Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND APPARATUS FOR IRONING ROLLER SPINNING
Document Type and Number:
WIPO Patent Application WO/2011/003501
Kind Code:
A1
Abstract:
The invention relates to a method for ironing roller spinning, in which method a tubular workpiece (10) is arranged around a rolling mandrel (20), is set in rotation and is formed by setting at least one forming roller (40) against it. During the forming operation, the rolling mandrel is moved relative to the forming operation in the axial direction with respect to the workpiece. Furthermore, the invention relates to an apparatus (80) for ironing roller spinning a tubular workpiece with a rolling mandrel which can be arranged in the tubular workpiece, at least one forming roller for being set against and forming the workpiece, and a rotary drive for rotationally driving the workpiece. In the apparatus, the rolling mandrel is mounted such that it can be moved relative to the workpiece in the axial direction during the forming operation.

Inventors:
NILLIES, Benedikt (Mozartstr. 17, Ahlen, 59227, DE)
Application Number:
EP2010/003557
Publication Date:
January 13, 2011
Filing Date:
June 14, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LEIFELD METAL SPINNING GMBH (Feldstr. 2-20, Ahlen, 59229, DE)
NILLIES, Benedikt (Mozartstr. 17, Ahlen, 59227, DE)
International Classes:
B21D22/16; B21B19/06
Attorney, Agent or Firm:
WUNDERLICH, Rainer et al. (Weber & Heim, Irmgardstrasse 3, München, 81479, DE)
Download PDF:
Claims:
PATENTANSPRÜCHE

1. Verfahren zum Abstreckdrückwalzen, bei welchem ein rohrförmiges Werkstück (10) um einen Drückdorn (20) angeordnet, in Drehung versetzt und durch Zustellen von mindestens einer Umformrolle (40) umgeformt wird,

wobei

- eine Wanddicke des rohrförmigen Werkstücks (10) verringert und das rohrför- mige Werkstück (10) gelängt wird,

- als Drückdorn (20) ein universaler Drückdorn (20) mit in axialer Richtung unterschiedlichen Außendurchmessern zur Herstellung verschieden gestalteter zylindrischer und/oder konischer und/oder bombierter Hohlteile verwendet wird,

- die Umformrolle und der Drückdorn (20) während der Umformung relativ in axialer Richtung gegenüber dem Werkstück (10) verfahren werden, wobei zur Ausbildung veränderlicher Durchmesser und/oder Wandstärken des Werkstücks (10) die Umformrolle (40) relativ in axialer Richtung gegenüber dem Drückdorn (20) verfahren wird,

- das Werkstück (10) an einem Spannfutter (94) eingespannt wird, welches drehend an einem Spindelkasten (84) gelagert und angetrieben ist, und

- der Drückdorn (20) an dem Spindelkasten (84) gelagert ist und während der Umformung axial gegenüber dem Spannfutter (94) und dem Spindelkasten (84) verfahren wird.

2. Verfahren nach Anspruch 1 ,

dadurch gekennzeichnet,

dass das Verfahren im Gegenlauf durchgeführt wird, wobei Werkstoff des Werkstücks (10) entgegen einer Vorschubrichtung der Umformrolle (40) fließt.

3. Verfahren nach Anspruch 1 ,

dadurch gekennzeichnet,

dass das Verfahren im Gleichlauf durchgeführt wird, wobei Werkstoff des Werkstücks (10) in Vorschubrichtung der Umformrolle (40) fließt.

4. Verfahren nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

dass die Umformrolle (40) und der Drückdorn (20) relativ in axialer Richtung gegenüber dem Werkstück (10) verfahren werden, wobei zur Ausbildung veränderlicher Durchmesser und/oder Wandstärken des Werkstücks (10) die Umformrolle (40) relativ in axialer und radialer Richtung gegenüber dem Drückdorn (20) verfahren wird.

5. Verfahren nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

dass zur Ausbildung eines Werkstückabschnitts mit konstantem Durchmesser und konstanter Wandstärke die Umformrolle (40) mit gleicher Geschwindigkeit wie der Drückdorn (20) gegenüber dem Werkstück (10) verfahren wird.

6. Verfahren nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

dass das relative Verfahren der Umformrolle (40) in axialer und/oder radialer Richtung gegenüber dem Drückdorn (20) in Abhängigkeit von einer Relativstellung der Umformrolle (40) gegenüber dem Drückdorn (20) und in Abhängigkeit von einem vorbestimmten Spalt zwischen Umformrolle (40) und Drückdorn (20) mittels einer Mess- und Steuereinrichtung gesteuert wird.

7. Vorrichtung zum Abstreckd rückwalzen eines rohrförmigen Werkstücks (10), insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6,

- mit einem Drückdorn (20), welcher in dem rohrförmigen Werkstück (10) anord- bar ist, mindestens einer Umformrolle (40) zum Zustellen und Umformen des Werkstücks (10) sowie einem Drehantrieb zum drehenden Antreiben des Werkstücks (10),

wobei

- der Drückdorn (20) in axialer Richtung unterschiedliche Außendurchmesser aufweist,

- die Umformrolle (40) und der Drückdorn (20) während der Umformung relativ in axialer Richtung gegenüber dem Werkstück (10) verfahrbar gelagert sind, wobei zur Ausbildung veränderlicher Durchmesser und/oder Wandstärken des Werkstücks (10) die Umformrolle (40) relativ in axialer Richtung gegenüber dem Drückdorn verfahrbar angeordnet ist,

- das Werkstück (10) an einem Spannfutter (94) einspannbar ist, welches an einem Spindelkasten (84) drehend gelagert und angetrieben ist, und

- der Drückdorn (20) an dem Spindelkasten (84) gelagert ist und gegenüber dem Spannfutter (94) und dem Spindelkasten (84) axial verfahrbar gelagert ist.

8. Vorrichtung nach Anspruch 7,

dadurch gekennzeichnet,

dass der Drückdorn (20) eine konische, zylindrische und/oder bombierte Form aufweist.

9. Vorrichtung nach Anspruch 7 oder 8,

dadurch gekennzeichnet,

dass der Drückdorn (20) an seinem Außenumfang mindestens eine Innenrolle (39) aufweist.

10. Vorrichtung nach einem der Ansprüche 7 bis 9,

dadurch gekennzeichnet,

dass der Drehantrieb mit dem Spannfutter (94) zum Spannen des Werkstücks (10) und/oder ein Support (86) mit mindestens zwei Umformrollen (40) gegenüber einem Maschinenbett (82) axial verfahrbar ist.

11. Vorrichtung nach Anspruch 10,

dadurch gekennzeichnet,

dass die Umformrollen (40) radial und/oder axial verfahrbar an dem Support (86) angeordnet sind.

12. Vorrichtung nach Anspruch 7 bis 11 ,

dadurch gekennzeichnet,

dass eine Mess- und Steuereinrichtung zum Messen einer Länge und/oder einer Wandstärke und/oder eines Durchmessers des Werkstücks (10) und zum Steuern einer radialen Bewegung der Umformrollen (40) und/oder einer relativen axialen Bewegung der Umformrollen (40) gegenüber dem Drückdorn (20) vorgesehen ist.

13. Vorrichtung nach einem der Ansprüche 7 bis 12,

dadurch gekennzeichnet,

dass eine Vorschubstange (34) vorgesehen ist, welche mit dem Drückdorn (20) verbunden ist und einen Durchmesser aufweist, der geringer ist als der maximale

Durchmesser des Drückdorns (20), und

dass ein Axialantrieb (92) zum Verfahren der Vorschubstange (34) vorgesehen ist.

Description:
Verfahren und Vorrichtung zum Abstreckdrückwalzen

Die Erfindung betrifft ein Verfahren zum Abstreckdrückwalzen gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft weiterhin eine Vorrichtung zum Drückwalzen eines rohrförmigen Werkstücks nach dem Oberbegriff des Anspruchs 7.

Bei dem bekannten Verfahren wird ein rohrförmiges Werkstück um einen Drückdorn angeordnet, in Drehung versetzt und durch Zustellen von mindestens einer Umformrolle umgeformt, wobei das Werkstück abgestreckt wird. Beim Abstrecken verringert sich die Wanddicke und das rohrförmige Werkstück wird durch das verdrängte Material gelängt.

Ein derartiges Verfahren ist aus der DE 43 07 775 A1 bekannt. Bei diesem bekannten Verfahren kann das Werkstück mit einer einheitlichen Innenkontur versehen werden, welche durch die Außenkontur des Drückdorns vorgegeben ist.

Die bekannte Vorrichtung weist einen Drückdorn auf, welcher in dem rohrförmigen Werkstück anordbar ist, mindestens eine Umformrolle zum Zustellen und Umformen des Werkstücks sowie einen Drehantrieb zum drehenden Antreiben des Werkstücks.

