Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND APPARATUS FOR LED DRIVING AND DIMMING, AND ILLUMINATION SYSTEM
Document Type and Number:
WIPO Patent Application WO/2012/028554
Kind Code:
A1
Abstract:
The present invention relates to method and apparatus for driving an LED, and method and apparatus tor dimming an LED, an illumination system including an apparatus for driving an LED, and an illumination, system including an apparatus for dimming an LED. The method for driving an LED includes determining duty cycle of pulse sequence for controlling the power switch according to present current and predetermined operating current of the LED; generating the pulse sequence according to the duty cycle and according to randomized period sequence and/or randomized pulse position sequence; and controlling switching operation of the power switch by the pulse sequence, so as to drive the LED. Wherein, the LED is connected to power switch. By applying the present; invention, electromagnetic interference may be decreased, and the flickering of the LED may be reduced.

Inventors:
HU YANG (CN)
WU LI BO (CN)
Application Number:
PCT/EP2011/064744
Publication Date:
March 08, 2012
Filing Date:
August 26, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM AG (DE)
HU YANG (CN)
WU LI BO (CN)
International Classes:
H05B44/00
Domestic Patent References:
WO2009013698A12009-01-29
Foreign References:
US20080224636A12008-09-18
US20100148678A12010-06-17
Other References:
STANKOVIC, A.M., VERGHESE, C.E., PEN-EAULT, D.J.: "Analysis and synthesis of randomized modulation schemes for power converters", POWER ELECTRONICS, IEEE TRANSACTIONS, vol. 10, no. 6, November 1995 (1995-11-01), pages 68C - 693
Attorney, Agent or Firm:
OSRAM AG (München, DE)
Download PDF:
Claims:
CLAIMS

What is claimed, is:

1. A method for driving .an LED connected to a power switch, the method comprising;

deiermining a duty cycle of a pulse sequence for controlling the power switch according to a present current and a predetermined operating current of the LED;

generating the pulse sequence according, to the duty cycle and according to a randomized period sequence and/or a randomized pulse position sequence; and

controlling switching operation of the power switch: by the pulse sequence, so as to drive the LED.

2. The method according to claim 1 , wherein, the step of determining the duty cycle of the pulse sequence for controlling the power switch according to the present current and the predetermined operating current of the LED comprises:

sampling the present current of the LED;

comparing the sampled present current and the predetermined operating current; and calculating the duty cycle of the pulse sequence for controlling the power switch according to a comparison result.

3. The method according to claim -2> wherein, the step of deteitnining the dirty cycle of the pulse sequence for controlling the power switch according to the comparison result comprises:

if the comparison result indicates the sampled present -current is higher than the predetermined operating current, the duty cycle is decreased,

4. The method according to claim: 2, wherein5 the step of determining the duty cycle of the pulse .sequence for controlling the power switch according to the comparison result comprises:

if the comparison result indicates the sampled present current is lower than the predetermined operating current, the duty cycle is increased.

5. The method according to claim. :1 , wherein, the step of generating the pulse sequence according to the duty cycle and according to the randomized period sequence and/or the randomized pulse position sequence, comprises: generating a first random number sequence and a second random number sequence; generating the period sequence according to the first random number sequence; generating the pulse position sequence according to the second random number sequence: and

generating the pulse sequence haying the duty cycle and having the period sequence and/or the pulse position sequence.

6. The method according to claim 1, wherein, a randomized., frequency sequence corresponding to the period sequence is within a range of 40 kHz to 1 MHz.

7. A method for dimming an LED, wherein, the LED is connected to a power switch, the m eth od comprising:

determining a duty cycle of a pulse sequence for controlling the power switch according to a present current and a desired brightness of the LED;

generating the pulse sequence according to the duty cycle and according to a randomized period sequence and/or a randomized pulse position sequence; and

controlling switching operation of the power switch by the pulse sequence, for dimming the LED to a desired brightness.

8. The method according to claim 7, wherein, the step of generating the pulse sequence according to the duty cycle and according to the randomized period sequence and/or the randomized pulse position sequence comprises:

generating a first random number sequence and a second random number sequence; generating the period sequence according to the first random number sequence;

generating the pulse position sequence according to the second random number sequence; and

generating the pulse sequence haying the duty cycle and having the period sequence and/or the pulse position sequence,

9. The method according to claim 7, wherein, a randomized frequency sequence corresponding to the period sequence is within a range of ISO Hz to 400. Hz.

