Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND APPARATUS FOR FORMING A REINFORCING BEAD IN A CONTAINER END CLOSURE
Document Type and Number:
WIPO Patent Application WO/2007/005564
Kind Code:
A2
Abstract:
A metallic container end closure is provided which includes a channel or groove in a predetermined location in at least one of an inner panel wall, outer panel wall, or chuckwall, and which is formed by a shaping tool. An apparatus and method for spin-forming the end closure with the improved geometry is also provided herein.

Inventors:
JENTZSCH KEVIN REED (US)
CHASTEEN HOWARD (US)
JACOBER MARK A (US)
Application Number:
PCT/US2006/025500
Publication Date:
January 11, 2007
Filing Date:
June 29, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BALL CORP (US)
JENTZSCH KEVIN REED (US)
CHASTEEN HOWARD (US)
JACOBER MARK A (US)
International Classes:
B65D6/28; B21D51/30; B65D17/34
Domestic Patent References:
WO2002068281A12002-09-06
Foreign References:
US6065634A2000-05-23
US5685189A1997-11-11
US6460723B22002-10-08
US34053503A2003-01-10
US2094404A2004-12-23
EP0049020A11982-04-07
US20020158071A12002-10-31
Other References:
See also references of EP 1907150A4
Attorney, Agent or Firm:
KUGLER, Bruce, A. et al. (1560 Brodway Suite 120, Denver CO, US)
Download PDF:
Claims:

1. A method for altering the geometry of a metallic end closure which is adapted for interconnection to a neck of a container, comprising: a) providing a metallic end closure comprising a peripheral cover hook, a chuck-wall extending downwardly therefrom, a countersink having an outer panel wall interconnected to a lower end of the chuck wall, and an inner panel wall interconnected to a central panel; b) providing a shaping tool which rotates around a central axis, said shaping tool having an outer surface with a predetermined shape; c) positioning said outer surface of said shaping tool in contact with at least one of the inner panel wall, the outer panel wall and the chuck wall, wherein a predetermined shape is created in said end closure.

2. The method of Claim 1 , further comprising a reforming tool which is positioned in an opposing relationship to said shaping tool, said reforming tool further comprising a predetermined geometry to form a preferred shape in said metallic end closure.

3. The method of Claim 2, wherein said reforming tool forms a preferred geometry in an outer panel wall and said shaping tool forms a preferred shape in said inner panel wall.

4. The method of Claim 1 , wherein said metallic end closure is held in a substantially stationary position while said shaping tool rotates.

5. The method of Claim 4, further comprising a retention means for retaining said end closure in a substantially stationary position.

6. The method of Claim 5, wherein said retention means comprises a mandrel which frictionally engages and retains the end closure.

7. The method of Claim 2, wherein said shaping tool exterior surface has an arcuate shape.

8. The method of Claim 1 , further comprising a biasing means operably interconnected to the shaping tool.

9. The method of Claim 8, wherein said biasing means comprises a spring.

10. The method of Claim 1, wherein said shaping tool comprises at least one substantially circular roller.

11. An apparatus for reshaping a metallic end closure which is adapted for interconnection to a neck of a container, comprising: a means for retaining said end closure in a substantially stationary position;

assembly comprising a roller block aligned in opposing relationship to the end closure, said roller block having an outer annular edge and a leading surface; a rotating means for rotating said spin-forming assembly; a pair of reform rollers which project outwardly from said roller block leading surface and which are operably sized to engage an inner panel wall of the end closure of the container; and a biasing means operably interconnected to said pair of reform rollers, wherein when a force is applied to an annular flange on said pair of reform rollers by the end closure, said reform rollers extend outwardly toward said outer annular edge of said roller block, wherein a preferred geometric profile is created on the inner panel wall of the end closure.

12. The apparatus of Claim 11, wherein said rotating means comprises a motor.

13. The apparatus of Claim 11, wherein said means for retaining said end closure comprises a mandrel which frictionally engages at least a portion of the central panel of the end closure.

14. The apparatus of Claim 11, further comprising a pair of reprofiling rollers which are interconnected to the rotating means and are adapted to engage an outer panel wall of the end closure.