Für das Einformen von Hinterschneidungen in ein rohrförmiges Werkstück ist es beispielsweise aus der DE 102 26 605 A1 bekannt, dies durch radiales Zustellen einer Rolle gegen einen Drückkegel durchzuführen. Dieses sogenannte Einziehen ist jedoch nur am Außenrand eines Rohres zweckmäßig. Zudem ist auch hier die mögliche Formenwahl begrenzt.

Aus der DE 2 230 554 A ist beispielsweise die Verwendung geteilter Drückdorne zum Formen einer inneren Durchmesserreduzierung bekannt. Die Drückdorne sind in aufwendiger Weise für jede Werkstückform herzustellen. Bei diesem Umformverfahren und Vorrichtungen müssen zur Umformung von Werkstücken mit einer großen Länge entsprechend lange Drückdorne verwendet werden, was zu hohen Herstellungs- und Instandhaltungskosten führt. Aus der DE 36 22 678 A1 sind ein Verfahren und eine Vorrichtung zum Querwalzen nahtloser Rohrluppen bekannt. Bei dem Verfahren ist vorgesehen, dass die Rohrluppen zum Verändern ihrer Wanddicke mit einer während des Walzens in axialer Richtung verschiebbaren Dornstange gewalzt werden.

Die JP 55014107 A beschreibt eine Umformvorrichtung zur Umformung eines zylindrischen Werkstücks, wobei das Werkstück zwischen einem im Wesentlichen konvexen Innenwerkzeug und einem konkaven Außenwerkzeug umgeformt wird.

Die GB 2 184 676 A offenbart ein Umformverfahren zum Umformen eines zylindrischen Werkstücks mittels Umformrollen, die einerseits im Inneren und andererseits außerhalb des zylindrischen Werkstücks angeordnet sind. Die inneren und äußeren Umformrollen sind zueinander gegenüberliegend angeordnet.

Aus der US 3,874,208 geht eine Vorrichtung zum Umformen eines zylindrischen Werkstücks hervor, bei dem mehrere Umformrollen und ein Drückdorn gleichzeitig in Längsrichtung des Werkstücks bewegt werden.

Die DE 10 2005 057 945 A1 beschreibt ein Drückwalzverfahren und eine entsprechende Maschine zum Drückwalzen eines rohrförmigen Werkstücks und insbesondere zur Herstellung eines Rohrabschnitts mit reduziertem Innendurchmesser in Form eines Absatzes.

A u f g a b e der Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, mit denen rohrförmige Werkstücke effizient und mit großer Formenvielfalt drückgewalzt werden können.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 und mit einer Vorrichtung mit den Merkmalen des Anspruchs 7 gelöst. Bevorzugte Ausführungsformen sind in den jeweils abhängigen Ansprüchen angegeben.

Bei dem erfindungsgemäßen Verfahren ist vorgesehen, dass der Drückdorn während der Umformung relativ in axialer Richtung gegenüber dem Werkstück verfahren wird.

Bei der erfindungsgemäßen Vorrichtung ist vorgesehen, dass der Drückdorn während der Umformung relativ in axialer Richtung gegenüber dem Werkstück verfahrbar gelagert ist. Ein Grundgedanke der Erfindung kann darin gesehen werden, das Werkstück nicht, wie bisher bekannt, an einen stationären, sondern an einen sich unter dem Werkstück hinweg bewegenden Drückdorn anzuformen. Es genügt somit, einen Drückdorn mit einer relativ geringen Länge vorzusehen, welche insbesondere wesentlich geringer als die Länge des zu bearbeitenden Werkstücks sein kann. Hierdurch reduzieren sich die Herstellungs- und Wartungskosten für den Drückdorn erheblich. Das erfindungsgemäße Verfahren ist somit besonders wirtschaftlich und mit einem Drückdorn sind unterschiedliche Werkstückformen herstellbar.

Die Umformung erfolgt vorteilhafterweise durch den Einsatz von mindestens zwei Drückrollen. Die Umformrollen sind vorzugsweise gleichmäßig um den Umfang des Werkstücks beziehungsweise des Drückdorns verteilt. So können unerwünschte Querkräfte und damit Auslenkwagen des Drückdorns vermieden werden.

Besonders bevorzugt ist es nach der Erfindung, wenn ein universaler Drückdorn mit in axialer Richtung unterschiedlichen Außendurchmessern zur Herstellung verschieden gestalteter zylindrischer und/oder konischer Hohlteile verwendet wird. Der Drückdorn kann auch in axialer Richtung unterschiedliche Konturen aufweisen und ist insbesondere konisch. Auch sind nicht rotationssymmetrische Konturen, wie beispielsweise Vielecke, möglich. In diesem Fall wird die Bezeichnung Außendurchmesser entsprechend angewandt. Durch den variablem Außendurchmesser und/oder die variablen Konturen ist es möglich, beim laufenden Umformvorgang an der Umformzone, also dem Berührungspunkt zwischen Umformrolle, Werkstück und Drückdorn, einen variablen Drückdorndurchmesser bereitzustellen.

In einer vorteilhaften Ausgestaltung des Verfahrens ist vorgesehen, das Verfahren im Gegenlauf durchzuführen, wobei Werkstoff des Werkstücks entgegen einer Vorschubrichtung der Umformrollen fließt. Der Werkstoff fließt bei der Umformung unter den Umformrollen durch und in Richtung eines freien Drückdornendes und hierüber hinaus. Längsvorschub der Umformrollen und Fließrichtung des Werkstoffs sind also einander gegengerichtet. Die Fließgeschwindigkeit des Werkstoffs ist bedingt durch die Reduktion der Wanddicke des Werkstücks, welches durch die Umformrollen axial gegen eine Spann- oder Halteeinrichtung gedrückt wird.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens ist vorgesehen, dass das Verfahren im Gleichlauf durchgeführt wird, wobei Werkstoff des Werkstücks in Vor- - A - schubrichtung der Umformrollen fließt. Längsvorschub der Umformrollen und Fließrichtung des Werkstoffs erfolgen somit in gleicher Richtung. Ausgangswerkstück für einen im Gleichlauf durchgeführten Umformprozess ist vorzugsweise ein ronden- oder napf- förmiges Werkstück, welches zwischen dem Drückdorn und einem Andrückelement eingespannt ist.

Weiterhin ist es besonders vorteilhaft, wenn die Umformrollen und der Drückdorn relativ in axialer Richtung gegenüber dem Werkstück verfahren werden, wobei zur Ausbildung veränderlicher Durchmesser und/oder Wandstärken des Werkstücks die Umformrollen relativ in axialer und/oder radialer Richtung gegenüber dem Drückdorn verfahren werden.

Durch das axiale Verfahren der Drückrollen gegenüber dem Werkzeugdorn kann bei gleichbleibendem Außendurchmesser die Wandstärke beziehungsweise der Innendurchmesser des zu bearbeitenden Werkstücks verändert werden.

Zur Ausbildung veränderlicher Außendurchmesser und/oder Wandstärken des zu bearbeitenden Werkstücks werden die Umformrollen vorzugsweise relativ in radialer Richtung gegenüber dem Drückdorn verfahren.

Durch die radiale und/oder axiale Verschiebung der Umformrollen gegenüber dem Drückdorn in Verbindung mit dem variablen Außendurchmesser und/oder den variablen Konturen des Drückdorns kann insgesamt ein variabler Drückdorndurchmesser bereitgestellt werden. Dabei sind auch unterschiedliche Wanddicken an dem Werkstück herstellbar. Die Umformrollen werden unter Berücksichtigung des gewünschten Außendurchmessers und der gewünschten Wandstärke des Werkstücks radial zu dem Drückdorn zugestellt.

Mit dem erfindungsgemäßen Verfahren können insbesondere lange konische und/oder zylindrische Hohlteile, wie zum Beispiel Vorformen für Laternenmasten oder Fahnenstangen, auf besonders wirtschaftliche Weise hergestellt werden. Dabei können bereichsweise veränderliche Durchmesser und/oder Wanddicken in die Werkstücke eingeformt werden, was zu einer Verringerung des Bauteilgewichts der Produkte führen kann. Darüber hinaus können die Querschnitte des Werkstücks an die zu erwartenden Belastungen angepasst werden und somit eine besonders gleichmäßige Spannungs- verteilung und damit eine besonders günstige Ausnutzung des eingesetzten Werkstoffes erreicht werden.

Zur Ausbildung eines Werkstückabschnitts mit konstantem Durchmesser und konstanter Wandstärke werden die Umformrollen vorzugsweise mit gleicher Geschwindigkeit wie der Drückdorn gegenüber dem Werkstück verfahren. Hierzu kann beispielsweise das Werkstück zwischen feststehenden Umformrollen und feststehendem Drückdorn hindurchgedrückt oder -gezogen werden. Dabei erfolgt die Bewegung des Werkstücks in Richtung eines freien, also nicht eingespannten Endes des Drückdorns. Alternativ kann vorgesehen sein, Umformrollen und Drückdorn gegenüber einem feststehenden Werkstück zu verfahren. Auch eine Kombination dieser beiden Varianten ist möglich.