10. An apparatus for driving an. LED, comprising:

a driving duty cycle determining: module for determining a duty cycle according to a present current and a predetermined operating current of the LED; a driving pulse sequence generating module for generating the pulse sequence according to the duty cycle and according to a randomized period sequence and/or a randomized pulse position sequence; and.

a driving power switch which is connected to the LED and is used for switching operation under control of the: pulse sequence, so as to drive the LED.

11. The apparatus according to claim 10, wherein, the driving duty cycle determining module comprises:

a driving sampling unit for sampling the present current of the LED;

a driving comparing unit for comparing the sampled present current and the predetermined operating current; and

a driving determining unit for determining the duty cycle of the pulse sequence for controlling the power switch according to a comparison result; of the driving comparing unit,

12. The apparatus according to claim 11, wherein, if the comparison result of the driving comparing unit indicates the sampled present current is higher than the predetermined operating current, the driving determining unit determines to decrease the duty cycle.

13. The apparatus according to claim 11, wherein, if the comparison result of the driving comparing unit indicates the sampled present current is lower than the predetermined operating .current, the driving determining unit determines to increase the duty cycle.

14. The apparatus according to claim 10, wherein, the driving pulse sequence generating module comprises:

a driving random number generating unit for generating a first random number sequence and a second random number sequence;

a driving period generating unit for generating the period sequence according to the first random number sequence;

a driving pulse position generating unit for generating the pulse position sequence according to the second random number sequence; and

a driving pulse sequence generating unit for generating the pulse sequence having the duty cycle and having the period sequence and/or the pulse position sequence.

15. The apparatus according to claim 10, wherein, a randomized frequency 'sequence corresponding to the period sequence is within a range of 40 kHz to IMHz,

16. An apparatus for dimming an LED, comprising:

a dimming duty cycle determining module for determining a duty cycle according to a present current and a desired "brightness of the LED;

a dimming pulse sequence generating module for generating the pulse sequence according to the duty cycle and according to a randomized period sequence and/or a randomized pulse position sequence; and

a dimming power switch which is connected to the LED, and is used for switching operation under control of the pulse sequence, for dimming the LED to a desired brightness.

17. The apparatus according to claim 16, wherein, the dimming pulse sequence generating module comprises:

a dimming random number generating unit for generating a first random number sequence and a second random number sequence;

a dimming period generating unit for generating the period sequence according to the first random number sequence;

a dimming pulse position generating unit for generating the pulse position sequence according to the second random number sequence; and

a dimming pulse sequence generating unit for generating the pulse sequence having the duty cycle and having the period sequence and/or the pulse position sequence.

18. The apparatus according to claim 16, wherein, a randomized frequency sequence •corresponding to the period sequence is within a range of 150 Hz to 400 Hz.

19. An illumination, system, comprising an LED and the apparatus according to any one of claims 11 to 15.

20. An illumination system, comprising an LED and the apparatus according to any one of claims 16 to 18.

Description:
Method and Apparatus for LED Driving and Dimming, and Illumination System

FIELD OF INVENTION

[0001] The present invention relates to an illumination field, in particular to method and apparatus for driving an LED, method and apparatus for dimming an LED, an illumination system including an apparatus for driving an LED, and an illumination system including an apparatus for dimming an LED.

BACKGROUND OF THE INVENTION

[0002] With the improving lumen efficiency of Light- Emitting Diode (referred to as LED for short) chip and package for illumination, Solid-State lighting (referred to as SSL for short) including LED for general lighting is becoming an important application. Since standard iW

LED is usually working with around 3,3 V and 350mA, for most applications, electronic drivers are needed to regulate the LED current. High frequency power electronic converters such as Buck converter.. Fly-hack converter or other converter with stepping-down topologies are often used in those el ectronic drivers .

[0003] For power electronic converter, Pulse Width Modulation (referred to as PWM for short) is the technique which can adjust the. width of the cond ucting pulse of the power switch (for example, power semiconductor device), so as to control the amount of power sent to the load. PWM control could be realized with designated controller Integrated circuit (referred to as IC for short) chips or with some micro-controllers. In most electronics converters with PWM control, the switching frequency is fixed. One problem with the fixed switching frequency is the high harmonics interference: in power spectrum at multiples of the base frequency.

[0004] Electromagnetic interference (referred to as EMI for short), thai is, the so-called radio frequency interference (referred to as RFl for short) is a disturbance that affects other electrical circuit due to either electromagnetic conduction or electromagnetic radiation emitted from an external source. There are technical requirements .for electronics products including all commercial/residential lighting products including EMI. Different, countries or regions have their regulations for ΕΜΪ, which means, the electronics products should generate less high frequency harmonics than required in the certain frequency range. To limit the EMI to the environment or to the AC line, input filter circuit is required to reduce high frequency harmonics in some applications, and this will increase cost and size of the system.

