Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND APPARATUS FOR REMOTE COMMUNICATION OF VEHICLE COMBUSTION PERFORMANCE PARAMETERS
Document Type and Number:
WIPO Patent Application WO/2004/055342
Kind Code:
A1
Abstract:
An apparatus for remote identification of the combustion performance of a vehicle is provided. The apparatus comprises a throttle device for control of fuel into an engine of a vehicle. A combustion sensor is in operative communication with the vehicle for the purpose of analyzing a vehicle combustion performance parameter. A remote communication device is in operative communication with the combustion sensor for communicating the combustion performance parameter. A remote monitoring network is included for receiving the combustion performance parameter from the remote communication device over a network to enable remote monitoring of vehicle performance.

Inventors:
FOSSEEN DWAYNE (US)
Application Number:
PCT/US2003/016134
Publication Date:
July 01, 2004
Filing Date:
May 21, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MIRENCO INC (US)
FOSSEEN DWAYNE (US)
International Classes:
F02D41/14; F02D41/26; G07C5/00; F02D11/10; (IPC1-7): F02D9/08; G01M15/00
Foreign References:
US4138979A1979-02-13
US4234922A1980-11-18
US5394136A1995-02-28
US5315977A1994-05-31
US6370472B12002-04-09
Attorney, Agent or Firm:
Rosenberg, Daniel A. (Suite 2500 Des Moines, IA, US)
Download PDF:
Claims:
Claiming:
1. An apparatus for remote identification of combustion performance of a vehicle, said apparatus comprising: a vehicle with a throttle device for control of fuel into an engine of said vehicle; a combustion sensor in operative communication with said vehicle for the purpose of analyzing a vehicle combustion parameter; a remote communication device in operative communication with said combustion sensor for communicating said combustion parameter. a remote monitoring network for receiving said combustion parameter from said remote communication device over a network to enable remote monitoring of vehicle performance.
2. The invention in accordance with claim 1 further comprising a computer control device for controlling the position of said throttle in response to one or more sensors that indicate performance of said engine.
3. The invention in accordance with claim 2 wherein said computer is in operative communication with said combustion sensor, and said remote communication device is in operative communication with said combustion sensor through said computer.
4. The invention in accordance with claim 1 wherein said remote communication utilizes cellular communications.
5. The invention in accordance with claim 1 wherein said remote communication utilizes satellite communication.
6. The invention in accordance with claim I wherein said remote communication utilizes a radio transmitter and receiver.
7. The invention in accordance with claim 1 wherein said remote communication utilizes a wireless modem.
8. The invention in accordance with claim 1 further providing a global positioning satellite receiver located on said vehicle for receiving satellite signals that allow for locating a position of said vehicle, and said remote communication includes said vehicle position.
9. The invention in accordance with claim I wherein said combustion sensor comprises an exhaust analyzer.
10. The invention in accordance with claim 1 wherein said combustion sensor comprises a temperature sensor located in a catalytic converter of said vehicle.
11. The invention in accordance with claim I wherein said combustion sensor senses temperature differential of said vehicle exhaust before and after said exhausts enters a catalytic converter.
12. The invention in accordance with claim 1 wherein said combustion sensor senses carbon dioxide differential of said vehicle exhaust before and after said exhausts enters a catalytic converter.
13. The invention in accordance with claim 1 wherein said combustion sensor senses oxygen differential of said vehicle exhaust before and after said exhausts enters a catalytic converter.
14. The invention in accordance with claim 1 wherein said combustion sensor comprises an opacity sensor that measures the opacity of said vehicle exhaust.
15. The invention in accordance with claim 1 wherein said combustion sensor comprises an accelerometer that measures the acceleration of said vehicle to detect irregularities in combustion.
Description:
METHOD AND APPARATUS FOR REMOTE COMMUNICATION OF VEHICLE COMBUSTION PERFORMANCE PARAMETERS Background of the Invention The present invention relates to an apparatus for remote communication of a combustion performance parameter of a vehicle. In particular, to the remote communication of information from one or more of a plurality of sensors of vehicle combustion, including for the purpose of identifying vehicles with imperfect performance, combustion problems, or other problems related to fuel economy.

Internal combustion engines burn a mixture of fuel and air in a combustion chamber.

The ignition of the air/fuel mixture creates the energy to drive the engine, but also creates a wide variety of exhaust gases. Also, even the most efficient internal combustion engines fail to burn all of the available air/fuel mixture. Thus, in addition to exhaust gases, some amount of unburned fuel comprises another unfortunate by-product of all internal combustion engines. Some portion of these by-products of combustion find their way into the engine causing premature deterioration of the engine, while the remainder of the by-products travel through the exhaust system of the vehicle, and eventually enter the atmosphere in one form or another. Compounding the problem is the fact that the natural consequence of driving a vehicle is the degeneration of the engine in terms of its ability to run efficiently, which accelerates the problem over time. Thus, even the most fuel-efficient vehicles fully equipped with pollution reduction devices generate excess pollution and eventually will become progressively more wasteful and inefficient over time. The effect on the environment of exhaust gases and the other by-products of internal combustion engines comprises one of the single greatest problems faced by today's society. The prior art offers a myriad of solutions to the problems created by the by-products of combustion, however, much room for improvement still exists.