Eine weitere bevorzugte Ausführungsform der Erfindung ist dadurch gegeben, dass das relative Verfahren der Umformrollen in axialer und/oder radialer Richtung gegenüber dem Drückdorn in Abhängigkeit von einer Relativstellung der Umformrollen gegenüber dem Drückdorn und in Abhängigkeit von einem vorbestimmten Spalt zwischen Umformrollen und Drückdorn mittels einer Mess- und Steuereinrichtung gesteuert wird. Mit anderen Worten erfolgt die Steuerung der Umformrollen und/oder des Drückdorns in Abhängigkeit von dem gewünschten Durchmesser und der gewünschten Wandstärke des zu bearbeitenden Werkstückabschnitts, welche durch die Relativstellung zwischen Umformrollen und Drückdorn bestimmt werden. Weiterhin werden vorzugsweise die Länge und/oder die Wandstärke des zu bearbeitenden Werkstücks gemessen und diese Werte als Eingangsgrößen in der Mess- und Steuereinrichtung verarbeitet. So können auch aus Ausgangswerkstücken mit Maßabweichungen einheitliche Endprodukte gefertigt werden.

Eine besonders vorteilhafte Ausgestaltung des Verfahrens ist dadurch gegeben, dass das Werkstück an einem Spannfutter eingespannt wird, welches drehend gelagert und angetrieben ist, und dass der Drückdorn gegenüber dem Spannfutter axial verfahren wird. Das Werkstück wird also über das Spannfutter in Drehung versetzt. Gleichzeitig erfolgt vorzugsweise eine Rotation des Drückdorns mit gleicher Drehgeschwindigkeit, wobei der Drückdorn während der Umformung relativ gegenüber dem Spannfutter axial verfahren wird. Da es nur auf eine relative Bewegung zwischen Werkstück, Drückdorn und Umformrolle ankommt, kann auch vorgesehen sein, dass das Spannfutter gegenüber einem feststehenden Drückdorn verfahren wird. Bei der erfindungsgemäßen Vorrichtung ist es bevorzugt, dass der Drückdorn unterschiedliche Außendurchmesser aufweist, insbesondere eine konische, zylindrische und/oder bombierte Form aufweist. Durch die unterschiedlichen Außendurchmesser beziehungsweise die konische Form wird ein variabler Drückdorn mit einem variablen Drückdorndurchmesser bereitgestellt. Hierbei erfolgt ein relativer axialer Vorschub der Umformrollen gegenüber dem Drückdorn und ein Zustellen der Umformrollen relativ radial auf den entsprechenden Durchmesser des Drückdoms, unter Berücksichtigung des gewünschten Spalts zwischen Umformrollen und Drückdorn. Dieser Umformspalt bestimmt die Wandstärke des Werkstücks.

Der Drückdorn kann auch weitere geometrische Formen aufweisen, beispielsweise zylindrische und/oder kegelige Absätze, Radienübergänge, Profile, wie zum Beispiel Rippen oder Nuten, oder andere Querschnitte, wie zum Beispiel Vielecke, Sechskante, Ellipsen oder Polyone. Auch weitere geometrische Ausgestaltungen sind möglich.

Durch den Verzicht auf einen langen Volldorn, welcher mindestens so lang ist wie das zu bearbeitende Werkstück, ergeben sich wesentliche Vorteile. So ist das erfindungsgemäße Verfahren für variable Werkstückdurchmesser und/oder variable Wandstärken an einem Werkstück vorteilhaft einsetzbar. Durch den erfindungsgemäßen Drückdorn, welcher auch als Kurzdorn bezeichnet werden kann, reduzieren sich die Werkzeugkosten sowie die Kosten für die Instandhaltung des Drückdorns erheblich. Auch das Gewicht des Drückdorns ist gegenüber einem Volldorn reduziert, wodurch die Flexibilität der Maschine erheblich verbessert wird.

Eine weitere geeignete Ausführungsform der Erfindung besteht darin, dass der Drückdorn an seinem Außenumfang Innenrollen aufweist. An dem Umfang des Drückdorns sind vorzugsweise mindestens zwei gelagerte Innenrollen gleichmäßig verteilt und drehfest angeordnet. Die Innenrollen sind um ihre eigene Achse drehbar, aber gegenüber einer Längsachse des Drückdorns drehfest. Vorzugsweise sind zugehörige Umformrollen, etwa in einer entsprechenden Anzahl vorgesehen, welche mit den Innenrollen zusammenwirken. Hierdurch entstehen Rollenpaare, welche aus Umformrolle und Innenrolle gebildet sind. Zwischen jedem der Rollenpaare wird an dem Werkstück eine Zone des plastischen Materialzustandes von außen und innen erzeugt. Es ergibt sich so eine Aufteilung der Rollenkräfte und der Umformarbeit. Die Umformarbeit wird auf die doppelte Anzahl von Rollen verteilt. Durch den Einsatz von Innenrollen kann somit die Um- formgeschwindigkeit gesteigert werden. Durch eine Symmetrie in der Umformzone wird ein Eigenspannungszustand im drückgewalzten Werkstück stark abgebaut.

Die Umformrollen, welche auch als Außenrollen bezeichnet werden können, sind vorzugsweise axial und/oder radial versetzbar oder verschiebbar. Hierdurch können unterschiedliche Umformaufgaben, beispielsweise unterschiedliche Durchmesser und/oder Wandstärken, durchgeführt werden. Ebenso kann auch durch axiales Verschieben des Drückdorns eine Spaltverstellung vorgenommen werden.

Eine besondere Bedeutung in der Drückwalztechnik hat der Rollendurchmesser. Er ist abhängig von der zu walzenden Wanddicke und vom Werkstückdurchmesser. Vorzugsweise haben Innenrollen und Außenrollen den gleichen Durchmesser. Ein Durchmesserunterschied von ca. 30% sollte nicht überschritten werden.

Eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung besteht darin, dass der Drehantrieb mit einem Spannfutter zum Spannen des Werkstücks und/oder ein Support mit mindestens zwei Umformrollen gegenüber einem Maschinenbett axial verfahrbar ist. Mit Verfahren des Drehantriebs kann ein axiales Verschieben des Werkstücks gegenüber dem Maschinenbett erreicht werden. Eine konstruktive Ausgestaltung kann darin bestehen, dass der Drehantrieb an einem Spindelkasten gelagert ist, welcher gegenüber dem Maschinenbett axial verfahrbar ist. Durch Verfahren des Spindelkastens beziehungsweise des Drehantriebs wird somit das über das Spannfutter eingespannte Werkstück axial verfahren. Zusätzlich oder alternativ hierzu kann auch der Support mit den Umformrollen gegenüber dem Maschinenbett axial bewegbar sein. In diesem Fall ist es möglich, dass der Drehantrieb fest an dem Maschinenbett angeordnet ist.

Zum Erreichen der relativen radialen und/oder axialen Zustellung der Umformrollen kann vorgesehen sein, dass die Umformrollen radial und/oder axial verfahrbar an dem Support angeordnet sind. Auch der Anstellwinkel zur Drehachse des Werkstücks kann veränderbar sein. Der Support selbst kann fest oder verschiebbar an dem Maschinenbett angeordnet sein. Die Lagerung der Umformrollen an dem Support mit der radialen und/oder axialen Verfahrbarkeit bewirkt eine kompakte Bauform der Vorrichtung. Die Umformrollen können eine geeignete Form aufweisen, etwa zylindrisch oder kegelförmig. Auch die Umformrollen können Konturen zur optimalen Umformung aufweisen. Eine weitere bevorzugte Ausführungsform der Erfindung ist dadurch gegeben, dass der Drückdorn gegenüber dem Spannfutter axial verfahrbar ist. Besonders bevorzugt ist es, wenn der Drückdorn zusammen mit dem Spannfutter und/oder dem Werkstück drehend antreibbar ist. Dies kann beispielsweise durch ein Keilnutenprofil zwischen Drückdorn und Spannfutter erreicht werden. Durch die Möglichkeit einer axialen Verschiebung zwischen Drückdorn und Spannfutter wird die erfindungsgemäße relative Verfahrung des Drückdorns gegenüber dem Werkstück auf einfache und zuverlässige Weise erreicht.

Für eine zuverlässige Umformung mittels der erfindungsgemäßen Vorrichtung ist es besonders bevorzugt, dass eine Mess- und Steuereinrichtung zum Messen einer Länge und/oder einer Wandstärke und/oder eines Durchmessers des Werkstücks und zum Steuern einer radialen Bewegung der Umformrollen und/oder einer relativen axialen Bewegung der Umformrollen gegenüber dem Drückdorn vorgesehen ist.