[0005] PWM control could he used in SSL for .LED current regulating and/or for dimming control. Specifically, there will be two orders of PWM control. The first order of PWM control is by controlling the power semiconductor device switching to get constant LED driving current, wherein the switching frequency could be from 40 kHz to more than 1 MHz. The second order of PWM ..control is for dimming by switching operation -the -whole converter and LEDs, wherein the frequency is typically from 150 Hz to around 400 Hz. The frequency range of the second order of PWM control can help - eliminate "flickering- effect of human eyes. Fixed frequency second order of PWM control will also have the high harmonics problem, and another problem is that, for some movie cameras with fixed recording frequency, fixed frequency regulation will cause flickering in the recorded video.

[0006] Electromagnetic conduction interference could he depressed by filter circuit (for example, inductors connected in series or capacitors in parallel). This is the most common solution for lighting sources with integrated electronic driver. However, input filter circuit will increase cost and size of the system. For some power electronic applications with PWM control, such as electrical machine drive or switch-mode power supply, Random PWM (referred to RPWM for short) has been used to distribute the -EMI energy to wide frequency band, so as to reduce the. harmonics amplitude and noise (Analysis and synthesis of randomized modulation schemes for power converters. Stankovic. A.M.; Verghese, G.E.; Perreault, DJ.; Power Electronics, IEEE transactions on Volume 10, Issue 6, Nov. 1995 Page(s):680-693). For LED lighting, since most state-of-arts designs do not have micro -controller to realize such complex control algorithm, drivers are still working at fixed switching frequency. With the increasing wattage level of the LED lighting systems and with integration of dimming function, noise and EMI will become more and more important for electronic design. However, there exist problems of larger circuit size, high EMI and LED flickering in the present technologies.

[0007] Fig. 1 is a circuit diagram of an -example LED driving circuit according to an existing technology. As shown in Fig. 1, the LED driving circuit comprises capacitor C, free wheel diode FWD, inductor L, light emitting diode (or light emitting diode series) LED, and power switch PSW, The specific connection relations among those elements are shown in Fig. 1. The light emitting diode series LED is connected to the inductor L and the power switch PSW in series when the power switch PSW is tamed on. The free wheel diode FWD will turn on to pass the inductor current when the power switch PSW is turned off. By regulating the duty cycle of the power switch PSW, the current of the light emitting diode series LED could be controlled.. The switching frequency of the circuit could he from 40 kHz to more than 1 MHz. For the circuit with fixed switching frequency, Fig.2 illustrates PWM driving signal and Fig. 3 illustrates the LED current waveform.

[0608] Fig. 4 is a diagram illustrating relations between output voltage and frequency under a control of the PWM driving signal shown in Fig. 2. As: shown in Fig. 4, harmonics occurs at multiplies of the base frequency.

[0009] For PWM dimming, the duty cycle control is in low frequency of from 150 Hz to around 400 Hz. The power switch is still operating at the high frequency of kHz to MHz range, while the whole driving circuit is on and off at a low frequency. Fig. 5 shows simulated LED driving current waveform with PWM dimming according to the existing technology,

[0010] For the above technical problems, it is desired to provide a technique capable of reducing circuit size, decreasi n g EMI, and reducing flickering of the L ED.

SUMMARY OF THE INVENTION

[0011] A brief summary about the present invention is described hereinafter to provide basic understandings related to some aspects of the present invention. It should he understood that this summary is not an exhaustive summary related to the present invention. The summary is not intended to determine a key part or an important pari of the present invention, nor does it intend to limit the scope of the present invention. The -purpose of the summary is only to provide some concepts in simplified forms to prelude more detailed descriptions discussed later.

[0012] A main object of the present invention is to provide method and apparatus for driving an LED, and method and apparatus for dimming an LED, an illumination system including an apparatus for driving an LED, and an illumination system including an apparatus for dimming an LED.