15. The apparatus of Claim 11, wherein said biasing means comprises at least one of a spring and a bearing.

16. A metallic end closure adapted for interconnection to a sidewall of a container body, comprising: a peripheral cover hook; a chuck wall extending downwardly from said peripheral cover hook; a countersink comprising an outer panel wall interconnected to a lower end of said chuck wall and an inner panel interconnected to a central panel; and a channel with a predetermined geometric profile positioned in at least one of said inner panel or said outer panel of said countersink, wherein the distance between said inner panel wall and outer panel wall at said channel is less than the distance between the outer panel wall and the lower panel wall in a lower portion of the countersink.

17. The metallic end closure of Claim 16, wherein said channel has a radius of curvature of between about 0.010 inches and 0.060 inches.

18. The metallic end closure of Claim 16, wherein the inner panel wall is in contact with the outer panel wall at said channel.

ϊif. Tti€Metlϊlfi ϋhd closure of Claim 16, wherein the chuck wall has a non-linear shape.

20. The metallic end closure of Claim 16, further comprising a second channel positioned in said chuck wall.

21. The metallic end closure of Claim 16, wherein said inner panel wall and said outer panel wall have an hour-glass cross-sectional geometry.

Description:

UPP0PQS&$II !« ARATUS FOR FORMING A REINFORCING BEAD IN A CONTAINER END CLOSURE

FIELD OF THE INVENTION

The present invention relates to a method and apparatus for utilizing a spin forming tool to form a distinct geometric shape in a container end closure which is adapted for interconnection to a container neck and which has improved strength and buckle resistance.

BACKGROUND OF THE INVENTION

Containers, and more specifically metallic beverage containers, are typically manufactured by interconnecting a beverage can end closure on a beverage container body. In some applications, an end closure may be interconnected on both a top side and a bottom side of a can body. More frequently, however, a beverage can end closure is interconnected on a top end of a beverage can body which is drawn and ironed from a flat sheet of blank material such as aluminum. Due to the potentially high internal pressures generated by carbonated beverages, both the beverage can body and the beverage can end closure are typically required to sustain internal pressures exceeding 90 psi without catastrophic and permanent deformation. Further, depending on various environmental conditions such as heat, over fill, high CO2 content, and vibration, the internal pressure in a typical beverage can may at times exceed 100 psi. Thus, beverage can bodies and end closures must be durable to withstand high internal pressures, yet manufactured with extremely thin and durable materials such as aluminum to decrease the overall cost of the manufacturing process and the weight of the finished product.

Accordingly, there exists a significant need for a durable beverage container end closure which can withstand the high internal pressures created by carbonated beverages, and the external forces applied during shipping, yet which is made from a durable, lightweight and extremely thin metallic material with a geometric configuration which reduces material requirements. Previous attempts have been made to provide beverage container end closures with unique geometric configurations to provide material savings and improve strength. One example of such an end closure is described in U.S. Pat. No. 6,065,634 To Crown Cork and Seal Technology Corporation, entitled "Can End and Method for Fixing the Same to a Can Body". Other inventions known in the art have attempted to improve the strength of container end closures and save material costs by improving the geometry of the countersink region. Examples of these patents are U.S. Pat. No. 5,685,189 and U.S. Pat. No. 6,460,723 to Nguyen et al, which are incorporated herein in their entirety by reference. Another pending application which discloses other improved end closure

Patent Application Serial No. 10/340,535, which was filed on January 10, 2003 and is further incorporated herein in its entirety by reference. Finally, the assignee of the present application owns another pending application related to reforming and reprofiling a container bottom, which is disclosed in pending U. S. Patent No 11/020,944 and which is further incorporated herein by reference in its entirety.

The following disclosure describes an improved container end closure which is adapted for interconnection to a container body and which has an improved countersink, chuck wall geometry, and unit depth which significantly saves material costs, yet can withstand significant internal pressures.

Previous methods and apparatus used to increase the strength of a container end closure have generally been attempted using traditional forming presses, which utilize a sequence of tooling operations in a reciprocating press to create a specific geometry. Unfortunately with the use of small gauge aluminum and other thin metallic materials, it has become increasingly difficult to form a preferred geometry without quality control issues as a result of the physical properties of the end closure and the difficulty of retaining a desired shape. Furthermore, when a thin metallic material is worked in a traditional forming press, certain portions of the end closure may be thinned, either from stretching, bending operations, commonly known as "coining". When excessive thinning occurs, the overall strength and integrity of the end closure may be compromised. Further, it is practically impossible to form certain geometries with a typical die press. Thus, there is a significant need in the industry for a new method and apparatus for forming a preferred shape in an end closure, and which uses rollers and other mechanical devices which can form a preferred shape in the end closure without requiring traditional forming presses and the inherent problems related thereto.