Das erfindungsgemäße Verfahren beruht insgesamt auf relativen Bewegungen zwischen Drückdorn, Werkstück und Umformrollen. Diese Elemente müssen abgestimmt aufeinander und in Abhängigkeit von der gewünschten Umformung bewegt werden. Hierzu ist vorrichtungsmäßig eine Mess- und Steuereinrichtung angeordnet. Diese misst aktuelle geometrische Parameter, wie beispielsweise Position, Länge und Durchmesser des Werkstücks, und steuert auf dieser Basis die Bewegung der genannten Elemente zueinander.

Eine besonders wirtschaftliche Vorrichtung wird dadurch erreicht, dass eine Vorschubstange vorgesehen ist, welche mit dem Drückdorn verbunden ist und einen Durchmesser aufweist, der möglichst geringer ist als der maximale Durchmesser des Drückdorns, und dass ein Axialantrieb zum Verfahren der Vorschubstange vorgesehen ist. Grundsätzlich kann die Vorschubstange auch axial feststehend angeordnet sein, wobei sie dann lediglich die Funktion einer Verlängerungs- oder Zwischenstange hat, welche zwischen dem Drückdorn und einer Lagerung oder Befestigung angeordnet ist.

Eine Funktion der Vorschubstange ist die Bereitstellung eines Abstandshalters zwischen Drückdorn und dessen maschinenseitiger Einspannung. Zu Beginn des Umformvorgangs kann das Werkstück um die Vorschubstange herum angeordnet werden. Während der Umformung erfolgt eine Relativbewegung zwischen Werkstück und Drückdorn, wobei das Werkstück sich in Richtung des freien Endes des Drückdorns bewegt. Die Rotation des Drückdorns mit der Vorschubstange kann ' über Reibschluss zwischen Umformrolle, Werkstück und Drückdorn erfolgen. Zwischen Drückdorn und Vorschubstange kann ein Druckkopf vorgesehen sein, welcher für eine Drehentkopplung zwischen Drückdorn und Vorschubstange sorgt. Bei dieser Ausführungsform ist nur ein axialer Vorschub für den Drückdorn erforderlich.

Es kann auch vorgesehen sein, dass der Drückdorn und/oder eine variable Innenrolle über eine CNC-Achse oder durch Druck, beispielsweise einen Hydraulikzylinder, axial verschiebbar ist, um mit dem Drückdorn eine Spaltverstellung, also eine Wanddickenveränderung am Werkstück, zu erzielen. Dies war bisher nur durch eine radiale Verstellung der Umformrollen möglich.

Die relative Bewegung zwischen Werkstück und Drückdorn kann durch eine absolute Bewegung des Werkstücks gegenüber einem feststehenden Drückdorn und/oder eine absolute Bewegung des Drückdorns erfolgen. Die absolute Bewegung des Drückdorns wird vorzugsweise durch ein axiales Verfahren der Vorschubstange erreicht, wozu ein Axialantrieb vorgesehen ist.

Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsbeispielen weiter beschrieben, welche schematisch in den Zeichnungen dargestellt sind. Hierin zeigen:

Fig. 1 ein erstes Ausgangswerkstück;

Figuren 2 bis 7 Umformschritte gemäß einer ersten Ausgestaltung des erfindungsgemäßen Verfahrens als Gegenlauf-Drückwalzverfahren;

Fig. 8 ein Werkstück nach Umformung;

Fig. 9 eine erste Ausführungsform eines Drückdorns;

Fig. 10 ein zweites Ausgangswerkstück;

Figuren 11 bis 16 Umformschritte gemäß einer zweiten Ausgestaltung des erfindungsgemäßen Verfahrens als Gegenlauf-Drückwalzverfahren;

Fig. 17 ein zweites Werkstück nach Umformung;

Fig. 18 eine zweite Ausführungsform eines Drückdorns; Fig. 19 einen Umformschritt gemäß einer dritten Ausgestaltung des erfindungsgemäßen Verfahrens als Gegenlauf-Drückwalzverfahren;

Figuren 20 bis 21 ein umgeformtes Werkstück; Fig. 22 eine dritte Ausführungsform eines Drückdorns; Fig. 23 ein weiteres Ausgangswerkstück; Figuren 24 bis 26 Umformschritte zur Umformung des in Fig. 23 gezeigten Werkstücks im Gegenlauf-Drückwalzverfahren;

Figuren 27 bis 28 ein umgeformtes Werkstück; Fig. 29 eine weitere Ausführungsform eines Drückdorns; Fig. 30 ein weiteres Ausgangswerkstück; Figuren 31 bis 39 Umformschritte gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens als Gegenlauf-Drückwalzverfahren;

Figuren 40 bis 41 ein umgeformtes Werkstück;

Fig. 42 eine weitere Ausführungsform eines Drückdorns;

Fig. 43 ein weiteres umgeformtes Werkstück;

Figuren 44 bis 47 Umformschritte zur Herstellung eines Katalysatorgehäuses;

Fig. 48 eine weitere Ausführungsform eines Drückdorns;

Fig. 49 eine Umformung mittels einer Mehrbereichs-Umformrolle;

Fig. 50 eine Mehrbereichs-Umformrolle;

Fig. 51 einen Umformschritt mittels eines Drückdorns mit Innenrollen;

Fig. 52 ein napfförmiges Ausgangswerkstück;

Figuren 53 bis 57 Umformschritte gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens als Gleichlauf-Drückwalzverfahren;

Fig. 58 ein umgeformtes Werkstück; Fig. 59 eine Seitenansicht einer Vorrichtung zum Drückwalzen;

Fig. 60 eine Querschnittsansicht aus Fig. 59;

Fig. 61 eine zweite Vorrichtung zum Drückwalzen.

Figuren 1 bis 9 zeigen in schematischer Weise eine erste Ausgestaltung des erfindungsgemäßen Verfahrens.

Fig. 1 zeigt ein erstes rohrförmiges Werkstück 10, welches als Ausgangswerkstück zur Umformung vorgesehen ist. Das Werkstück 10 hat einen kreisförmigen Querschnitt mit einem Außendurchmesser DO und einer Wandstärke SO. Figuren 2 bis 7 zeigen Umformschritte der Umformung des Werkstücks 10 in einen konischen Hohlkörper, welcher in Fig. 8 dargestellt ist. Zur Umformung wird ein Drückdorn 20 verwendet, welchen Fig. 9 zeigt.

Der Drückdorn 20 ist ein rotationssymmetrischer Körper und weist eine Längsachse auf. Die Längsachse bildet eine Drehachse des Drückdoms 20, um welche der Drückdorn 20 drehbar gelagert ist. Auf der in den Figuren rechten Seite weist der Drückdorn 20 ein freies Ende 22 auf, während auf der linken Seite ein Verbindungsende 24 ausgebildet ist, über welches der Drückdorn 20 mit einer Maschineneinspannung verbunden und gegebenenfalls angetrieben ist. Ein grundsätzlicher Aspekt des erfindungsgemäßen Drückdorns 20 besteht darin, dass ein Durchmesser des Drückdorns vom freien Ende 22 in Richtung des Verbindungsendes 24 nicht abnimmt, sondern entweder konstant ist oder zunimmt. Der Drückdorn 20 weist einen Konusabschnitt 26 und einen Zylinderabschnitt 28 auf. Der Konusabschnitt 26 ist als Kegelstumpf ausgebildet, wobei das Ende mit dem kleinsten Durchmesser das freie Ende 22 des Drückdorns 20 bildet.

An dem Verbindungsende 24, also dem dem freien Ende 22 gegenüberliegenden Ende des Drückdorns 20, ist eine Vorschubstange 34 angeordnet. Die Vorschubstange 34 weist mindestens einen zylinderförmigen Abschnitt 36 auf und ist in der dargestellten Ausführungsform als Vollzylinder ausgebildet. Ein Durchmesser der Vorschubstange 34, insbesondere des zylinderförmigen Abschnitts 36 der Vorschubstange 34, ist vorzugsweise geringer als ein Durchmesser des Zylinderabschnitts 28 des Drückdorns 20. Die Vorschubstange 34 kann einstückig mit dem Drückdorn 20 ausgebildet sein oder als getrenntes Element mit dem Drückdorn 20 lösbar verbunden sein. Der Drückdorn kann so gewechselt werden.

Um den Außenumfang des Drückdorns 20 herum sind gleichmäßig verteilt mehrere Umformrollen 40 angeordnet. Fig. 2 zeigt zwei Umformrollen 40, wobei auch beispielsweise drei oder vier Umformrollen 40 angeordnet sein können. Die Umformrollen 40 sind rotationssymmetrische Körper und in der dargestellten Ausführungsform kegel- stumpfförmig ausgebildet. Die Umformrollen 40 sind um eine Rotationsachse 42 herum drehbar gelagert, wobei die Rotationsachse 42 eine Längsachse des Kegelstumpfes ist. Die Rotationsachsen 42 der Umformrollen sind schräg zu einer Längsachse 32 des Drückdorns 20 ausgerichtet.

Bei den nachfolgend beschriebenen Umformverfahren im Gegenlaufverfahren ist grundsätzlich vorgesehen, dass das Werkstück 10 während der Umformung in einem nicht bearbeiteten Bereich spindelkastenseitig eingespannt ist.