[0013] According to one aspect of the present invention, a method for driving an LED is provided, wherein the LED is connected: to a power switch. The method comprises: determining a duty cycle of a pulse sequence for controlling the power switch according to a present current and a predetermined operating current of the LED; generating: pulse- sequence according to the duty cycle and according to a randomized period sequence and/or randomized pulse position sequence; and controlling switching operation of the power switch by the pulse sequence, so as to dri ve the LED:

[0014] According to another aspect of the present invention, a method for dimming the LED is provided, wherein, the LED is connected to power switch. The method comprises: a determining duty cycle of a pulse sequence for controlling the power switch according to a present current and a desired brightness of the LED; generating pulse sequence according to a the duty cycle and according to the randomized period sequence and/or a randomized pulse position sequence; and controlling switching operation of the power switch by the pulse sequence, for dimming the LED to a desired brightness,

[0015] According to still another aspect of the present invention, an apparatus for driving the LED is provided. The apparatus comprises: a driving duty cycle determining module for determining a duty cycle according to a present current and a predetermined operating current of the LED; a driving pulse sequence generating module for generating pulse sequence according to the duty cycle and according to a randomized, period sequence and/or a randomized pulse position sequence; and a driving power switch which is connected to the LED and is used for switching operation under a control of the pulse- sequence, so as to drive the LED.

[0016] According to further another aspect of the present invention, an apparatus for dimming the LED is provided. The apparatus comprises: a dimming duty cycle determining module for determining, a duty cycle according to a present current, and a desired brightness of the LED; a dimming pulse sequence generating module for generating a pulse sequence according to the duty cycle and according to a randomized period sequence and/or a randomized pulse position sequence; and a dimming power switch which is connected to the LED and is used for switching operation under a control of the pulse sequence, for dimming the LED to a desired brightness,

[0017] According to further another aspect of the present invention, an illumination system is provided. The illumination system comprises LED and apparatus for driving the LED.

[00.18] According to further another aspect of the present invention, an illumination system is provided. The illumination system comprises LED and apparatus for dimming the LED,

[0019] By applying the present invention, EMI may be decreased, and flicking of the LED may be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Referring to the explanations of the present invention in conjunction with the

Drawings, the above and. other objects, features and advantages of the present invention will be understood more easily. Components in the Drawings are only intended to illustrate the principle of the present invention. In the Drawings, the same or similar iechnical features or components are represented by the Same or similar reference signs.

[0021] Fig. 1 is a circuit diagram illustrating an example LED driving circuit according to the existing technology;

[0022] Fig. 2 is a diagram illustrating the PWM driving signal -according to the existing technology;:

[0023] Fig. 3 is a graph illustrating relations between current and time under a control of the

PWM driving signal shown in Fig, 2;

[0024] Fig. 4 is a diagram illustrating Fourier transform of output voltage under a control of the PWM driving signal shown in Fig. 2;

[0025] Fig. 5 is a simulated LED driving current waveform diagram with PWM dimming according to the existing technology;

[0026] Fig * 6 is a flow chart of the method for driving the LED according to one embodiment of the present invention;

[0027] Fig. 7 is a flow chart of the method for driving the LED using randomized period modulation pulse signal according to one example of the present invention;

[0028] Fig. 8 is a graph illustrating relations between time and pulse signal with the randomized period modulation according to the example of Fig.7;

|0O29{ Fig. 9 is a graph illustrating relations between voltage and time of the P WM driving signal according to the example of Fig. 7; [0030] Fig * 10 is a graph illustrating the LED current waveform according to the example of Fig. 7:

[0031] Fig. 11 is a graph illustrating the relations between voltage and frequency according to the example of Fig. 7;

[0032] Fig. 12 is a flow chart of the method for dri ving the LED using randomized pulse position pulse signal according to another example;

[0033] Fig, 13 is a graph illustrating relations between time arid pulse signal with randomized pulse position according to the example of Fig. 12;

[0034] Fig. 14 is a graph illustrating relations between voltage and time of the PWM driving signal according to the example of Fig. 1.2;

[0035] Fig, 15 is a graph illustrating the LED current waveform according to the example of

Fig. 12;

[0036] Fig. 16 is a flow chart of the method for dimming an LED aecording to another embodiment of the present invention;

[0037] Fig, 17 is a current waveform diagram of the method for dimming the LED aecording to one example;

[0038] Pig- 18 is a flow chart illustrating a method for dimming diode using randomized period modulation pulse signal according to one example ;

[0039] Fig. 19 is a flow chart illustrating a. method for dimming diode using randomized pulse position pulse signal according to another example ;

[0040] Fig. 18 20 is a block diagram illustrating apparatus for driving the LED according to another embodiment of the present invention;

[0041] Fig. 19 21 is a block diagram illustrating apparatus for dimming the LED according to another embodiment of the present invention;

[0042] Fig. 20 22 is a block diagram illustrating an illumination system including the apparatus of Fig. 18;

[0043] Fig. 21 23 is a block diagram illustrating an illuinination system including the apparatus of Fig. 19;