Furthermore, new end closure geometries are needed which have distinct shapes and provide superior strength and buckle resistance when interconnected to pressurized containers. As previously mentioned these geometries are typically not feasible using traditional end closure manufacturing techniques. Thus, there is a significant need for new end closure geometries which have improved strength characteristics and which are capable of being formed with thin walled metallic materials.

SUMMARY OF THE INVENTION

It is thus one aspect of the present invention to provide an improved method and apparatus for forming one or more reinforcing beads or other geometric shapes in a container end closure. Thus, in one aspect of the present invention, one or more shaping rollers are utilized to spin-form

OTiEKiterior wall portion of a chuck wall or an end closure countersink to provide improved strength characteristics and potential material savings. As used herein, the term "spin-form" may also be referred to as "reform" or "reprofile" and may generally be defined as a process to alter the geometric profile of a container end closure. In one embodiment, a method for changing the geometry of a metal end closure is provided, comprising:

A method for creating a preferred geometry of a metallic end closure which is adapted for interconnection to a neck of a container, comprising: a) providing a metallic end closure comprising a peripheral cover hook, a chuck- wall extending downwardly therefrom, a countersink having an outer panel wall interconnected to a lower end of the chuck wall, and an inner panel wall interconnected to a central panel; b) providing a shaping tool which rotates around a central axis, said shaping tool in having an outer surface with a predetermined shape; c) positioning said outer surface of said shaping tool in contact with at least one of the inner panel wall, the outer panel wall and the chuck wall, wherein a predetermined shape is created in said end closure when said shaping tool engages said metallic end closure.

In another aspect of the present invention the shaping rollers are interconnected to an apparatus which rotates about a given axis which allows the shaping rollers to be positioned against the end closure to create a preferred shape. Alternatively, the end closure is rotated about one or more shaping rollers, which are substantially stationary. Thus, it is another aspect of the present invention to provide an apparatus for forming a preferred geometry in a metallic end closure by utilizing a tool which rotates around a substantially stationary end closure, comprising: a means for retaining said end closure in a substantially stationary position; a container spin-forming assembly comprising a roller block aligned in opposing relationship to the end closure, said roller block having an outer annular edge and a leading surface; a rotating means for rotating said spin-forming assembly; a pair of reform rollers which project outwardly from said roller block leading surface and which are operably sized to engage an inner panel wall of the end closure of the container; and a biasing means operably interconnected to said pair of reform rollers, wherein when a force is applied to an annular flange on said pair of reform rollers by the end closure, said reform rollers extend outwardly toward said outer annular edge of said roller block, wherein a preferred geometric profile is created on the inner panel wall of the end closure.

It is another aspect of the present invention to provide improved end closure geometries which can be obtained utilizing the aforementioned apparatus and method and which are generally

presses. In one embodiment, one or more inwardly or outwardly extending reinforcing beads are formed in the chuck wall or inner or outer panel walls of the countersink to create a desired shape in a container end closure. More specifically, a metallic end closure adapted for interconnection to a sidewall of a container body is provided, comprising: a peripheral cover hook; a chuck wall extending downwardly from said peripheral cover hook; a countersink comprising an outer panel wall interconnected to a lower end of said chuck wall and an inner panel interconnected to a central panel; and a channel with a predetermined geometric profile positioned in at least one of said inner panel or said outer panel of said countersink, wherein the distance between said inner panel wall and outer panel wall at said channel is less than the distance between the outer panel wall and the lower panel wall in a lower portion of the countersink.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a front cross-sectional elevation view of one embodiment of the invention shown before reforming or spin-forming;

Fig. 2 is a front cross-sectional elevation view of the embodiment shown in Fig. 1 and showing inside reforming wherein a channel is positioned on an inner panel wall;

Fig. 2A is a front cross-sectional elevation view showing a variation of the reforming shown in Fig. 2;

