Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND APPARATUS FOR ELIMINATING DRILL EFFECT IN PULSE INDUCTION MEASUREMENTS
Document Type and Number:
WIPO Patent Application WO/2009/117591
Kind Code:
A2
Abstract:
A method and apparatus provide a time-dependent calibration to essentially eliminate pipe effect in pulse-induction logging while drilling. Use of two receivers to provide calibration and measurement information allows determination of formation properties in a downhole environment while eliminating the effect of tool effects.

Inventors:
ITSKOVICH GREGORY B (US)
CHEMALI ROLAND E (US)
Application Number:
PCT/US2009/037688
Publication Date:
September 24, 2009
Filing Date:
March 19, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAKER HUGHES INC (US)
ITSKOVICH GREGORY B (US)
CHEMALI ROLAND E (US)
International Classes:
E21B47/02; G01V3/08; G01V3/10; G01V3/28
Foreign References:
US20050046424A1
US20040090234A1
Attorney, Agent or Firm:
CARSON, Matt et al. (P.o. Box 4740Houston, TX, US)
Download PDF:
Claims:

CLAIMS

We claim:

1. A method of substantially eliminating drill effect on downhole pulse induction resistivity measurements of a formation with a tool comprising a transmitter, a first receiver, and a second receiver, comprising transmitting a time-dependent calibration signal via said transmitter, obtaining first and second time-dependent calibration responses from said first receiver and said second receiver, respectively, combining said first and second calibration responses to determine a time-dependent calibration coefficient, running said tool into a downhole environment, transmitting a time-dependent measurement signal via said transmitter, obtaining first and second time-dependent measurement responses from said first receiver and said second receiver, combining said measurement responses with said calibration coefficient to produce a calibrated measurement value representing a quality of the formation, and determining a property of the formation from said calibrated measurement value.

2. The method of claim 1, wherein the step of combining said first and second calibration responses to determine a time-dependent calibration coefficient comprises determining the time-dependent ratio of said first and second calibration responses.

3. The method of claim 1, wherein the step of combining said measurement responses with said calibration coefficient to produce a calibrated measurement value comprises the step of determining the time-dependent product of said calibration coefficient and said second measurement response.

4. The method of claim 3, wherein the step of combining said measurement responses with said calibration coefficient to produce a calibrated measurement value comprises the step of subtracting the product of said calibration coefficient and said first measurement response from said second measurement response.

5. The method of claim 1, additionally comprising the step of placing said first and second receivers on said tool in the same longitudinal direction relative to said transmitter.

6. The method of claim 1, additionally comprising the step of placing said first and second receivers on said tool in opposing longitudinal directions relative to said transmitter.

7. The method of claim 1, additionally comprising the step of placing said first and second receivers on said tool asymmetrically relative to said transmitter.

8. A method of substantially eliminating drill effect on downhole pulse induction resistivity measurements of a formation around a borehole, comprising providing a tool comprising a transmitter, a first receiver, and a second receiver, placing said tool within a pipe outside of the formation, sending a time-dependent signal via said transmitter, receiving a first calibration signal Ci(t) at said first receiver, receiving a second calibration signal C 2 (t) at said second receiver, recording said first and second calibration signals, running said tool into a downhole environment, sending a time-dependent signal via said transmitter, receiving a first induction measurement signal Si(t) at said first receiver, receiving a second induction measurement signal S 2 (t) at said second receiver, combining said first calibration signal, second calibration signal, first induction measurement signal, and second induction measurement signal into a differential signal δS(t), wherein

δS(t)= S 2 (t) - (S 1 (O • C 2 (t) / C 1 (O), and determining a property of the formation from δS(t).

9. The method of claim 8, additionally comprising the step of placing said first and second receivers on said tool in the same longitudinal direction relative to said transmitter.

10. The method of claim 8, additionally comprising the step of placing said first and second receivers on said tool in opposing longitudinal directions relative to said transmitter.

11. The method of claim 8, additionally comprising the step of placing said first and second receivers on said tool asymmetrically relative to said transmitter.

12. An apparatus for determining a property of a formation surrounding a borehole while essentially eliminating drill effect in logging while drilling measurements, comprising, a tool comprising a transmitter, a first receiver, and a second receiver, wherein said transmitter can induce time-dependent currents in the formation, and a processor that determines a property of the formation by combining a time- dependent calibration function with time-dependent measurements received from said first receiver and said second receiver, wherein said measurements result from currents induced in the formation by said transmitter.

13. The apparatus of claim 12, wherein said first receiver and said second receiver are attached to said tool in the same longitudinal direction relative to said transmitter.

14. The apparatus of claim 12, wherein said first receiver and said second receiver are attached to said tool in opposing longitudinal directions relative to said transmitter.