[0044] Fig, 22 24 is a circuit diagram of an example of the hardware and the software that may apply the embodiments according to the present invention.;

[0045] Fig. 23 25 is a circuit diagram of another example of the hardware and the software that may apply the embodiments according to the present invention; and

[0046] Fig. 24 26 is a circuit diagram of yet another example of the hardware and the software that may apply the embodiments according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0047] The embodiments of the present invention are discussed hereinafter in conjunction with the Drawings. Elements and features described in one Drawing or one embodiment of the present invention may be combined with elements and features described in one or more other

Drawings or embodiments. It should be noted that representation and description of components and processes unrelated to the present invention and well known to one of

' ordinary skill in the art are omitted in the Drawings and the Description for the purpose of being clear.

[0048] Referring to Fig. 6. the method for driving diode according to one embodiment of the present invention is described, wherein, the LED may be connected to power switch (for example, power semiconductor device and other appropriate power switches conventionally used in the art) through various manners,

[0049] As illustrated in Fig. 6, in step 602, the duty cycle of pulse sequence for controlling the power switch may be determined according to present current, and predetermined operating current of the LED. in step 604, the pulse sequence is generated according to the duty cycle and according to the randomized period sequence and/or randomized pulse position sequence, in step 606, switching operation of the power switch is controlled by the pulse sequence for driving the LED.

[0050] Specifically, in the step 602, presen t current of the LED may be sampled, the sampled present current is compared with the predetermined operating current, and the duty cycle of the pulse sequence for controlling the ' power switch is calculated based on the: comparison result. If the comparison result indicates that the sampled, present current is higher than the predetermined operating current, the duty cycle may be reduced; if the comparison result indicates the sampled present current is lower than, the predetermined operating current, the duty cycle may be increased.

[0051] in the step 604, a first random number sequence and a second, random number sequence may be generated; a period sequence is generated according to the first random number sequence; the pulse position sequence is generated according to the second random number sequence; and pulse sequence having duty cycle and -haying period sequence and/or pulse position sequence is generated,

[0052] Alternatively, the randomized frequency sequence corresponding to the period sequence may be in a range of 40 kHz to 1MHz.

[0053] Specifically, today most of the LED drivers are designed with PWM integrated circuit (IC) controller, so the IC controller may sample the LED driving current and compare the sampled signal with the reference in an integrated comparator to generate the PWM driving signal. If the current signal is lower than the reference, the IC controller will increase the duty cycle of the PWM output; if the current signal is higher- than the reference, the IC controller will decrease the duty cycle of the PWM output, in this way,, the circuit could achieve a constant LED driving current (that is, operating current). Wherein, the reference may be set based on the required driving current of the LED.

[0054] When the LED driving circuit having the IC controller gets to a steady state, the circuit is operating repeatedly. And the switching frequency of the power electronics device is fixed. To realize randomized PWM, the randomization algorithm may be used by a micro-controller or a nvicro-programnied control unit (referred to as MCU for short).

[0055] Referring to Fig. 7, the method for driving diode using randomized period modulation pulse signal according to one example is described,

[0656] As shown in Fig. 7, at first, start driving control cycle. Then, in step 702, sample the current of the LED to obtain a signal corresponding to the present current of the LED. In step 704, compare the sampled signal with the pre-stored reference, then calculate the duty cycle d according to the comparison result. Wherein, the reference is determined based on the operating current of the LED. In step 706, generate a random number sequence, and calculate randomized period sequence according to the random number sequence. In step 708, set PWM generator according to the calculated randomized period sequence and the pulse width to set the pulse modulation generator to generate pulse sequence, wherein, the pulse width is a product of the duty cycle and the period. Then, the LED is dri ven using the pulse sequence to make the current of the LED achieve the operating current. End the driving control, cycle,

[0057] Fig. 8 is a graph illustrating relations between time and pulse signal with the randomised period modulation according to the example of Fig.7.

[0058] As shown in Fig. 8, for a switch cycle of the LED driving circuit, variables may include period Τ k, position ρ* T k of the pulse centre, and the pulse width d*Tk- Because the duty cycle is determined by the driving current requirement and the duty cycle cannot be changed, randomization could be applied to period Tk or position ρ*Ί\ of the pulse centre to achieve the randomized PWM driving.

[0059] in Fig. 8, T k to T K+1 are period time for each driving control cycle. Before the driving control cycle starts, the MCU controller will generate a randomized period time T random with special range, and then apply the randomized period time to a fixed period T 0 , for example,

By setting the duty cycle and pulse position, the PWM signal will .be . generated

with the randomized period. Position of the pulse is normally in the centre of the control period, which is because it is easy to realize with the integrated PWM generator, a comparator with the reference and a saw-tooth counter. In Fig. 8, the duty cycle is 50%, Actually, the magnitude of the duty cycle is .not limited to 50%, and the duty cycle may be other appropriate values in other specific application fields.