Some of the common pollutants that result from internal combustion of hydrocarbon fuels include carbon dioxide (C02)-the necessary by-product of complete combustion and a prime contributor to global warming, exhaust gases like the toxin carbon monoxide (CO), and hydrocarbons (HC) that result from incomplete combustion of the air/fuel mixture.

Furthermore, various unfavorable nitrogen oxides (NOX) result from the thermal fixation of nitrogen that takes place from the rapid cooling of burnt hydrocarbon fuel upon contact with

the ambient atmosphere. The amount of these pollutants produced varies based on a number of factors including the type of engine involved, the age and condition of the engine, the combustion temperature, the air/fuel ratio, just to name a few. Many devices attempt to regulate and control these mechanical, environmental, and chemical processes for the purpose of reducing vehicle emissions.

For example, United States Patent No. 5,315, 977 discloses a device that limits fuel to an internal combustion engine in order to reduce emissions. The device, sold under the trademark EconoCruise made by Mirenco, Inc. of Radcliffe, Iowa, reacts in response to a plurality of sensors to manipulate the maximum open throttle position. The device is very successful in eliminating and/or reducing fuel emissions by preventing a host of inefficient and wasteful driving habits that can accelerate engine deterioration as well as increase engine exhaust, and the device is effective in limiting the flow of unburned fuel into the engine.

Another such device is disclosed in United States Patent No. 6,370, 472, which builds on the technology disclosed in the aforementioned patent, by incorporating it into a method and apparatus for reducing vehicle emissions through the use of satellite technology. A vehicle use profile is created by driving a vehicle over a predetermined course and monitoring throttle positions at predetermined intervals. The use profile reflects the driving habits of an efficient driver and can then be reproduced on subsequent trips over the same course by automatic means.

While these inventions are highly effective in reducing vehicle emissions it may be helpful in many cases to identify on a preemptive basis vehicles that due to mechanical or other problems that are generating a higher than normal amount of vehicle exhaust. In particular, engine problems that can produce inefficient use of fuel and unwanted vehicle emissions cannot be detected by visually monitoring vehicle emissions at least until the problems have reached very serious proportions. Thus, a more robust detection scheme is desirable. Similarly, routine preventative maintenance can identify for repair inefficient vehicles. Such a program, however, cannot detect problems that occur between maintenance intervals and result in performing maintenance on vehicles without problems. While preventative maintenance is certainly beneficial, the process is not designed to identify on a realtime basis problem vehicles.

In addition, maintenance and vehicle inspection programs cannot monitor on a realtime basis wasteful habits of inefficient drivers. It is know that individual driver

performance can vary dramatically and have a substantial impact on fuel economy and therefore on vehicle emissions.

Thus, a need exists for a method and apparatus for the realtime communication of parameter of combustion performance.

Summary of the Invention An object of the present invention comprises providing a method and apparatus for an apparatus for remote communication of a combustion performance parameter of a vehicle.

These and other objects of the present invention will become apparent to those skilled in the art upon reference to the following specification, drawings, and claims.

The present invention intends to overcome the difficulties encountered heretofore. To that end, an apparatus for remote identification of the combustion performance of a vehicle is provided. The apparatus comprises a throttle device for control of fuel into an engine of a vehicle. A combustion sensor is in operative communication with the vehicle for the purpose of analyzing a vehicle combustion performance parameter. A remote communication device is in operative communication with the combustion sensor for communicating the combustion performance parameter. A remote monitoring network is included for receiving the combustion performance parameter from the remote communication device over a network to enable remote monitoring of vehicle performance.

Brief Description of the Drawings Figure 1 is a schematic drawing of the present invention for control of an engine, and monitoring a combustion parameter.

Figure 2 is a combination schematic and plan view of an alternative embodiment of the present invention for monitoring a combustion parameter and control of an engine without an electronic throttle.

Figure 3 is a breadboard diagram of a portion of the engine control apparatus of the present invention.

Figure 4 is a diagram of a catalytic converter with a plurality of combustion sensors.

Detailed Description of the Invention In the Figures, Figure 1 shows a schematic diagram of the present invention. In modern vehicles, an electronic engine computer 38 controls important engine functions including throttle control. Typically, the engine computer 38 sends and receives a throttle voltage control signal to and from a throttle pedal 42 in the form of a 5v DC signal. The throttle voltage signal varies in proportion to the desired change in vehicle speed. In the case of car controlled manually by the driver, the engine computer 38 receives a throttle voltage control signal along a direct path between the engine computer 38 and the throttle pedal 42.