Fig. 3 is a cross-sectional front elevation view of an alternative embodiment of the present invention, wherein an outer panel wall is reformed;

Fig. 3 A is a cross-sectional front elevation view depicting a variation of the embodiment shown in Fig. 3;

Fig. 4 is a cross-sectional front elevation view showing a shell end closure which has been reformed on both an inside panel wall and outside panel wall;

Fig. 5 is a front perspective view of one embodiment of the present invention showing the inner panel wall reformed;

Fig. 6 is a front perspective view of an alternative embodiment of the present invention showing an outer panel wall reformed;

Fig. 7 is a front perspective view of an alternative embodiment of the present invention wherein both the inner panel wall and outer panel wall have been reformed;

elevation view showing a container end closure after both the inner panel wall and outer panel wall have been reformed and further depicting a reforming assembly;

Fig. 9 is a cross-sectional front elevation view further showing the components of one embodiment of a reforming tool prior to positioning a channel in an inner panel wall of an end closure;

Fig. 10 is a cross-sectional front elevation view showing a container end closure positioned opposite a reforming tool and just prior to reforming;

Fig. 1OA is a front cross-sectional view of the embodiment shown in Fig. 1OA and after a reforming channel has been positioned in an inner panel wall;

Fig. 11 is a top front perspective view of a container end closure positioned on top of a spin-forming assembly and depicting the reprofile rollers in operable contact with an outer panel wall of a container end closure; and

Fig. 12 is an alternative embodiment of the spin-forming assembly of Fig. 11 , and depicting two interior reform rollers and four reprofile rollers.

For clarity, the following is a list of components generally shown in the drawings:

No. Components

2 End closure

4 Central panel

6 Peripheral cover hook

8 Chuck wall

10 Countersink

12 Countersink inner panel wall

14 Countersink outer panel wall

16 Channel

18 Container

20 Container neck

22 Double seam

24 Panel radius

26 Inside reform radius

28 Outside reform radius

30 Reform gap

BlQ 6 /' κ£ B B II O s P in forming assembly

34 Roller block

36 Reform Rollers

38 Roller block leading surface

40 Roller block central aperture

42 Mounting shaft

44 Reprofile rollers

DETAILED DESCRIPTION

Referring now to Figs. 1 through 11, various embodiments of the present invention are provided herein. More specifically, Fig. 1 depicts a typical beverage container end closure shell shown before a reforming or "spin-forming" procedure has been performed. More specifically, the end closure 2 is generally comprised of a peripheral cover hook 6, a chuck wall 8 which extends from the peripheral cover hook 6 and which is interconnected to a countersink 10 on a lower end. The countersink 10 is generally comprised of an inner panel wall 12 and an outer panel wall 14, and wherein the inner panel wall 12 is interconnected to the central panel 4.

Referring now to Fig. 2, the end closure of Fig. 1 is shown after an inner panel wall reforming or spin-forming procedure has been performed. More specifically, after the positioning of the inside reforming tool, a channel 16 is formed in the inner panel wall of the countersink, thus changing the geometric profile and in this particular embodiment providing a channel radius of approximately 0.035 inches. As appreciated by one skilled in the art, the actual geometric configuration and/or size of the channel 16 is not critical to the present invention, but rather the novelty in one embodiment relates to the method of forming the channel 16 in the various geometries which can be obtained using this method which are impractical or impossible to perform in a typical die press. Based on these novel methods and the apparatus used for form these geometries, unique and novel end closure geometries can be formed which are not possible with typical die presses. In one embodiment, it is anticipated that the channel on either the inner panel wall 12 or outer panel wall 14 may have a radius of between about .005 - .035 inches. Referring now to Fig. 2 A, a slight variation of the geometry shown in Fig. 2 is provided herein, and wherein the inner panel wall has a distinct shape positioned near a * * *lowermost portion of the countersink, and which is entirely different than the embodiment shown in Fig. 2.

Referring now to Figs. 3 and 3 A, an alternative embodiment of the present invention is provided herein, wherein the channel 16 is positioned on an outer panel wall of the countersink 10. Fig. 3 A represents a variation of the embodiment shown in Fig. 3 , wherein the geometry is distinct

^|li0'tlii|g|i©|iel.l^i§|i||§S|gi|onounced as the embodiment shown in Fig. 3, and is positioned on a lower portion of the outer panel wall 16. As further shown in Fig. 3, depending on the depth of the channel 16, a reform gap 30 is created and which may have a dimension of between about .070 - .005 inches. Alternatively, the reform gap 30 may be eliminated altogether by creating a deep channel 16.