[0060] If the randomized period PWM is app l ied to the illumination circuit (for example, the circuit shown in Fig. 1), the output voltage is shown in Fig. 9, and the LED current is shown in Fig. 10. The periods of different driving control cycles have been randomized by tire MCU controller. Meanwhile, keeping a constant duty cycle can achieve the constant average current control for TED driving. In this way. the separate spectrum lines in Fig. 4 may be changed to continuous with lower amplitude, as shown in Fig. 11 . This is an effective method to reduce the harmonics in high power LED driver circuits. For LED driving circuit with MCU, this could be a cost-efficient way to reduce the filter cost and the size of the driver,

[0061] Referring to Fig. 12, the method for driving the LED using pulse signal with randomized pulse position according to another example of Fig. 12.

[0062] As shown in Fig. 12, at first, start the driving control cycle, and then, in step 1202, sample the current: of the LED to obtain a signal corresponding to the present current of the LED. in step 1204, compare the sampled signal with the pre-siored reference, then calculate the duty cycle d according to the comparison result. Wherein, the reference may be determined based on the operating current of the LED. In step 1206, generate a random number sequence, and calculate randomized pulse position sequence according to the random number sequence. In step 1208, set PWM generator according to the calculated randomized pulse position sequence and the pulse width and the period to set the puise modulation generator to generate pulse sequence, wherein., the pulse width is a product of the duty cycle and the period. Then, the LED is driven using the pulse sequence to make the current of the LED achieve the .operating current. End the drive control cycle.

[0063] Specifically, the method may be implemented by fixing the switching frequency and changing the pulse position in each control cycle. By randomizing the puise position p*T\, the power spectrum of harmonics, in the circuit could be distributed. The circuit waveforms of randomized pulse position PWM are shown in Fig. 15. and the Fourier transform of me output voltage using the method is similar to that of the randomized period PWM method in Fig. 11. it is not described in detail here.

[0064] Referring to Fig. 16, the method for dimming diode according to another embodiment of the present invention is described, wherein, the LED may be connected to power switch (for example, power semiconductor device and other appropriate power switch conventionally used in the art) through various manners.

[0065] As illustrated in Fig. 16, in step 1602, the duty cycle of pulse sequence for controlling the power switch may be determined according to present current and desired brightness of the LED, in step 1604, the pulse sequence may be generated according to the duty cycle and according to the randomized period sequence and/or randomized pulse position sequence. In step 1,606, switching operation of the power switch may be controlled through pulse sequence to for dimming the LED to a desired brightness.

[0066] Specifically, in the step 604, a first random number sequence and second random, number sequence may be generated; a period sequence is generated according to the first random number sequence; pulse position sequence is generated according to the second random number sequence; and pulse sequence having duty cycle and having period sequence and/or pulse position sequence is generated. [0067] Alternatively, the randomized frequency sequence corresponding to the period sequence may be in a range of 150 Hz to 400 Hz.

£0O6§3 Fig. 17 is the current waveform diagram showing the method for dimming diode according to an example.

[0069] As shown in Fig. 17, the randomized PWM for dimming is similar to what have been diseussed for LED driving. Variables for randomization may be the period T ¾ and the position p*Tfc of the pulse centre. The risk of high EMI is often found in high frequency or radio frequency range. Since the frequency of dimming control is normally less than 1 kHz, the RPWM for dimming will not have significant impact to harmonics of the current output or the driver's EMI perforniances.

P070J However, although human, eyes can not detect the flickering frequency higher than 150 Hz, for some video recording cameras, the sampling frequency may interact with the dimming frequency, for example the video taken by cameras will show annoying flickering or moving bars on the image,

[0071] Randomization of the: dimming PWM control: could help eliminate the interaction of the sampling frequency and the dimming frequency. For a dimming cycle of the LED driving circuit, variables may include period T\, position p'*T'k,of the pulse centre and the pulse width d'*T'k. Because the duly cycle is determined by the desired brightness and the present current and the duty cycle cannot: be changed, randomization could he applied to period T ¾ or position of the pulse centre p'*T' k to achieve the randomized PWM for performing dimming.

[0072] Referring to Fig. .18, the method for dimming diode using randomized period modulation pulse signal according to one example is described.