The engine computer 38 can then translate the throttle voltage into the appropriate signal to the fuel injectors 40 to ensure an engine response in proportion to the throttle voltage.

In most modern vehicles, the engine computer 38 can take control of the throttle through a cruise control device 39. In this case, the engine computer 38 would take control of the throttle voltage via a throttle voltage control signal path between the engine computer 38 and the throttle pedal 42. This creates a feedback loop that allows the engine computer 38 to adjust the throttle voltage at the pedal 42 to control the vehicle to a certain speed.

In part, the present invention builds on the cruise control model in the following manner. The invention includes a general-purpose computer 10 that uses a software control program to take control of the throttle voltage and control of a vehicle in accord with a pre- selected response from a plurality of external sensors. Those of ordinary skill in the art will appreciate that the computer 10 could consist of a lap top computer, a dedicated embedded controller device like the EconoCruise device, or any other similar computer. In particular, the computer 10 is connected to a Global Positioning Satellite receiver 12 ("GPS") that receives absolute position information from an array of satellites 14. The computer 10 is also connected to an exhaust emission analyzer 16 that is in operable communication with the exhaust manifold 18 of a vehicle. In the preferred embodiment of the present invention the exhaust analyzer 16 consists of a Model 6600 miniature automotive analyzer commercial available from Andros Incorporated of Berkeley, California. However, those of ordinary skill in the art will understand that any similar suitable analyzer could be used. In addition, the computer 10 interfaces with the engine computer 38 and the throttle pedal 42 in a manner that allows the computer 10 to control the throttle pedal 42 in the manner of a cruise control device.

The invention employs a simple relay switch 26, which switches between a factory throttle control position and a position whereby the computer 10 controls the throttle. In particular, the relay switch 26 employs a relay coil 28 that triggers the relay switch 26. Figure 1 shows the relay switch 26 set to the factory throttle control position 34. In position 34, the engine computer 38 assumes standard control over the throttle pedal 42. In position 34 the engine computer 38 controls the throttle pedal 42 along the throttle voltage control signal path 44. The throttle pedal communicates with the engine computer 38 along the throttle voltage control signal path 46,48. In the factory throttle control position 34, throttle voltage control signal path 36 allows the computer 10 to monitor and record the throttle voltage signal.

With the relay switch 26 set to a throttle voltage control position 30 the computer 10 assumes control over the throttle pedal 42, and control over the throttle signal sent to the engine computer 38. In position 30, the throttle signal travels from the throttle pedal 42 along the throttle voltage control path 46,36 to the computer 10. The computer 10 can then send the throttle voltage signal back to the engine computer 38 and to the throttle pedal 42 along throttle voltage control path 32,48, 44. The invention includes a common ground path 52 linking the computer 10, engine computer 38, and throttle pedal 42. Two manually activated switches actually trigger the relay switch 26. A brake switch 20 is connected through a DC power supply 22 to the relay switch 26, to allow the driver to manually set the relay switch 26 to the factory control position 34 by tapping the brake pedal. A steering wheel switch 24 allows the driver to manually set the relay switch 26 in either the factory control position 34 or the computer control position 20.

Figure 2 shows an alternative embodiment of the present invention for use with vehicles without engine computers, or electronic voltage control capacity. In this embodiment, a throttle apparatus 114 is mounted atop a governor control box 116. The governor control box 116 includes a top plate 134 on which is mounted a speed control lever 130. The speed control lever 130 pivots about the pivotal mount 132 that extends down through the top plate 134. The speed control lever 130 is controlled in response to a throttle cable (not shown) that extends from the throttle pedal or foot-operated accelerator pedal (not shown) to a throttle cable hook 115. The throttle cable hooks to the speed control lever 130, and moves the speed control lever 130 in response to changes in the throttle pedal as controlled by the driver's foot. Movement of the speed control lever 130 serves to control the flow of fuel into the engine, thereby controlling the vehicle speed. Also mounted to the top

plate 134 is a stop lever 136. The stop lever 136 is mounted for pivotal movement on a vertical shaft that extends through the top plate 134. The stop lever 134 is biased toward an ideal position. Placing a physical stop in the path of the stop lever 134 serves to limit the maximum movement of the speed control lever 130, and thereby limits the maximum rate that fuel enters the engine. The exact operational details of the interaction between the governor control box 116 and its related engine components are disclosed in more detail in United States Patent No. 5,315, 977.

In the present invention, a linear actuator 120 (or alternatively a stepper motor), controlled by the computer 10, is mounted to the top plate 134 of the governor control box 116. The linear actuator 120 is interfaced with the computer 10 by the common ground line 64, and along the throttle control signal path 48,36. The linear actuator 120 is linked to DC power supply 22 along signal path 62. The linear actuator 120 has a screw 122 that is extendable and retractable in fine, exact, and reproducible increments. An end 124 of the screw 122 serves as a mechanical stop for the stop lever 136. The linear actuator 120 interfaced to the computer 10 provides a means to control the throttle of engines that do not include an electronic throttle voltage signal.