Referring now to Fig. 4, an alternative embodiment of the present invention is provided herein, wherein both the inner panel wall 12 and outer panel wall 14 of the end closure 2 have been reformed to create a channel 16 which substantially oppose each other. Although in this embodiment a reform gap 30 is provided, as mentioned above, the channel on the inner panel wall and/or an outer panel wall may be deep enough to completely eliminate the gap 30, and wherein the inner panel wall and outer panel are in contact with each other, hi either embodiment, the diameter between the channels 16 is less than the diameter between the lowermost portion of the inner panel wall 12 and outer panel wall 14.

Referring now to Figs. 5-7, front perspective views of alternative embodiments of the present invention are provided herein. More specifically, Fig. 5 is an embodiment showing an end closure 2 having a channel 16 positioned on the inner panel wall, while Fig. 6 is a front cut-away perspective view showing the channel 16 positioned on the outer panel wall of the countersink 10. Alternatively, Fig. 7 is a cross-sectional front perspective view showing a channel 16 positioned on both the inner panel wall and the outer panel wall of the countersink 10.

Referring now to Fig. 8, a cross-sectional front elevation view is provided which further depicts one embodiment of a dual reforming or spin-forming assembly 32 used to shape the end closure 2 to a desired geometric profile. As provided herein, the term "reform" or "spin-forming" may describe changing the geometric profile of the inner panel wall and/or outer panel wall or both, or the term "reprofiling" may additionally be used to describe the same process, hi the drawing shown in Fig. 8, reform rollers 36 are shown after engagement with the inner panel wall of the countersink, while reprofϊle rollers 44 are shown just after engagement with the outer panel wall of the end closure 2 to create a preferred geometric shape 42. In one embodiment, the reform rollers and reprofϊle rollers 44 are interconnected to a mounting shaft 42 and roller block assembly 32 which is used to support and spin the roller block end or reprofile rollers 44.

Referring now to Fig. 9, an alternative embodiment of the present invention is shown wherein a roller block reforming and reprofiling assembly 32 is shown in an opposing position to an end closure 2, and just prior to preparing a channel 16 in the inner panel wall of the countersink. As previously mentioned, depending on the geometric profile of the reform rollers 36, the geometry

a|ϊςklej)th; be any size and dimension depending on the performance criteria of the end closure 2.

Referring now to Fig. 10 and 1 OA, cross-sectional front elevation views are provided which show additional detail of the reform rollers 36 just prior to reforming in Fig. 10 and after reforming in Fig. 1OA. As shown, after the reform roller 36 is placed in contact with the inner panel wall of the end closure 2, a channel 16 is created between the central panel 4 and the countersink 10. The end closure 2 is generally held stationary while the reform rollers 36 spin, although alternatively the reform rollers 36 can be held stationary while the end closure 2 is spun around an axis which is substantially parallel to the drive shaft of the reform assembly or perpendicular to the drive shaft assembly.

Referring now to Fig. 11, a front perspective view of one embodiment of the present invention is provided herein and which more clearly shows a roller block 34, a roller block leading surface 38, and the reprofile rollers 44 positioned in opposing relationship to the end closure 2. Although Fig. 11 depicts two reprofile rollers 44 interconnected to the roller block 34, as appreciated by one skilled in the art, as few as one and as many as four or five reform rollers and/or reprofile or spin-form rollers can be used to provide a preferred geometry in a container end closure.

Fig. 12 depicts an alternative embodiment of a spin-rolling apparatus 32, and which is shown without an end closure engaged thereto. As generally shown, the spin-forming apparatus in this embodiment includes two reform rollers 36 which are designed to move outwardly, and four reprofile rollers 44 which are generally designed to engage an outer panel wall of an end closure during a spin-forming operation.

While an effort has been made to describe various alternatives to the preferred embodiment, other alternatives will readily come to mind to those skilled in the art. Therefore, it should be understood that the invention maybe embodied in other specific forms without departing from the spirit or central characteristics thereof. Present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not intended to be limited to the details given herein.