Ein erster Verfahrensschritt der Umformung des Werkstücks 10 ist in Fig. 2 dargestellt. Das Werkstück 10 wird zunächst um den Drückdorn 20 und die Vorschubstange 34 angeordnet. Bei dem dargestellten Verfahrensstadium ist ein erster Axialbereich 11 des Werkstücks 10 um die Vorschubstange 34 angeordnet, wobei zwischen Werkstück 10 und Vorschubstange 34 ein ringförmiger Freiraum 38 gebildet ist. Ein zweiter, mittlerer Axialbereich 12 des Werkstücks 10 ist um den Zylinderabschnitt 28 des Drückdorns 20 angeordnet. Dabei liegt das Werkstück 10 an einer Außenumfangsfläche des Zylinderabschnitts 28 an. Ein dritter Axialbereich 13 des Werkstücks 10 ist um einen ersten Teilabschnitt des Konusabschnitts 26 des Drückdorns 20 angeordnet.

Die Umformrollen 40 sind in dem in Fig. 2 dargestellten Verfahrensstadium axial beabstandet von dem Werkstück 10 um einen zweiten Teilabschnitt des Konusabschnitts 26 des Drückdorns 20 angeordnet und kontaktieren das Werkstück 10 nicht.

Drückdorn 20 und Werkstück 10 werden, vorzugsweise mit gleicher Umfangsgeschwindigkeit, in Rotation versetzt. Die Umformrollen 40 werden radial in Richtung des Drückdorns 20 zugestellt und axial in Richtung des Werkstücks 10 verfahren.

In einem zweiten Verfahrensschritt, welcher in Fig. 3 dargestellt ist, wird am Ende des Werkstücks 10 ein Kegelbereich 14 angeformt. Hierzu werden die Umformrollen 40 und der Drückdorn 20 axial mit gleicher Axialgeschwindigkeit gegenüber dem Werkstück 10 verfahren. Hierbei kommt es lediglich auf eine Relativbewegung an, so dass auch das Werkstück 10 gegenüber Drückdorn 20 und Umformrollen 40 verfahren werden kann. Die Umformrollen 40 kontaktieren einen Außenumfangsbereich des Werkstücks 10 und werden über Reibschluss mit dem Werkstück 10 in Drehbewegung versetzt. Durch das axiale Verfahren von Umformrollen 40 und Drückdorn 20 gegenüber dem Werkstück 10 wird ein axialer Endbereich des Werkstücks 10 an einen Außenumfang der Umformrollen 40 angeformt und zu dem 14 Kegelbereich eingezogen. Dabei kontaktiert das Werkstück 10 mit seinem Kegelbereich 14 zunächst nicht den Drückdorn 20, sondern nur die Umformrollen 40. Während des Einziehens erfolgt im Wesentlichen keine Wandstärkenreduzierung des Werkstücks 10.

Am Ende dieses Verfahrensschritts steht ein Verfahrensstadium, bei welchem ein axiales Ende des Werkstücks 10 an dem Drückdorn 20 anliegt, also zwischen Drückdorn 20 und Umformrollen 40 eingeklemmt ist. An dem axialen Ende weist das Werkstück 10 einen Innendurchmesser D1 auf, welcher einem Außendurchmesser des Drückdorns 20 an dieser axialen Stelle entspricht. Dieses Verfahrensstadium ist in Fig. 4 dargestellt.

Mit zunehmendem Vorschub der Umformrollen 40 in axialer Richtung beginnt dann als dritter Verfahrensschritt das eigentlichen Abstreckdrückwalzen, welches auch als Konus-Drückwalzen bezeichnet werden kann und in den Figuren 5 bis 7 dargestellt ist. Bei dem Konus-Drückwalzen wird das Werkstück 10 an den Konusabschnitt 26 des Drückdorns 20 angeformt, wie in Fig. 5 gezeigt. Dabei erfolgt eine stetige Verstellung der Umformrollen 40 in radialer Richtung während der Umformung. Der zuvor eingezogene Kegelbereich 14 wird durch die eingeleitete Drückwalzoperation abgestreckt, wobei eine Reduzierung der Wandstärke des Werkstücks 10 erfolgt. Gleichzeitig mit dem axialen Vorschub der Umformrollen 40 erfolgt eine relative axiale Verschiebung des Drückdorns 20 zu den Umformrollen 40. Dabei werden die Umformrollen 40 in Richtung eines zunehmenden Durchmessers des Drückdorns 20 relativ axial gegenüber dem Drückdorn 20 verfahren. Hierdurch wird an dem Werkstück 10 ein zunehmender Durchmesser ausgebildet.

Durch die unmittelbare Druckeinwirkung bildet sich unter den Umformrollen 40 eine Zone des plastischen Materialzustandes aus, in der die Wandstärke des Werkstücks 10 reduziert wird, wie in Fig. 6 dargestellt. Der verdrängte Werkstoff fließt dabei hauptsächlich in Richtung des freien Endes 22 des Drückdorns 20, also entgegen der Vorschub- richtung der Umformrollen 40. Die Wandstärkenreduzierung bewirkt eine Längenvergrößerung des Werkstücks 10.

Die Umformrollen 40 werden gegenüber dem Drückdorn 20 bis zu dem gewünschten maximalen Außendurchmesser des Werkstücks 10 relativ axial verfahren. Fig. 7 zeigt ein Verfahrensstadium, bei welchem die Umformrollen 40 den Zylinderabschnitt 28 des Drückdorns 20 erreicht haben. Mit weiterem axialem und radialem Vorschub der Umformrollen 40 erfolgt eine Beendigung des Kontakts zwischen Umformrollen 40 und Werkstück 10 und die Drückwalzoperation wird beendet.

Mit dem dargestellten Verfahren wird ein in Fig. 8 gezeigtes Werkstück 10, welches ein konischer Hohlkörper ist, hergestellt. Der konische Hohlkörper weist an einem axialen Ende den kleinen Innendurchmesser D1 (vgl. Fig. 4) und an einem gegenüberliegenden Ende einen großen Innendurchmesser auf. Der kleine Innendurchmesser D1 entspricht mindestens einem minimalen Durchmesser des Konusabschnitts 26 des Drückdorns 20. Der große Durchmesser ist maximal gleich einem Durchmesser des Zylinderabschnitts 28 des Drückdorns 20. Durch die relative axiale Verschiebung des Drückdorns 20 gegenüber dem Werkstück 10 weist der konische Hohlkörper eine andere Konizität auf als der Konusabschnitt 26 des Drückdorns 20.

Figuren 10 bis 18 zeigen eine zweite Ausgestaltung des erfindungsgemäßen Verfahrens. Hierin zeigt Fig. 10 zeigt ein zweites rohrförmiges Werkstück 10a, welches als Ausgangswerkstück zur Umformung vorgesehen ist. Das Werkstück 10a weist ein Innenprofil auf, das mehrere an einer Innenseite des Werkstücks ausgebildete Längsrippen 15 umfasst. In den übrigen Abmessungen entspricht das Werkstück 10a dem in Figur 1 dargestellten Werkstück 10. Figuren 11 bis 16 zeigen Umformschritte zur Umformung des Werkstücks 10a. Fig. 17 zeigt das Werkstück 10a als ein fertiges Umformteil nach der Umformung. In Fig. 18 ist ein Drückdorn 20 dargestellt, welcher als profilierter Drückdorn 20a ausgebildet ist und bei dem Verfahren verwendet wird.

Im Unterschied zu dem in Fig. 9 dargestellten Drückdorn 20 weist der profilierte Drückdorn 20a gemäß Fig. 18 an seiner Außenfläche Längsnuten 21 auf. Die Längnuten 21 erstrecken sich sowohl entlang des Zylinderabschnitts 28 als auch entlang des Konusabschnitts 26 des Drückdorns und entsprechen an dem Zylinderabschnitt 28 hinsichtlich Anzahl und Anordnung den Längsrippen 15 des Werkstücks 10a. An dem Konusabschnitt 26 verlaufen die Längsnuten 21 konisch. Das Werkstück 10a wird auf den profilierten Drückdorn 20a aufgeschoben und in analoger Weise zu dem zuvor beschriebenen Verfahren umgeformt. Die in den Figuren 11 bis 17 dargestellten Verfahrensschritte entsprechen im Wesentlichen den in den Figuren 2 bis 7 gezeigten Verfahrensschritten. Das Profil des Drückdorns 20 ist entsprechend der Volumenanteile des Rohrprofils, unter Berücksichtigung der Durchmesserverringerung durch den Drückwalzvorgang, größer gestaltet. In Fig. 17 ist ein umgeformtes Werkstück 10a als Endform der Umformung dargestellt, welches sich von dem in Fig. 8 dargestellten Hohlkörper im Wesentlichen dadurch unterscheidet, dass an seiner Innenfläche ein Innenprofil gebildet ist, das parallele und konisch zulaufende Innenrippen 16 umfasst. Das Innenprofil kann somit als zylindrisches und konisches Innenprofil bezeichnet werden. Das umgeformte Werkstück 10a gemäß Fig. 17 weist eine Wandstärke S1 auf, welche geringer ist als die Wandstärke SO des Ausgangswerkstücks.