A potentiometer 128 is mounted to the top plate 134. The potentiometer 128 includes cylinder 126 that mounts to the speed control lever 130. The cylinder 126 extends and retracts in response to movement of the speed control lever 130. The position of the cylinder 126 is translated to a voltage signal by the potentiometer 128, wherein the signal correlates to the throttle position. The voltage signal is interfaced with the computer 10 in the following manner. The potentiometer 128 has a common ground 52, and is powered by DC power supply 54. The DC power supply 54 is linked to the computer 10 and sends power to the potentiometer 128 along signal path 56. An output signal is sent from the potentiometer 128 to the computer along signal path 46,36. The output signal consists of the throttle position as measured and converted to an electronic voltage signal by the potentiometer 128. In this manner, the potentiometer 128 allows the computer to monitor an electronic throttle voltage signal.

The computer 10, linked to the potentiometer 128 and linear actuator 120, controls the operation of the engine in the manner described above in reference to engines with electronic throttle control. In the embodiment of the invention shown in Figure 2, when the relay switch 26 is in the factory control position 34, the linear actuator 120 is programmed to withdraw the

screw 122 to its retracted position such that the stop lever 136 and the speed control lever 130 operate without interference. In the factory control position 34, the computer 10 can still monitor the throttle voltage via the signal path 46,36 extending from the potentiometer 128 to the computer 10. With the relay switch 26 in the throttle voltage control position 30, the computer 10 receives the converted throttle voltage signal from the potentiometer 128 along the signal path 46,36 and can control the throttle by sending signals to the linear actuator 120 along the signal path 34,48. Thus, the computer 10 can execute engine control in the same manner described hereinabove in reference to the embodiment shown in Figure 1. Of course, those of ordinary skill in the art will understand that, without departing from the scope of the intended invention, the specific configuration required for controlling vehicles without electronic throttles and/or electronic engine computer will vary depending on the make and model of the vehicle involved.

In the various manners described hereinabove, the computer 10 can directly assume control of the throttle voltage in response to one or more of the sensors. Specifically, the computer 10 can take control of the throttle voltage and manage the voltage in response to at least three sensor inputs. First, the computer can manage the throttle position in the same manner as a conventional cruise control. That is the system can adjust the throttle voltage based on driving conditions to maintain as close as possible a constant speed. Secondly, the computer 10 can control the throttle voltage in response to input from the emission analyzer 16. In this mode, the computer may monitor the emission analyzer to ensure that the emissions stay below a certain level. For example, through experimentation it may be desired to keep emission levels below a certain opacity threshold (where 0% would be completely clear exhaust and 100% would be completely opaque exhaust), or below some other predetermined level of a particular exhaust gas. If the threshold level is exceeded the computer can reduce the throttle voltage or institute some change in the fuel makeup or mixture until the emission level drops below the threshold.

Third, the computer 10 could control the throttle voltage in response to information from the GPS receiver 12. This control mode would likely involve the establishment of a throttle voltage profile. This can be accomplished by allowing a driver of particularly high skill in driving to conserve fuel to drive the vehicle over a predetermined course. The relay switch 26 would be set to the factory control position 34, enabling the computer 10 to collect throttle voltage information, and time, position, and elevation data from the GPS receiver 12

in communication with the satellites 14. Furthermore, vehicle speed could also be monitored by the computer 10 or computed based on the time and position data. This information could be collected on a periodic basis, for example, once a second or once every 100 feet, or any other convenient interval. This information can be recorded and used at a later date on a trip by another driver over the same or substantially similar route, in the same or substantially similar vehicle. On the return trip the computer 10 can use the previously created profile to control the throttle position. Again, with the GPS sensor 12 activated, the computer 10 can compare the current vehicle position and throttle voltage to the historical data, and use adaptive techniques to match the current throttle voltage to the throttle voltage at the same location based on the historical data.

In addition to the sensors mentioned hereinabove, other sensors could be used with the present invention. For example, a wind resistance sensor could be used to calculate wind speed and direction. This information would be used by the computer 10 to adjust the throttle voltage. The computer 10 would be able to calculate adjustments to throttle voltage to compensate or adjust for any differences between current wind resistance and the wind resistance at the time the historical data was collected.

In practice, the best results, i. e. those results that minimize emissions and maximize fuel economy, may be achieved by a control program that combines all responses to all three sensors to achieve the most efficient performance. In general, the control program would follow the control flow represented by the following pseudo code: BEGIN CONTROL LOOP [While Brake_Pedal = On] { OBSERVE Pollution CALCULATE c= Fuel (Pollution) CALCULATE b = Prediction (x) CALCULATE a = Throttle (x) CALCULATE Throttle Power New = a + b + c + Throttle Power Old Apply Throttle Power New CALCULATE Throttle_Power_Old=Throttle_Power_New } REPEAT LOOP

Pollution is the response from the emission analyzer 16. The value of x equals the vehicles real world position, speed, and/or elevation as determined by the GPS receiver 12.