[0073] As shown in Fig. 18, at first, start, the dimming control cycle, and then, in step 1802, sample the current of the LED to obtain a signal corresponding to the present current of the LED. In step 1804, compare the sampled signal with: the pre-siored reference, then calculate the duty cycle d according to the comparison result. Wherein, the reference is determined based on the desired brightness of the LED. In Step 1806, generate a random number sequence, and calculate randomized period sequence according to the random number sequence. In step 1808, set PWM generator according to the calculated randomized period sequence and the pulse width to set the pulse modulation generator to generate pulse sequence, wherein, the pulse width is a product of the duty- cycle and the: period. Then, the .LEO is dimmed using the pulse sequence to make the brightness of the LED achieve a desired brightness. End the dimming control cycle,

[0074] Referring to Fig. 19, the method for dimming diode using randomized pulse position pulse signal according to another example is described,

[0075] As shown in Fig. 19, at first, start the dimming control cycle, and then, in step 1902, sample the current of the LED to obtain a signal corresponding to the present current of the LED, In step 1904, compare the sampled signal with the pre-stored reference, then, calculate the duty cycle d according to the comparison result. Wherein, the reference may be determined based on the desired brightness of the LED. in step 1906, generate a random, number sequence, and calculate randomized pulse position sequence according to the random number sequence. In step 1908, set PWM generator according to the calculated randomized pulse position sequence and the pulse width and the period to set the pulse modulation generator to generate pulse sequence, wherein, the pulse width is a product of the duty cycle and the period. Then, the LED is dimmed using the pulse sequence to make the brightness of the LED achieve a desired brightness. End the dimming control cycle

[0076] Referring to Fig. 20, apparatus 2000 for driving an LED according to another embodiment of the present invention is described.

[0077] As shown in Fig. 20, the apparatus 2000 for driving the LED comprises:- driving duty cycle -determining module 2002 for determining duty cycle according to present current and predetermined operating current of the LED; driving pulse sequence generating module 2004 for generating pulse sequence according to the duty cycle and according to the randomized period sequence and/or randomized pulse position sequence; and driving power switch 2006 which is connected to the LED and is used for performing switching operation under a control of the pulse sequence, so as to drive the LED,

[0078] Wherein, the driving duty cycle determining module 2002 may comprise: driving sampling unit for sampling the present current of the LED; driving comparing unit for comparing the sampled present current and the predetermined operating current; and driving determining unit for detennining duty cycle of pulse sequence for controlling the driving power switch according to the comparison result of the driving comparing unit. If the comparison result of the driving comparing unit indicates the sampled present current is higher than the predetermined operating current, the driving determining unit determines to reduce the duty cycle; if the comparison result of the driving comparing unit indicates the sampled present current is lower than, the predetermined operating current, the driving determining unit determines to increase duty cycle,

[0079] The driving pulse sequence generating module 2004 may comprise: driving random, number generating unit for generating a first random number sequence and a second random number sequence; driving period generating unit for generating period sequence according to the first random number sequence; driving pulse position generating unit for generating pulse position sequence according to the second random number sequence; and driving pulse sequence generating unit for generating pulse sequence having duty cycle and having period sequence and/or pulse position sequence.

[0080] Alternatively, the randomized frequency sequence corresponding to the period sequence may be in the range of 40 kHz to 1 MHz..

[0081] Referring to Fig. 21, the apparatus 2100 for dimming an LED according to further embodiment of the present invention is described.

[0082] As shown in Fig. 21. the apparatus 2100 for dimming the LED comprises: dimming duty cycle determining module 2102 for determining duty cycle according to present current and desired brightness of the LED; dimming pulse sequence generating module 2104 for generating pulse sequence according to the duty cycle and according to the randomized period sequence and/or randomized pulse position sequence; and dimming power switch 2106 which, is connected to the LED and is used for switching operation under a control of the pulse sequence, for dimming the LED to a desired brightness.

[0083] The dimming pulse sequence generating module 2.104 may comprise: dimming random number generating unit for generating a first random number sequence and a second random number sequence; dimming period generating unit for generating period sequence according to .the first random, number sequence; dimming pulse position generating unit for •generating pulse position sequence according to the second random number sequence; and dimming pulse sequence generating unit for generating pulse sequence having: duty cycle and having period sequence and/or pulse position sequence. [0084] Alternatively, the randomized frequency sequence corresponding to the period sequence may be in the range of 150 Hz to 400 Hz.

[0085] Referring to Fig. 22, an illumination system 2200 including (he apparatus of Fig. 20 is described,

[0086] As shown in Fig. 22, the illumination system 2200 may comprise LED 2202 and apparatus 2000 for driving the LED 2202.