Eine dritte Ausgestaltung des erfindungsgemäßen Verfahrens ist in den Figuren 19 bis 22 dargestellt. Ausgangswerkstück ist ein rohrförmiges Werkstück 10, wie in Fig. 1 dargestellt. Fig. 19 zeigt einen Verfahrensschritt der Umformung. Das Werkstück 10 ist als fertiges Umformteil in Fig. 20 in perspektivischer Ansicht und in Fig. 21 in Aufsicht von vorne beziehungsweise im Querschnitt dargestellt. Fig. 22 zeigt als Drückdorn 20 einen profilierten Drückdorn 20a.

Der in Fig. 22 dargestellte profilierte Drückdorn 20a entspricht im Wesentlichen dem in Fig. 18 dargestellten profilierten Drückdorn 20a.

Die Umformung erfolgt in grundsätzlich gleicher Weise wie im Zusammenhang mit den Figuren 1 bis 9 beschrieben. Im Unterschied hierzu wird während des Drückwalzens Material des Werkstücks 10 in die Längsnuten 21 des profilierten Drückdorns 20a eingebracht. Infolge der Druckbeanspruchung in der Umformzone, also der Zone des plastischen Materialzustandes, fließt Werkstoff auch in radialer Richtung und füllt den Nutenquerschnitt vorzugsweise vollständig aus. Gleichzeitig erfolgt ein axialer Werkstoff- fluss, insbesondere an den nicht mit Nuten versehenen Dornbereichen. Dieser kann durch eine entsprechend an die Geometrie des Drückdorns angepasste Umformrollengeometrie gefördert werden. Ein konisches und/oder zylindrisches Innenprofil kann nicht nur in langen Hohlteilen, wie beispielsweise Masten, sondern auch in kurzen Hohlteilen, wie Getriebeteile mit Verzahnungen, etwa Kupplungslamellenträgern, hergestellt werden.

Figuren 23 bis 29 zeigen eine vierte Ausgestaltung des erfindungsgemäßen Verfahrens. Bei diesem Verfahren wird ein rohrförmiges Werkstück 10, wie in Fig. 23 dargestellt, in ein als Hohlwelle oder Zylinderrohr ausgebildetes Werkstück 10 mit mindestens einem Innensechskantbereich 60 und mindestens einem zylindrischem Bereich 62 umgeformt. Figuren 24 bis 27 zeigen Verfahrensschritte zur Umformung des Werkstücks 10. Ein Werkstück 10 als fertig bearbeitetes Umformteil ist in Fig. 28 dargestellt.

Als Drückdorn 20 wird ein wie in Fig. 29 dargestellter Mehrbereichsdrückdorn 20b verwendet. Dieser weist einen Sechskantabschnitt 25, einen Zylinderabschnitt 28 und einen zwischen diesen angeordneten Konusabschnitt 26 auf. Der Sechskantabschnitt 25 hat einen Durchmesser, welcher geringer ist als ein Durchmesser des Zylinderabschnitts 28. Der Konusabschnitt 26 vermittelt zwischen dem Sechskantabschnitt 25 und dem Zylinderabschnitt 28 und weist mindestens eine Schräge 27 auf, in welcher ein Durchmesser zunimmt.

Die zur Umformung verwendeten Umformrollen 40 weisen zwei konische Abschnitte 44, 46 auf, welche einander entgegengesetzt sind. Durch einen ersten konischen Abschnitt 44 wird ein Einlaufwinkel definiert, ein zweiter konischer Abschnitt 46 definiert einen Glättwinkel. Zwischen den beiden konischen Abschnitten 44, 46 ist der Umformradius R ausgebildet. Die konischen Abschnitte 44, 46 haben eine gemeinsame Längsachse 48, welche eine Rotationsachse der jeweiligen Umformrolle 40 bildet. Im Gegensatz zu den bisherigen Ausführungsbeispielen sind die Rotationsachsen der Umformrollen 40 parallel zu der Längsachse 32 des Drückdorns ausgerichtet.

Das rohrförmige Werkstück 10 wird um den Drückdorn 20 angeordnet. In einem ersten Umformschritt wird ein erster Sechskantbereich 60 an dem Werkstück angeformt. Dieser weist eine zylinderförmige Außenmantelfläche und eine sechskantförmige Innenmantelfläche auf. Zur Ausformung des Sechskantbereichs 60 mit zylinderförmiger Außenmantelfläche werden die Umformrollen 40 zusammen mit dem Drückdorn 20 gegenüber dem Werkstück 10 axial verfahren, wobei keine axiale und radiale Relativbewegung zwischen Umformrollen 40 und Drückdorn 20 erfolgt. Wie bereits beschrieben kann auch das Werkstück gegenüber Umformrollen und Drückdorn relativ verfahren werden.

In einem zweiten Umformschritt wird ein konischer Übergangsbereich 61 dadurch ausgebildet, dass die Umformrollen im Bereich des Konusabschnitts 26 des Drückdorns 20 axial und radial gegenüber dem Drückdorn 20 relativ verfahren werden.

Nachfolgend wird das Werkstück in einem dritten Umformschritt weiter abgestreckt, wobei ein erster zylindrischer 62 Bereich geformt wird, welcher einen größeren Durchmesser aufweist als ein Durchmesser des ersten Sechskantbereichs 60.

In einem vierten Verfahrensschritt wird ein zweiter Übergangsbereich 63 angeformt, bei welchem ein Durchmesser des Werkstücks 10 ausgehend von dem zylindrischen Bereich 62 abnimmt. Hierzu werden die Umformrollen 40 relativ zu dem Drückdorn 20 axial in Richtung des freien Endes 22 des Drückdorns 20 bewegt und radial zugestellt. Die Ausformung des zweiten Übergangsbereichs 63 erfolgt somit in umgekehrter Bewegungsfolge zu der Ausformung des ersten Übergangsbereichs 61.

Anschließend wird in einem fünften Umformschritt ein zweiter Sechskantbereich 64 durch weiteres Abstrecken des Werkstücks 10 geformt. Dieser weist einen kleineren Durchmesser auf als ein Durchmesser des ersten zylindrischen Bereichs 62.

Schließlich wird in analoger Weise zur Ausbildung des ersten Übergangsbereichs 61 und des ersten zylindrischen Bereichs 62 ein Abschlussbereich 65 geformt, welcher einen dritten Übergangsbereich 66 und einen zweiten zylindrischen Bereich 67 umfasst.

Eine fünfte Ausgestaltung des erfindungsgemäßen Verfahrens ist in den Figuren 30 bis 43 dargestellt. Hierbei wird ein in Fig. 30 gezeigtes rohrförmiges Werkstück 10 in ein als zylindrisches Hohlteil mit einem Hinterschnitt ausgebildetes Werkstück 10 umgeformt, wie es beispielhaft in Fig. 40 und Fig. 41 dargestellt ist. Die Umformung erfolgt mittels eines Drückdorns 20, welcher in Fig. 42 gezeigt ist. Der Drückdorn 20 entspricht von seinem grundsätzlichen Aufbau dem in Fig. 9 dargestellten Drückdorn 20, wobei die Längenverhältnisse von Zylinderabschnitt 28 und Konusabschnitt 26 und die Konizität des Konusabschnitts 26 verändert und an die Umformaufgabe angepasst sind. Die zur Umformung verwendeten Umformrollen 40 sind in grundsätzlich gleicher Weise aufgebaut wie die im Zusammenhang mit dem in Figuren 23 bis 29 beschriebenen Umformrollen 40.

Das rohrförmige Werkstück 10 wird um den Drückdorn 40 angeordnet, Fig. 31. In einem ersten in Fig. 32 gezeigten Umformschritt wird durch axiales Verfahren der Umformrollen 40 gegenüber dem Werkstück 10 und dem Drückdorn 20 ein Endbereich des Werkstücks 10 eingezogen. Anschließend wird ein erster zylindrischer Bereich 70 mit einem Durchmesser D1 und einer Wandstärke S1 geformt, vergleiche Fig. 40. Der Durchmesser D1 ist geringer als der Durchmesser DO des Ausgangswerkstücks. Ebenso ist die Wandstärke S1 geringer als die Wandstärke SO des Ausgangswerkstücks. Zur Ausformung des ersten zylindrischen Bereichs 70 werden Umformrollen 40 und Drückdorn 20 mit gleicher Axialgeschwindigkeit relativ gegenüber dem Werkstück 10 axial verfahren, wie in Fig. 33 dargestellt.

