

Fig. 1 zeigt ein Blockschaltbild des grundlegenden Aufbaus eines regelungstechnischen Beobachters 1 , mit dessen Hilfe das Verfahren zum Bestimmen von Verände- rungen im längsdynamischen Verhalten des Schienenfahrzeugs durchgeführt wird. In einer dem Fachmann bekannten Weise besteht der regelungstechnische Beobachter 1 aus einem Systemmodell 20 des Schienenfahrzeugs sowie einer Einheit 26 zur Gewichtung des Vergleichsergebnisses von dem Systemmodell 20 und einem beobachteten realen Referenzsystem 10. Die Dynamik des beobachteten realen Referenzsys- tems 10, d.h. des beobachteten Schienenfahrzeugs, wird durch ein Eingangssignal u beeinflusst, das dem beobachteten realen Referenzsystem 10 an einem ersten Eingang 11 zugeführt wird. Das Eingangssignal u ist ein messbares Signal. Im Falle einer Bremsung des Schienenfahrzeugs mit Reibungsbremsen kann das Eingangssignal u einem Bremsdruck der Bremsanlage/-einrichtung entsprechen. Erfolgt die Bremsung mit Hilfe einer elektrischen Bremse, so kann das Eingangssignal ein Bremsstrom zur Erzeugung einer das Schienenfahrzeug verlangsamenden Bremskraft sein. Soll demgegenüber eine Veränderung im längsdynamischen Verhalten aufgrund einer Beschleunigung erfasst werden, so kann das Eingangssignal u eine Antriebskraft oder ein Motorstrom zur Erzeugung der das Schienenfahrzeug beschleunigenden Kraft sein.

Die Dynamik des beobachteten realen Referenzsystems 10 ist durch Zustände x beschrieben, x kann dabei ein Vektor mit einer Vielzahl verschiedener Zustände sein. Da das beobachtete reale Referenzsystem 10 mit zumindest einer, wie oben beschriebenen Sensoreinheit versehen ist, wird zumindest ein Messsignal y an einem Ausgang 13 zur Verfügung gestellt, y kann dabei ein Vektor sein, dessen Anzahl an Vektoreinträgen der Anzahl an (realen) Messsignalen entspricht. Die dabei erfassten Messsignale können von Sensoreinheiten des gleichen und/oder eines unterschiedlichen Typs stammen.

Das beobachtete reale Referenzsystem 10, d.h. das Schienenfahrzeug, kann ferner durch nicht messbare Störungen z angeregt werden. Diese nicht messbaren Störungen z werden dem Referenzsystem 10 an einem zweiten Eingang 12 zugeführt. Als Störgröße z sind alldiejenigen Einflüsse zu verstehen, die den Reibwert zwischen Rad und Schiene und/oder zwischen Bremsbelag und Bremsscheibe und/oder Bremsklotz und Rad beeinflussen. Darunter fallen auch diejenigen Einflüsse, die den Reibradius, d.h. den Angriffspunkt eines Bremsbelags an der Bremsscheibe, beeinflussen. Ferner kann ein sich änderndes Gesamtgewicht infolge eines sich ändernden Beladungszustands des Referenzsystems 10, d.h. des Schienenfahrzeugs, als eine Störgröße z auftreten.

Das Systemmodell 20 stellt ein Modell des dynamischen Verhaltens des Referenzsys- tems 10, d.h. des Schienenfahrzeugs, dar. Das Systemmodell 20 kann beispielsweise durch eine Software gebildet sein. Das Systemmodell 20 wird, wie das Referenzsystem 10, durch das Eingangssignal u gesteuert. Das Eingangssignal u wird dem Systemmodell 20 an einem ersten Eingang 21 zugeführt. Das Systemmodell 20 ermittelt Werte für das zumindest eine rekonstruierte Messsignal y, welches, z.B. ebenfalls als Vektor, an einem ersten Ausgang 22 zur Verfügung gestellt wird. Ein jeweils rekonstruierter Vektoreintrag des Messsignals y ist einem messtechnisch ermittelten Vektoreintrag des Messsignals y des Referenzsystems 10 zugeordnet.

Nachdem das Systemmodell 20 in der Regel nicht die gesamte Dynamik des Referenz- Systems 10 abbilden kann und zudem das Referenzsystem 10 durch die nicht messbaren Störgrößen z beeinflusst wird, weicht das dynamische Verhalten des Systemmodells 20 a priori vom realen Verhalten des Referenzsystems 10 ab. Aus diesem Grund, erfolgt ein Vergleich des zumindest einen rekonstruierten Messsignals y (d.h. dessen Vektoreinträge) mit dem messtechnisch ermittelten zumindest einen Messsignal y (d.h. den zugeordneten Vektoreinträgen), das an dem Ausgang 13 des Referenzsystems 10 zur Verfügung gestellt wird. Diese beiden Messsignale werden einem Vergleicher 25 zugeführt, welcher eine Differenzbildung vornimmt. Die Abweichung (y-y) wird einer Einheit 26 zur Gewichtung des Vergleichsergebnisses zugeführt. Die mit L gewichtete Rückführung der Abweichung (y-y) wird dem Systemmodell 20 an einem zweiten Eingang 24 zur Verfügung gestellt. Die Gewichtung durch die Einheit 26 erfolgt derart, dass das von dem Systemmodell 20 berechnete Verhalten des rekonstruierten Messsignals y nach einer gewissen Zeit mit dem real gemessenen zumindest einen Messsignal y übereinstimmt, d.h. die Abweichung nach einer gewissen Zeit zu Null wird. Dieser Vorgang wird automatisiert und rekursiv durchgeführt. An einem zweiten Ausgang 23 des Systemmodells 20 können dann die gewünschten dynamischen Größen x, welche das längsdynamische Verhalten des Schienenfahrzeugs repräsentieren, ausgelesen werden. Dies sind beispielsweise nicht messbare Größen, wie z.B. Geschwindigkeiten sowie Reibwerte zwischen Rad und Schiene sowie zwischen Bremsbelag und Bremsscheibe, Bremskräfte und Bremsmomente und dergleichen. Ferner können an einem dritten Ausgang 27 des Systemmodells 20 die Störgrößen z ausgelesen werden.