The Fuel function uses the parameter Pollution to calculate the throttle voltage adjustment coefficient c that becomes a component of the throttle adjustment equation. If the emission threshold is within the predetermined tolerance then the value of c equals zero. If the emission threshold is exceeded then the value of c would become negative, exerting a drag on throttle voltage. This would then begin to slow the vehicle until the emission level drops below the threshold level. Alternatively, if the emission threshold is exceeded the fuel mixture or composition could be altered by the computer 10 to reduce the emissions. In particular, the air/fuel mixture could be adjusted, or water and/or a mixture of water and alcohol could be added to the fuel mixture to reduce emissions. Water and/or a water and alcohol mixture could be either port injected or injected directly into the combustion chamber to reduce, for example, oxides of nitrogen (NOx).

The Prediction function uses the parameter x to calculate the throttle voltage adjustment coefficient b. The Prediction equation could be as simple as exactly matching the historical throttle voltage to the current voltage. In practice, however, driving and vehicle conditions vary enough that this method may not produce the best results. An alternative Prediction function would match the slope of the historical run to the current run. In other words, the function would look ahead a specified number of control points (based on either time or distance) and determine the slope of the historical throttle voltage versus time/distance curve, and then apply that slope to the current data to adjust current throttle position. The coefficient b could be negative or positive depending on whether the throttle voltage needs to be decreased or increased, respectively.

The Throttle function uses the parameter x to calculate the throttle voltage adjustment coefficient a. The Throttle function comprises the direct attempt to control speed, and would use the standard cruise control equations known in the art to perform this function. These equations attempt to drive the difference in actual speed and a target speed (delta speed) to zero. In situations where either coefficient b or c become large enough that an imbalance exists between the values of b or c, and a, then an adjustment to the target speed will be needed. This will result, for example, when the historical profile shows that the vehicle is approaching a major uphill or downhill section of the road. In the case of a downhill section, the Prediction function will allow the vehicle to gain speed down the hill, while at the same

time the Throttle function will attempt to slow the vehicle. If this imbalance will persist over more than a couple of control points, the target speed would be raised to correct the imbalance. In the situation where the vehicle is approaching a major uphill section requires the reverse control method.

The values of the coefficients a, b, c can be determined by the computer 10 based on a predetermined weighting scheme that seeks to achieve the best overall performance, or the driver can set or influence the values on a real time basis. For example, the driver could enter information into the computer 10 instructing the computer 10 to control the throttle voltage to maximize or minimize fuel economy, emissions, or to maintain a constant speed. The relative importance the driver gives to these factors would determine the weight given to each of the coefficients a, b, c.

Another feature of the present invention is the ability of the computer 10 to predict and report the difference in fuel economy or the amount of emission reduction achieved under throttle control. The computer 10 can track the changes, corrections, or adjustments made to the throttle voltage in relation to straight cruise control, for example, and keep a log of the improvement to fuel economy or emission reduction that results. This information would be useful in quantifying the value of the invention in terms of fuel savings, or emission reduction.

Those of ordinary skill in the art will understand that the exact control method and equations will vary depending on the vehicle, the vehicle load, the road, and driving conditions. Thus, some experimentation and profiling will be required in order to determine the exact equations and weighting factors.

Another aspect of the present invention includes a remote communication device (RCD) 17 operatively connected to the computer 10, or alternatively directly connected to the exhaust analyzer 16 (connection shown in phantom). The RCD 17 provides for transmission of information received from one or more of a plurality of sensors that monitor some indicator of engine performance and/or of engine combustion. For example, the RCD 17 could transmit information from the exhaust analyzer 16 to a remote monitoring location 21 via a communication network 19. The remote communication scheme for communicating combustion performance parameter like exhaust analyzer information could utilize a wireless modem device and communication network, a cellular network, a PCMCIA communication device, a radio transmitter and transceiver, satellite communications technology, or the like.

The information transmitted from the exhaust analyzer 16 could include important parameters of engine performance and fuel combustion like HC, CO, C02, Oz, and NOx gas concentrations. From these parameters a person or device at the remote monitoring location 21 could quickly identify on a realtime basis poor performing vehicles, or changes in vehicle performance that should be addressed through maintenance procedures or modification of driving behavior. For example, the remote monitoring location 21 could utilize a computer program means to identify out of range conditions for certain exhaust parameters, or a manual system could be used where a person monitors the information coming from the exhaust analyzer 16 at predetermined intervals. In either event, any particular problem vehicle could be quickly identified based on indicators of engine performance, or driver behavior that would lead to poor fuel economy, allowing for immediate remedial attention.