Fig. 34 zeigt einen zweiten Umformschritt. In diesem wird ein konischer Übergangsbereich 71 dadurch ausgebildet, dass die Umformrollen 20 im Bereich des Konusabschnitts 26 des Drückdorns 20 axial und radial gegenüber dem Drückdorn 20 verfahren werden.

Nachfolgend wird das Werkstück 10 in einem dritten Umformschritt, welcher in Fig. 35 veranschaulicht ist, weiter abgestreckt. Hierbei wird ein zweiter zylindrischer Bereich 72 geformt, welcher einen Durchmesser D2 aufweist, der größer ist als der Durchmesser D1 des ersten zylindrischen Bereichs 70.

Fig. 36 zeigt einen vierten Verfahrensschritt. In diesem wird ein zweiter Übergangsbereich 73 angeformt, bei welchem ein Durchmesser des Werkstücks 10 ausgehend von dem zweiten zylindrischen Bereich 72 abnimmt. Hierzu werden die Umformrollen 40 relativ zu dem Drückdorn 20 axial in Richtung des freien Endes 22 des Drückdorns 20 bewegt und radial zugestellt. Die Ausformung des zweiten Übergangsbereichs 73 erfolgt somit in umgekehrter Bewegungsfolge zu der Ausformung des ersten Übergangsbereichs 71.

Anschließend wird in einem fünften Umformschritt ein dritter zylindrischer Bereich 74 mit einem Durchmesser D3 durch weiteres Abstrecken des Werkstücks 10 geformt. Der Durchmesser D3 ist geringer als der Durchmesser D2 des zweiten zylindrischen Bereichs 72, wie Fig. 40 zu entnehmen ist. Dieser Umformschritt ist in Fig. 37 dargestellt.

Figuren 38 und 39 zeigen weitere Verfahrensschritte, in denen ein dritter Übergangsbereich 75 und ein vierter zylindrischer Bereich 76 mit einem Durchmesser D4 in analoger Weise zu dem ersten Übergangsbereich 71 und dem zweiten zylindrischen Bereich 72 geformt werden.

Schließlich wird ein Abschlussbereich 77 geformt, welcher einen vierten Übergangsbereich 78 und einen fünften zylindrischen Bereich 79 umfasst. Der fünfte zylindrische Bereich 79 weist den Durchmesser DO des Ausgangswerkstücks und die Wandstärke SO des Ausgangswerkstücks auf.

Mit dem Verfahren ist es auf einfache Weise möglich, nahezu beliebige Wandstärken und Durchmesser auf besonders wirtschaftliche Weise zu formen. In Fig. 40 ist ein Werkstück gezeigt, welches mehrere Axialbereiche mit unterschiedlichen Wandstärken SO bis S4 aufweist, wobei lediglich in dem zuletzt geformten Abschlussbereich die ursprüngliche Wandstärke des Ausgangswerkstücks SO vorliegt. Das in Fig. 40 dargestellte Werkstück ist in Fig. 41 in perspektivischer Ansicht gezeigt.

Fig. 43 zeigt ein weiteres Werkstück, welches mittels des erfindungsgemäßen Verfahrens umgeformt wurde. Das Werkstück weist einen Ausgleichsbereich 19 auf, welcher in einem mittleren Bereich des Werkstücks ausgebildet ist. Der Ausgleichsbereich kann dazu vorgesehen sein, Maßschwankungen des Ausgangswerkstücks auszugleichen, indem überschüssiges Material in den Ausgleichsbereich 19 verlagert oder fehlendes Material gegebenenfalls aus diesem entfernt wird.

Das in Fig. 43 gezeigte Werkstück 10 weist einen im Wesentlichen konstanten Außendurchmesser auf, wobei in dem Ausgleichsbereich 19 eine erhöhte Wandstärke, mithin ein verringerter Innendurchmesser vorliegt. Das Werkstück 10 ist mit dem erfindungsgemäßen Verfahren auf besonders einfache und kostengünstige Weise herstellbar.

Figuren 44 bis 48 zeigen eine sechste Ausführungsform des erfindungsgemäßen Verfahrens. Hierbei wird in einer einzigen Aufspannung aus einem gerundeten, längs geschweißten Ring oder einem nahtlosen Rohr ein Katalysatorgehäuse 50 gefertigt. Ein Ziel dieses Verfahrens ist es, ein Katalysatorgehäuse 50 passgenau auf die Außenabmessungen eines keramischen Trägerkörpers 52 anzupassen. Dem liegt die Erkenntnis zugrunde, dass die Außenabmessungen des Trägerkörpers 52 von Fertigungslos zu Fertigungslos stark streuen. Dies führt dazu, dass Trägerkörper 52 mit Untermaß im Gehäuse lose sitzen, während Trägerkörper 52 mit Übermaß Defekte verursachen können. Mit dem erfindungsgemäßen Verfahren können die Abmessungen des Katalysatorgehäuses 50 auf den Trägerkörper 52 angepasst werden, so dass ein optimaler Sitz des Trägerkörpers 52 im Katalysatorgehäuse 50 erzielt wird.

Bei dem Verfahren wird ein Drückdorn 20 verwendet, welcher in Fig. 48 dargestellt ist. Der Drückdorn 20 weist einen endseitigen ersten Zylinderabschnitt 28a auf. An diesen angrenzend ist ein erster Konusabschnitt 26a ausgebildet, wobei zwischen erstem Zylinderabschnitt 28a und erstem Konusabschnitt 26a ein abgerundeter Übergangsabschnitt 29 gebildet ist. An den ersten Konusabschnitt 26a angrenzend ist ein zweiter Konusabschnitt 26b ausgebildet, welcher eine geringere Konizität aufweist als der erste Konusabschnitt 26a. Mit anderen Worten verläuft der zweite Konusabschnitt 26b flacher als der erste Konusabschnitt 26a, der Durchmesser nimmt also pro Längeneinheit weniger schnell zu. Dem zweiten Konusabschnitt 26b folgt ein zweiter Zylinderabschnitt 28b, welcher einen größeren Durchmesser aufweist als der erste Zylinderabschnitt 28a. Schließlich ist angrenzend an den zweiten Zylinderabschnitt 28b eine Vorschubstange 34 integral mit dem Drückdorn 20 ausgebildet, welche einen geringeren Durchmesser aufweist als der zweite Zylinderabschnitt 28b.

In einem ersten Verfahrensschritt, welcher in Fig. 44 dargestellt ist, wird das Werkstück 10 um den Drückdorn 20 angeordnet.

Fig. 45 zeigt einen zweiten Verfahrensschritt, in welchem ein erster Stutzen 54 des Katalysatorgehäuses 50 angeformt wird. Dabei wird ein Endbereich des Werkstücks 10 an eine Außenfläche des Drückdoms 20 angedrückt und/oder drückgewalzt.

In einem dritten Verfahrensschritt wird durch eine Messeinrichtung ein Außendurchmesser eines in das Katalysatorgehäuse 50 einzusetzenden Trägerkörpers 52 oder Keramikinnenteils gemessen. Dieser Messwert wird einer Steuereinrichtung übermittelt und gegebenenfalls mit dem zuvor gemessenen Innendurchmesser und/oder der zuvor gemessenen Wandstärke des Werkstücks verarbeitet. Durch die Steuereinrichtung wird eine Bewegung der Umformrollen 40, des Drückdorns 20 und/oder des Werkstücks 10 gesteuert. Insbesondere wird hierbei ein Innendurchmesser des Werkstücks 10 durch axiales Verschieben der Umformrollen 40 gegenüber dem Drückdorn 20 eingestellt beziehungsweise gesteuert und so das Werkstück 10 passgenau auf den gewünschten Innendurchmesser abgestreckt. Für eine besonders feinfühlige Steuerung ist dabei der zweite Konusabschnitt 26b vorgesehen, welcher eine flache Steigung aufweist. Bei der Umformung kann ein freies Ende des Werkstücks 10 in einer Zentrier- oder Spanneinrichtung gehalten sein.

In einem vierten Verfahrensschritt wird der Drückdorn 20 vollständig aus dem Werkstück 10 entfernt und der Trägerkörper 52 oder das Keramikinnenteil eingesetzt.

In einem fünften Verfahrensschritt wird ein zweiter Stutzen 56 des Katalysatorgehäuses oder ein Abschlussende endgeformt.

Eine siebte Ausführungsform des erfindungsgemäßen Verfahrens ist in Figuren 49 und 50 dargestellt. Fig. 49 zeigt einen Umformschritt mit einer Mehrbereichs-Umformrolle 4Oa 1 welche auch als Mehrbereichswalze bezeichnet werden kann. Eine vergrößerte Ansicht der Mehrbereichswalze ist in Fig. 50 dargestellt.