15. The apparatus of claim 12, wherein said first receiver and said second receiver are attached to said tool asymmetrically relative to said transmitter.

16. The apparatus of claim 12, wherein said processor determines said time dependent calibration function from pulse induction measurements taken with said tool in the presence of a pipe but outside of the formation.

17. The apparatus of claim 12, wherein said processor determines said time dependent calibration function by determining the ratio of time-dependent calibration measurements from said first receiver and said second receiver.

18. The apparatus of claim 12, wherein said processor determines a distance in the formation to one of (a) a gas-oil interface, (b) a water-oil interface, or (c) a gas-water interface.

19. The apparatus of claim 12, wherein said processor determines a distance to a bed boundary.

20. The apparatus of claim 12, wherein said tool comprises a conductive body.

Description:

METHOD AND APPARATUS FOR ELIMINATING DRILL EFFECT IN

PULSE INDUCTION MEASUREMENTS INVENTORS: Gregory B. Itskovich and Roland E. Chemali

FIELD OF THE INVENTION

The invention concerns reduction of the drill effect on transient induction measurements by use of a calibration technique.

BACKGROUND OF THE INVENTION Use of pulse induction logging while drilling ("LWD") resistivity measurements in downhole environments provides information about formations surrounding the borehole. Use of such techniques allows the continuation of drilling while acquiring information needed for drill steering, or to determine proximity to formation interfaces, such as gas-oil, gas-water, or water-oil interfaces. United States Patent No. 7,167,006 ("the '006 patent") to Itskovich, the specification of which is incorporated herein by reference, describes an apparatus and method for a pulse induction LWD system using a multi-receiver array. Use of that invention provides improved resolution of signals, allowing resolution of signals that would otherwise be unresolvable. This improved resolution is accomplished in that case by acquiring a calibration signal while the measurement tool is outside of the formation, and subtracting the calibration signal from the measurement signal obtained while the tool is in the downhole environment.

While the calibration technique of the '006 patent provides improved resolution, still further improvements in pulse induction LWD measurements are possible. Use of two receivers in the tool can allow time-dependent calibration signals to be acquired from both receivers. These calibration signals can then be combined to create a time-dependent calibration coefficient. When pulse induction LWD measurements are taken downhole, the measurement signals received by the two receivers can be combined with the calibration coefficient to generate a time-dependent differential measurement signal. This high resolution signal provides an improved ability to resolve interfaces in the formation surrounding the borehole.

Accordingly, it is an object of the invention to provide improved resolution of boundary locations in formations surrounding boreholes.

It is another object of the invention to provide measurements of boundaries in formations for use in real-time geo-steering of drilling operations. It is yet another object of the invention to provide measurements to determine the location of interfaces in a formation, such as gas-water, gas-oil, or water-oil interfaces.

SUMMARY OF THE INVENTION

The invention comprises a method and apparatus for substantially eliminating the drill effect in pulse induction LWD resistivity measurements. A multi-stage method comprises a first calibration stage and a second measurement stage. The apparatus used in performing these measurements comprises a transmitter and two receivers. The receivers are longitudinally separated from the transmitter on the tool, and may be placed on the same side of the transmitter or may be placed on opposite sides of the transmitter. In a preferred embodiment, the transmitter and the receivers are mounted on a conductive section, covered with a ferrite shield.

Spacing between the receivers and the transmitter is primarily a matter of engineering choice. However, if the tool is to be used in a geo-steering application, it is important to avoid symmetrical placement of the receivers relative to the transmitter. In the event that the borehole runs parallel to a boundary, such as a water-oil boundary, symmetrical placement of the receivers relative to the transmitter could result in a zero-signal result using the calibration method of this invention.

In accordance with the invention, while outside of the formation, the tool is placed in the presence of a pipe and pulse induction measurements are made by inducing a time- dependent current in the transmitter. Time-dependent calibration signals are obtained and recorded from each of the receivers. These calibration signals provide information reflecting the effects of the pipe at the receivers. The calibration phase thus provides time-dependent calibration signals Q(t) and C 2 (X). These signals can be recorded in a processor, such as a computer. Once the calibration information is recorded, the tool may be run downhole to a position within a formation to be tested. Pulse induction resistivity measurements can then

be made, again by inducing a time-dependent current in the transmitter, and utilizing the same pulse heights and timing as with the calibration phase. The two receivers will thus produce time-dependent measurement responses Si(t) and S 2 (t). Providing these signals to the processor storing the calibration information allows the resolution of a time-dependent differential signal δS(t)= S 2 (t) - (S 1 (Q • C 2 (t) / C 1 (O). This differential signal is substantially unaffected by the pipe and allows determination of parameters of the surrounding formation.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic drawing of one embodiment of a tool of the present invention. Fig. 2 is a graph depicting modeling results of a pulsed induction measurement for a tool with a transmitter and a single receiver at a spacing of 0.5 meter.