In addition, the RCD 17 could transmit information from a catalytic converter 100 configured with plurality of sensors (Fig. 4). The sensors associated with the catalytic converter 100 can interface with the computer 10, or directly with the RCD 17. The catalytic converter 100 comprises a secondary combustion chamber that combusts unburned fuel expelled from the engine. The amount of combustion that takes place in the catalytic converter 100 indicates the quality of the primary combustion process. However, while reducing emissions of unburned fuel and its constituent components, the catalytic converter can hide inefficiencies in engine performance thereby making it difficult to identify problem conditions that need correction or that would over time lead to serious engine deterioration.

Thus, it is desirable to monitor engine combustion performance in a manner tat accounts for the activity of the catalytic converter 100. Communication of the output one or more of the plurality of sensors associated with the catalytic converter 100 to the RCD 17, or to the computer 10, would allow detection of any such problem in combustion performance.

Monitoring the catalyst bed temperature, inlet/outlet temperature, and the inlet/outlet CO2 or 02 levels or some combination of the foregoing sensors would allow for determining the amount of secondary combustion taking place in the catalytic converter 100 and by proxy the performance of the primary combustion taking place in the engine of the vehicle. In particular, the monitoring could be based on the differential between inlet/outlet temperatures, based on catalyst bed temperature, or based on the differential between inlet/outlet C02 or °2 levels.

Another sensor capable of adaptation for use with the present invention comprises an accelerometer 102. An electromechanical or mechanical accelerometer 102 can be attached to the engine to detect irregularities in engine combustion performance through detection of very small irregularities in acceleration. For example, an accelerometer 102 could detect irregular cylinder firing patterns, or even a dead cylinder, that might not be detectable to the operator of the vehicle. The accelerometer 102 can interface directly with the computer 10, or to the RCD 17, for communication to the remote monitoring location 21.

An opacity sensor is yet another example of a sensor capable of adaptation for use with the present invention for communication of parameters of engine combustion performance (see Figure 4). The opacity sensor could interface with the computer 10, or directly with the RCD 17, for communication to the remote monitoring location 21. The opacity sensor essentially would measure the amount of particulate in the engine exhaust, which is a measure of combustion quality. The more particulate in the exhaust the less efficient the combustion process, and the more likely that the engine has developed, or will develop, problems that require mechanical attention. In practice, it would be advisable to use periodic sampling and retract or cover the opacity sensor when not in use to limit its exposure to engine exhaust. Prolonged exposure could coat the sensor with carbon thereby limiting its utility.