Mit der Mehrbereichs-Umformrolle 40a beziehungsweise Mehrbereichswalze kann die Umformgeschwindigkeit beim Abstrecken zylindrischer Hohlteile erhöht werden. Die Mehrbereichs-Umformrolle 40a weist ein Rollenprofil mit mindestens zwei Umformradien 41 und mindestens einem Abstreckradius 43 auf. Durch diese mindestens drei Radien kann das Werkstück 10 an mehreren Stellen gleichzeitig umgeformt werden. Vor und hinter den Umformradien 41 ist jeweils ein Wellental 45 angeordnet. Die Wellentäler 45 dienen dazu, eine Berührungsfläche zwischen Mehrbereichs-Umformrolle 40a und Werkstück 10 zu reduzieren. Weiterhin können die Wellentäler 45 dazu verwendet werden, Schmier- und Kühlflüssigkeit zwischen Mehrbereichs-Umformrolle 40a und Werkstück 10 einzubringen, um eine Reibungsverminderung zu erreichen. Im Bereich des größten Durchmessers der Mehrbereichs-Umformrolle 40a, welcher als Öffnungsdurchmesser bezeichnet werden kann, ist eine Niederhalterfläche 47 angeordnet, um eine Wulstbildung am Werkstück 10 zu verhindern. Hinter dem Abstreckradius 43 schließt sich eine Glättfläche 49 zum Glätten des Werkstücks 10 an. Die Glättfläche 49 mündet in einen Freiwinkel 49a. Die Absolutbeträge der Radien und Arbeitswinkel sind werkstoffabhängig und müssen im Experiment ermittelt werden.

Fig. 51 zeigt eine achte Ausführungsform des erfindungsgemäßen Verfahrens. Dargestellt ist ein Umformschritt mit einem zwei oder mehr Innenrollen 39 aufweisenden Drückdorn. Die Innenrollen 39 sind um den Umfang des Drückdorns 20 gleichmäßig verteilt und dort um eine eigene Achse drehbar gelagert. Bezüglich einer Längsachse 32 des Drückdorns sind die Innenrollen 39 drehfest. Die Innenrollen 39 sind ohne Axial- und Radialversatz angeordnet.

Die Zahl der Innenrollen 39 ist vom Innendurchmesser des Werkstücks 10 abhängig. In Fig. 51 sind zwei Innenrollen 39 dargestellt; es können aber auch drei, vier oder mehr Innenrollen 39 vorgesehen sein. Die Außenrollen beziehungsweise Umformrollen 40 entsprechen hinsichtlich Anzahl und Teilung den Innenrollen 39, die so jeweils als Arbeitspaar wirken und umformen.

Eine achte Ausführungsform des erfindungsgemäßen Verfahrens ist in den Figuren 52 bis 58 gezeigt. Diese Ausführungsform betrifft das Umformen eines Werkstücks im Gleichlauf-Drückwalzverfahren. Ausgangswerkstück kann eine zylindrische oder konische Vorform sein. Fig. 52 zeigt ein napfförmiges Ausgangswerkstück 10. Das Werkstück 10 weist einen Zylindermantel 17 und einen Bodenbereich 18 auf.

Der Drückdorn 20 ist als Hohldorn ausgeführt, in welchem ein Innendorn 23 angeordnet ist. Drückdorn 20 und Innendorn 23 sind axial zueinander verschiebbar gelagert.

In Fig. 53 ist das Werkstück 10 zwischen dem Innendorn 23 und einem Andrückelement 8, beispielsweise einer Ausstoßerscheibe, drehfest eingespannt. Der Zylindermantel 17 des Werkstücks 10 liegt lose auf dem Drückdorn 20 an. Der Drückdorn 20 weist entsprechend den vorherigen Ausführungsformen einen Konusabschnitt 26 und einen Zylinderabschnitt 28 auf.

Eine Umformrolle 40 wird nahe dem Übergang von Konusabschnitt 26 zu Zylinderabschnitt 28 positioniert. Als erster Verfahrensschritt wird ein Teil des Zylindermantels 17 des Werkstücks 10 kontrolliert eingezogen. Durch die unmittelbare Druckeinwirkung bildet sich zwischen der Umformrolle 40 und dem Drückdorn 20 eine Zone des plastischen Materialzustandes aus, in der die Wanddicke reduziert wird. Der verdrängte Werkstoff fließt dabei in Richtung des axialen Vorschubs der Umformrolle 40. Die Um- formrolle 40 wird dabei radial und axial zugestellt. Der Drückdorn 20 wird in axialer Richtung auf einen ständig sich verkleinernden Durchmesser zurückgezogen.

Fig. 54 zeigt ein Zwischenstadium dieses Umformprozesses.

In Fig. 55 ist der Einziehumformvorgang beendet. Der eingezogene Werkstückbereich liegt nun auf dem Drückdorn 20 an.

In Fig. 56 ist ein weiterer Verfahrensschritt gezeigt, bei welchem das Werkstück 10 auf den Innendorn 23 zylindrisch im Gleichlaufdrückwalzen abgestreckt wird. Hierbei werden die Umformrollen 40 und der Drückdorn 20 axial verschoben. Das Werkstück 10 wird zwischen Umformrollen 40 und Drückdorn 20 umgeformt.

In Fig. 57 ist zu sehen, dass ein weiterer Teilbereich des Werkstücks 10 zwischen Umformrolle 40 und Drückdorn 20 im Gleichlaufdrückwalzen abgestreckt wird und im weiteren Verlauf ein vergrößerter Öffnungsdurchmesser angeformt wird.

Ein fertig umgeformtes Werkstück 10 ist in Fig. 58 gezeigt.

Fig. 59 zeigt eine erfindungsgemäße Vorrichtung 80 zum Gegenlaufdrückwalzen. Die Vorrichtung 80 weist ein Maschinenbett 82, einen Spindelkasten 84 und einen Support 86 auf. Der Spindelkasten 84 ist gegenüber dem Maschinenbett 82 axial verschiebbar. Zum axialen Verschieben des Spindelkastens 84 ist ein Spindelkastenantrieb 88 vorgesehen.

An dem Spindelkasten 84 ist ein Drückdorn 20 axial verschiebbar in Bezug auf den Spindelkasten 84 und in Bezug auf das Maschinenbett 82 gelagert. In einer axialen Verlängerung des Drückdorns 20 ist eine Vorschubstange 34 angeordnet, welche mit dem Drückdorn 20 über einen Druckkopf 90 verbunden ist. Der Druckkopf 90 ist zwischen Vorschubstange 34 und Drückdorn 20 angeordnet und bewirkt eine Drehentkopplung zwischen Vorschubstange 34 und Drückdorn 20. Sobald die Umformrollen 40 das Werkstück 10 auf den Drückdorn 20 drücken, wird der Drückdorn 20 über Reibschluss zwischen Umformrolle 40 und Werkstück 10 in Rotation versetzt. Der Druckkopf 90 verhindert, dass sich die Vorschubstange 34 mitdreht. Am Ende der Vorschubstange 34 ist zur axialen Verschiebung des Drückdorns 20 beziehungsweise der Vorschubstange 34 ein Axialantrieb 92 mit Verdrehsicherung angeordnet. Das Werkstück 10 ist spindelkastenseitig durch ein Spannfutter 94 eingespannt. Zwischen Spindelkasten 84 und Support 86 sowie auch hinter dem Support 86 können Ly- netten 96 zur Unterstützung des Werkstücks 10 angeordnet sein. Die Vorrichtung 80 umfasst ferner einen Z-Achsen-Antrieb 98 zum Vorschub des Spindelkastens 84 in axialer Richtung.

Mit der Vorrichtung 80 kann das am Spindelkasten 84 eingespannte Werkstück 10 durch axiales Verfahren des Spindelkastens 84 axial bewegt werden. Dies ist insbesondere bei der Bearbeitung langer Werkstücke 10, beispielsweise zur Herstellung von Laternenmasten, besonders vorteilhaft und verkürzt die Gesamtbaulänge der Vorrichtung 10.

Fig. 60 zeigt eine Querschnittsansicht durch die in Fig. 52 dargestellte Vorrichtung 80 entlang der Schnittlinie A-A. An dem Support 86 sind vier angetriebene Umformrollen 40 radial entlang je einer Radialachse 87 und axial entlang einer Axialachse relativ verfahrbar zum Drückdorn 20 beziehungsweise zu einer Hauptspindel angeordnet. Der Support 86 ist fest mit dem Maschinenbett 82 verbunden.

In Fig. 61 ist eine weitere Vorrichtung 80 zum Gegenlaufdrückwalzen veranschaulicht. Bei dieser Ausgestaltung ist der Support 86 axial verfahrbar an dem Maschinenbett 82 angeordnet und der Spindelkasten 84 fest mit dem Maschinenbett 82 verbunden. An dem Support, insbesondere an einer Radialachse 87, 86 sind die Umformrollen 40 radial verfahrbar gelagert.

Eine weitere, nicht dargestellte Möglichkeit besteht darin, hinter dem Support 86 einen Reitstock oder eine Haltevorrichtung vorzusehen.

Mit dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung lassen sich rohrförmige Werkstücke insgesamt besonders wirtschaftlich und präzise umformen.