Die Fig. 2 und 3 zeigen anhand von Simulationsergebnissen das Ergebnis des Verfahrens anhand eines Bremsvorgangs. Fig. 2 zeigt dabei den Reibwertverlauf μ(ί) zwi- sehen Bremsbelag und Bremsscheibe in Abhängigkeit der Zeit t. Fig. 3 zeigt die Veränderung der Längsgeschwindigkeit v(t) in Abhängigkeit des gleichen Zeitraums. Dargestellt ist ein Zeitraum von t = 30s bis t = 80s. Es wird davon ausgegangen, dass innerhalb des Zeitraums von t = 35s bis t = 80s ein Schienenfahrzeugradsatz mit einem konstanten Bremsdruck gebremst wird. Die in den Fig. 2 und 3 mit durchgezogener Linie dargestellten Verläufe ζ μ , x v zeigen jeweils die zeitlichen Verläufe des Streckenmodells, während die durchbrochen dargestellten Linien berechnete Werte ζ μ , χ^, des Systemmodells 20 darstellen. In diesem Beispiel wird davon ausgegangen, dass neben der Radsatzdrehzahl ω die translatorische Längsgeschwindigkeit v eines Radsatzes gemessen wird, d.h. als Messsignale y an dem Ausgang 13 des Referenzsystems 10 zur Verfügung stehen. Fig. 2 zeigt den zeitlichen Verlauf des Reibwertes μ zwischen dem Bremsbelag und der Bremsscheibe, wie er sich aufgrund von schwankenden Einflüssen während der Bremsung mit konstantem Bremsdruck ergibt. Die dargestellte Schwankung des tatsächlichen Reibwerts (durchgezogene Linie) wird anhand der oben beschriebenen Rückführung der Abweichung (y-y) und der (durch numerische Simulation, Versuche oder Berechnung) gewählten Auslegung der Einheit 26 zur Gewichtung des Vergleichsergebnisses von dem Systemmodell abgebildet. Die Längsgeschwindigkeit v als einer der Zustände x des Referenzsystems 10 und als eine der das längsdynamische Verhalten charakterisierenden Größen x des Systemmodells 20 ist in Fig. 3 illustriert. Die Rückführung der Abweichung (y-y) des am Ausgang 13 verfügbaren gemessenen Messsignals y und des rekonstruierten Messsignals y am ersten Ausgang 22 des Systemmodells führt dazu, dass die von dem Systemmodell 20 berechnete Bewegung mit dem tatsächlichen Systemverhalten korreliert. Der Effekt des verminderten Reibwerts μ zwischen t = 40s und t = 70s führt dazu, dass die Längsgeschwindigkeit v im genannten Zeitbereich weniger schnell abnimmt, was zu einem verlängerten Bremsweg führt und somit ein Sicherheitsrisiko darstellen kann.

Im gezeigten Beispiel erlaubt die Anwendung des Verfahrens den nötigen Bremsdruck auf Grundlage des berechneten Reibwerts μ zwischen Bremsbelag und Bremsscheibe zu bestimmen, der zur Einhaltung eines vorgeschriebenen Bremswegs notwendig ist. Diese Bestimmung erfolgt in einer Steuereinheit, dessen Ausgestaltung und Verfahren nicht Gegenstand der vorliegenden Erfindung ist. Des Weiteren lässt die Kenntnis des Reibwerts μ Rückschlüsse auf den Verschleißzustand des Bremsbelags zu, was eine zustandsorientierte Wartung ermöglicht.

Die so ermittelten Informationen von vorlaufenden Radsätzen oder Fahrwerken oder Wagenkästen können in geeigneter Weise als Vorhersage für nachfolgende Radsätzen oder Fahrwerke oder Wagenkästen zur Verfügung gestellt werden. Diese Auswertung erfolgt ebenfalls in einer Steuereinheit und ist nicht Gegenstand der vorliegenden Betrachtung. Durch einen Vergleich der Resultate von aufeinanderfolgenden Radsätzen oder Fahrwerken oder Wagenkästen wird dann ersichtlich, ob es sich um streckenbedingte Einflüsse oder um fahrzeugseitige Effekte handelt. Änderungen, die zeitversetzt an mehreren Sensor einheiten detektiert werden, lassen auf streckenseitige Ein- fiüsse schließen. Schwankungen, die nur bei einzelnen Sensoreinheiten auftreten, lassen demgegenüber auf fahrzeugseitige Einflüsse schließen.

Bezugszeichenliste

I regelungstechnischer Beobachter

10 beobachtetes reales Referenzsystem

I I erster Eingang für Eingangssignal u

12 zweiter Eingang für Störsignal z

13 Ausgang für Messsignal y

20 Systemmodell

21 erster Eingang für Eingangssignal u

22 erster Ausgang für rekonstruiertes Messsignal y

23 zweiter Ausgang für beobachtete Größe(n) x

24 zweiter Eingang

25 Vergleicher

26 Einheit zur Gewichtung des Vergleichsergebnisses

27 dritter Ausgang für rekonstruierte Störgröße(n) z u Eingangssignal

y Messsignal

x Zustandsgröße

y rekonstruiertes Messsignal

x rekonstruierte Zustandsgröße

z Störgröße

z rekonstruierte Störgröße