The following information is helpful in illustrating the utility of realtime monitoring of some measure combustion efficiency. Table 1 shows the partial results of opacity testing performed on the exhaust of a fleet of school buses with very new engines (three of the mileage entries are believed to be excessive and the result of data entry error). The data shows that even with relatively new engines at least three of the buses exhibited opacity readings in excess of 18%, and one bus had a reading of 27.5%. The fleet averaged an opacity reading of 7.78%. Thus, the information in Table 1 clearly identifies three candidate vehicles for inspection and/or maintenance based on poor combustion performance. Without this testing information the problems in these vehicles would likely have gone undetected due to the fact that the opacity levels were not high enough to allow for visible detection, and new vehicles would likely not be scheduled for the type of maintenance that would detect the underlying problems. Left undetected the problem would worsen possibly to the point of requiring engine replacement, and at the least the vehicle would waste fuel and needlessly increase pollutants until the problem is detected or corrected. Accordingly, the realtime availability of such data would be very useful in identifying problem vehicles and facilitating changes thereto. Current PM Number Vehicle Density % of Number Engine Engine Injection Hours/before # Soot vehicles Location Manufacturer Model Type Mileage Year DriverMax Before 2542 6 Clear Lake Navistar/IH V8 Electronic 18, 868 2002 158. 24 2543 02-14 Van Horne Navistar/IH V8 Electronic 17, 373 2002 X X 8'i8, 107. 60 Elk Horn- Elk Horn-.. S 2544 6 Kimballton Navistar/lH V8 Electronic 8, 472 2002 10357 2545 03 Prescott NavistadlH V8 Electronic 8, 741 2002 m 75 33 2546 33 lowa City Navistar/IH V8 Electronic 713 2002 74. 80 - : : t-x : : : : r' 2547 2 Bumside Navistar/lH V8 Electronic 14, 464 2002 l O °mb 67. 32 Rock Valley 2548 3 Christian NavistarIIH V8 Electrornc 8, 342 2002 66. 75 b 4 ¢~. _. 2549 8 Buffalo Center Navistar/IH V8 Electronic 13, 395 2002 6445 2550 8 Clear Lake Navistar/IH V8 Electronic 10, 499 2002-40, *, 59. 84 2551 12 Carroll Navistar/IH V8 Electronic 6, 179 2002 5927 2552 32 lowa City Navistar/IH V8 Electronic 723 2002 H 57 14 2553 16 Nevada Navistar/IH V8 Electronic 8, 503 2002 >4 55 99 9 ; 7. 3 5599 2554 4 Lenox NavistarlH V8 Electronic 16, 378 2002 5064 2555 29 lowa City Navistar/IH V8 Electronic 79 2002 5035 '\-.. , '.'-' 2556 31 lowa City Navistar/lH V8 Electronic 71 2002 47. 64 -''% 2557 9 South Page Navistar/lH 6 cyl Electronic 3, 060 2002 fui 46. 95 2558 01 Farragut Navistar/IH V8 Electronic 8, 884 2002 45. 11 2559 30 lowa City Navistar/IH V8 Electronic 73 2002 4218 : .,- : Jy :.. 2560 202 Spencer Navistar/IH 6 cyl Electronic 7, 823 2002 4016 2561 4 lowa City Navistar/IH V8 Electrornc 73 2002 3930 2562 01-6 Sioux Central NavistarlH V8 Electronic 15, 262 2002 38 90 2563 22 New Hampton Navistar/lH V8 Electromc 217 2002'1 6. 62i 3809 *'% 'y<-.- ! 2564 9 South O'Brien Navistar/lH V8 Electronic 12, 898 2002 3740 2565 14 Fremont-Mills Navistar/tH V8 Electronic 7, 552 2002 i8 36. 14 Hull-Westem 2566 01 Christian High Navistar/IH V8 Electronic 17, 845 2002 m 35 79 2567 7 Clear Lake Navistar/IH V8 Electronic 14, 378 2002 w 34 75 '--% =.- ; 2568 3 Perry Navistar/IH 6 cyl Electronic 1, 892 2002 S 34 58 2569 28 Ankeny Navistar/IH V8 Electronic 8, 057 2002 3240 _. xe t 2570 9 Grundy Center Navistar/IH V8 Electronic 15, 080 2002 S. 5 3205 5, . ; xs. : Ly-i i 2571 2 Clarksville Navistar/lH V8 Electronic 447 2002 27. 79 . ---.-. v. t=1 a. : t. :. Y. w Allamakee- 2572 22 Waukon Navistar/IH 6 cyl Electronic 353 2002. 26 7. f.--S'1 : V :.-''-- 2573 2 Wyommg NavistadlH V8 Electromc 9, 293 2002 4, OQ !-.' 23. 02 2574 2 Od ebol t NavistadlH V8 Electronic 2, 997 2002 22. 50 2575 10 Valley, Elgin Navistar/iH tH T444E Eiectronic 3, t68 2002 w 18. 70 2576 21 Spirit Lake Navistar/IH 6 cyl Electronic 3, 728 2002 ? ? 9 17. 20 2577 05 Decorah NavistadlH 6 cyl Etectromc 9, 310 2002 17. 15 2578 2 Aita NavistadtH V8 Electronic 5, 319 2002 4 2579 55 Lynnville Sully Navistar/IH 6 cyl Electronic 1, 535 2002 Wellman-Mid g 2580 11 Prairie NavistadiH 6 cyl Electronic 1, 656 2002 ip36 11. 28 r., _ :. 2581 27 Decorah NavistadlH 6 cyl Electronic 11, 821 2002 7. 08 Weliman, Mid > ;. t =,- y ; : w.. 2582 12 Prairie NavistadlH 6 cyl Electronic 2, 507 2002 1. 97 x '4, *. ;'-y. 7 Average

Table 1-2002 School Bus Opacity Data As Table I indicates the problem of poor combustion is not isolated to older vehicles, even new engines can have substantial engine performance or fuel combustion problems. For example, vehicle number 6 with 8472 miles had an opacity level of 18 %, while vehicle number 05 with 9, 310 miles had an opacity level of 2.98%. Clearly, there is a problem with the vehicle number 6 that likely existed from the day the bus arrived from the factory.

Without this information it is unlikely that a brand new bus would have been tested, or thought to have such a problem, and the problem would have persisted causing further engine damage, continued to waste fuel, thereby needlessly increasing the cost of operation as well as pollution levels. However, as expected older vehicles show even worse deterioration.

Table 2 shows partial data taken from a fleet of older school buses with 1987 engines.

The data shows that seven of the buses have opacity readings of 55% or more, indicating major engine or combustion problems. Also, a large number of the buses have opacity readings in excess of 28% also indicating some level of deterioration and poor performance.

All of these buses would be candidates for some level of maintenance, ranging from a tune up to engine replacement. Again, this illustrates the benefit from realtime monitoring and

profiling of vehicle performance and of the performance of a fleet of vehicles, without which the problems would have persisted.