[0087] Referring to Fig. 23, an illumination system 2300 including the apparatus of Fig. 21 is described,

[0088] As shown in Fig. 23, the illumination system 2300 may comprise LED 2302 and the apparatus 2100 for dimming the LED 2302.

[0089] Figs, 24 to 26 show respectively examples that may apply hardware and software according to embodiments of the present invention. The circuit shown in Fig, 24 comprises inductor L, free wheel diode FWD, power switch PSW, capacitor C, MCU controller s and light emitting diode (may be LED series) LED. The circuit shown in Fig, 25 comprises inductor L, free wheel diode FWD, light emitting diode (or light emitting diode series) LED, power switch PSW, capacitors C1 and C2, and MCU controller. The circuit shown in Fig. 26 comprises transformer, capacitors C2 and C2, free wheel diode FWD, light emitting diode (or LED series) LED, power switch PSW, and MCU controller.

[0090] It can be seen that the RPWM method for driving and dimming LED may be applied to the circuit topologies shown in Figs, 23 to 26, Actually, the circuit topologies to which the RPWM method for driving and dimming the LED can be applied are not limited thereto, and the RPWM method for driving -and dimming the LED may be applied to other appropriate topologies, Furthermore, there may be different application for the LED illumination.

[0091] For LED driving with. PWM, the switching frequency is in the range of 50 kHz to more than 1 MHz. Fixed-frequency PWM method will have high harmonics interference at the multiples of the switching frequency, while RPWM method may obtain continuous spectrum, distribution of harmonies. This: can help reduce the harmonics amplitude in the circuit, so as to improve the EMI performance to meet the regulations. For LED lighting electronics, this could help reduce the cost, and size of filter circuit,

[0092] For LED dimming with PWM and duty cycle control the frequency of dimming control is normally less than 1 kHz, The RPWM for dimming will not have significant impact to harmonies of the current output or the driver's ΈΜ1 perfomance. . However, . aithoUgii human eyes cannot detect the flickering frequency higher than 150Hz, for some vide recording cam eras, the sampling frequency may interact with the dimming frequency. For example, the video taken by cameras will show annoying flickering or moving bars: on the image. Randomization of the dimming PWM control could help eliminate the -effect. The randomization algorithm is similar to what have been discussed for RPWM driving.

[0093] For LED driving system with Micro-Controller, the RPWM method will add no hardware component or cost, and ail the control function can be realized by software.

[0694] In the devices and method of the present invention, apparently, each component or each step may he disassembled, combined and/or recombmed after being disassembled. Those disassembling and/or recombining should be regarded as. equivalent solutions of the present -invention, It should be further pointed out that: the step performing the above series of processes may be executed naturally in time order according to the order of the Description,, but not necessarily executed in time order.. Some steps may be executed in parallel or independently from each other. Meanwhile, in the Description of the embodiments of the present invention, features described and/or illustrated for one embodiment may be used in one or more other embodiments in the same or similar manner, he combined with features in other embodiments or replace features in other embodiments.

[0095] It should be emphasized thai the technical, term "comprise/include" ' is used here to refer to an existence of a feature, an element, a step or a component, without excluding existences or attachments of one or more other features, elements, steps or components.

[0096] Although the device and method of the present invention have been described in detail, apparently, each component or each step may be disassembled, combined .-and/or necombiued after being disassembled. Those disassembling and/or recombining should be regarded as equivalent solutions of the present invention. It should be further pointed out that: the step performing the above series of processes may be executed naturally in time order according to the order of the Description, but not necessarily executed in time order. Some steps may be executed in parallel or independently from, each other. Meanwhile, in the Description, of the embodiments of the present invention,, features described and/or illustrated for one embodiment may be used in one or more other embodiments in the same or similar manner, be combined with features in other embodiments or replace features in other embodiments,

[0097] it should be emphasized that the technical term "comprise/include" is used here to refer to an existence of a feature, an- element, a step or a component, without excluding existences or attachments of one or more other features, elements, steps or components.

[0098] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. The scope of the presen t application is not intended to be limited to the particular embodiments of the processes, devices, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, devices, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, devices, means, methods, or steps.

[0099] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. The scope of the present application is not intended to be limited to the particular embodiments of the processes, devices, means, methods and steps described in the specification. As one of ordinary skill hi the art will readily appreciate from the disclosure of the present invention, processes, devices, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present: invention. Accordingly, the appended claims are intended to include within their scope such processes:, devices, means, methods, or steps.