Fig. 3 is a graph depicting modeling results of a pulsed induction measurement for a tool with a transmitter and a single receiver at a spacing of 2 meters.

Fig. 4 is a graph depicting the results of applying the present invention by combining the results of the tests depicted in Figs. 2 and 3.

DETAILED DESCRIPTION

Referring to Fig. 1, a schematic representation of a tool of the present invention is shown. Tool 10 comprises a mandrel 12, preferably with a conductive body of a material such as ferrite. A transmitter 14 is spaced longitudinally away from a first receiver 16 and a second receiver 18. Transmitter 14 is electrically connected via connection 20 to a processor, such as a computer, 22 which provides the current pulses used in the LWD resistivity measurements. First receiver 16 and second receiver 18 are connected to processor 22 via connections 24 and 26, respectively. Processor 22 stores calibration information and processes received signals during pulsed induction measurements, and may optionally be used to control the steering of a drill bit. Those of skill in the art will recognize that processor 22 may embody one or more computers, and may be controlled via a user interface or programmed for automatic operation.

The spacing d between first receiver 16 and second receiver 18 is a matter of engineering preference, and these receivers may optionally be placed on opposite sides of transmitter 14. However, as noted above, the receivers should not be symmetrically placed

about transmitter 14 in a geo-steering application, because application of the present invention may result in zero signal in this configuration if the borehole parallels a water-oil boundary.

Referring to Fig. 2, modeling results are shown for a first receiver (such as first receiver 16 of Fig. 1) spaced at 0.5 meter from a transmitter (such as transmitter 14 of Fig. 1). The results are modeled for a boundary between two layers of resistivities of 50 ω • m and 2 ω • m, respectively. The model includes a conductive pipe with resistance of 0.714 • 10 "6 ω • m, and a ferrite nonconductive shield of length 1.5m and μ=400. First calibration curve 210 reflects the signal from the pipe alone in the absence of a formation. First measurement curve 212 reflects the signal from the formation with a boundary spaced four meters from the tool. Second measurement curve 214 reflects the signal from the formation with a boundary spaced six meters from the tool. Third measurement curve 216 reflects the signal from the formation with a boundary spaced eight meters from the tool, and fourth measurement curve 218 reflects the signal from the formation with a boundary spaced ten meters from the tool. The second, third, and fourth measurement curves are insufficiently resolved to provide meaningful information.

Similarly, referring to Fig. 3, measurement curves are modeled for the same formation and pipe parameters as in Fig. 2, but with a second receiver (such as second receiver 18 of Fig. 1) spaced at 2 meters from a transmitter (such as transmitter 14 of Fig. 1). Second calibration curve 310 reflects the signal from the pipe alone in the absence of a formation. Fifth measurement curve 312 reflects the signal from the formation with a boundary spaced four meters from the tool. Sixth measurement curve 314 reflects the signal from the formation with a boundary spaced six meters from the tool. Seventh measurement curve 316 reflects the signal from the formation with a boundary spaced eight meters from the tool, and eighth measurement curve 318 reflects the signal from the formation with a boundary spaced ten meters from the tool. Similarly to Fig. 2, the sixth, seventh, and eighth measurement curves are insufficiently resolved to provide meaningful information.

However, application of the method of the present invention to the data of Figs. 2 and 3 provides a more meaningful result, as reflected in Fig. 4. Four calculated curves 410, 412, 414, and 416 are depicted as calculated for the boundary spacings of 4, 6, 8, and 10 meters, respectively. These curves are calculated by determining, for each curve,

δS(t)= S 2 (t) - (Si(t) . C 2 (t) / Ci(t)).

For example, for the four meter boundary distance curve, Si(t) is depicted by first measurement curve 212 of Fig. 2, and S 2 Ct) is depicted by fifth measurement curve 312 of Fig. 3. For each of the four curves, Ci(t) is first calibration curve 210 of Fig. 2, and C 2 (t) is depicted by second calibration curve 310 of Fig. 3. The time-dependent calibration coefficient C 2 (t) / Ci(t) is shown in Fig. 4 as curve 418. As reflected in Fig. 4, application of the present invention to these curves produces adequate resolution to allow determination of boundary locations at each of the 4, 6, 8, and 10 meter positions.

The above examples are included for demonstration purposes only and not as limitations on the scope of the invention. Other variations in the construction of the invention may be made without departing from the spirit of the invention, and those of skill in the art will recognize that these descriptions are provided by way of example only.