Such analysis done realtime eliminates the need to take the vehicle out of service for special testing, and allows for more closely monitoring the performance to better detect changes in performance. In addition, it is anticipated that the realtime monitoring could not only detect engine performance and combustion problems, but also detect difference in driving habits of drivers of fleet vehicles. If the data suggests that engine performance or combustion performance for some drivers is better than others, remedial action can be taken to transfer the techniques of the more skilled drivers to the less skilled drivers also resulting in better vehicle performance, reduced need or maintenance, and in reduced fuel costs. it teet Anat ; sis 1 osay | SOOt opxRy soot PU Number Density % of Vehkle Engtne Engne Inectbn Hoursl before a Soot vahici Numbers Location Manufacturer Mode) Type Mleage Year DnvOta) Before 4399 8701 CeEarRapids NavktarOH Mechanlcat 161, 710 t96J 432t3 4400 1 Pglla N2ivktarflH 6 cyl Methettlo9) t9, 27t 1987 344. 09 4401 so Huffman Tra. y. Maxn Cily NevnteulH V8 Mechankel 140, 836 19337 339. 49 4402 15 tow0. FalLs NavlstarIIH ecyl Mochanlrat t59. ta9 1961 338 4403 8705 CedarRapids NavktarllH Mechal 155, 875 1887 334. 3t 4404 tt AR-WEVA N3tVSter/IH 6cy1 Mecha iN. 58A t9B7 32626 4405 10 Keokuk NavrmñH 6 t : yl Mechenkal t24, 745 1987 318 4406 5 East Greene Nav4tanlH 8 cyt Mechanlcal t65, 83D 1987 52. 00 299. 21 4407 is tm. ptezsam NavisWAH IHT444E MechmicA 161. 558 19V 48. 00 276 2C 4408 7 MerlrapWlS Nav ! #IH V8 Medtettlcat 223. 627 1987 a3 2497 4409 28 Hutlman Tnulq. Mason Gty NavlstarIIH V8 Mechaaical i23, 098 1987 429 248, 85 4410 87 MovfAe NaNStarlIH Bcyl Mechankal t47, 8S3 1987 42. 70 245. 70 4411 24 Eddyvilte NavlstarRH 8cy1 Mechanlcal 222, 782 1987 41. 90 24t t 4412 707 Westem Dudique NavistarBH V8 Mechantcal 14T, 175 t9t17 41. 30 2Ci7 4413 7 Hull-Westem Chdstlan HIgh NavistarAH 6 cyl Mecltanlcet 217, 288 1987 47. 00 2 : 35 9 4414 704 Westam Dutxpue Navtstar/IH V8 Mechanlral 217, 153 1987 39, 90 229. 4415 702 Westem Dubuque NavLStarAH V8 Mechancal 142. 507 1987 39. 60 22784 4416 74 SouxGtty NavlstedlH ecyt Meehan'xal t80, a17 1087 38. 70 222. 4417 39 Fon Madlson NavtatAH 8 tyi Medtardcal 51, 2li8 i987 38, 10 219 4418 6707Cedar Ra))) : 0NavtstaStHMMhantcO 173. 121 16S7 3a. oa 2066 4419 9 Moyes NavfstanlH 6cyl Mechankal 157. 083 t987 36. 21233 4420 10 Mlta5 HavistaUIH Va Mechanical 147. 625 1967 36. M 211. 7S 71 4421 2 Pelta ('xtAs6an NavlshrflH V8 Mactwkei 154. 075 1987 35. 00 201. 39 4422 87D2 Cedar Rapids NavLslan) H Medtankl 188, 182 19A7 35. 0 201 3 4423 18 Wspoiål NrtH Morshamcai t32, 43t 1987 34. 30 197. 3 4424 8704 Ced3rRapids NavlstarpH Medranlcal 178, 810 198T 34. 195 4425 um Cer Rapids NavfsterAH Mechanbal 188. 6D8 1987 33. 194. 49 4428 9 Bumslde NavGfafAH 8 vy1 Medranlcal 145. 135 1987 33. 70 193. 91 4427 703 Westem DuMpue NavIstaMH V8 MxhanYal 158, 238 1987 32. t 9. 31 4428 8 Nora Spnnps NavEstaolH 8 cyl Mechankal t70, 528 1887 3a5D 187. 01 M29 8714 Ce6V Rdpids Navb>lUpH MechanlCdl 779, 178 1987 30. 177 4430 5 Nashua NavtsterAH V8 Mechanra>t 151, 377 1387 30. 70 176. 66 443167 Boynen-Hut ! MavMaH VS Mechamcat e7', 792 1997 30. 0C 172. 62 4432 t5 Sioux Gty NavfstarAH e cyl Madtarucal t79. 968 t997 29. 6 t70 3 4433 7 Montlcello NavlStar/IH VB Maehankat 180, 542 1997 28. 7D 185. t4 4434 ta FortMadlson NavtstullH D1380 Mechanical t98. 898 1987 z0. 185. ia

Table 2-1987 School Bus Opacity Data The foregoing description and drawings comprise illustrative embodiments of the present inventions. The foregoing embodiments and the methods described herein may vary based on the ability, experience, and preference of those skilled in the art. Merely listing the steps of the method in a certain order does not constitute any limitation on the order of the steps of the method. The foregoing description and drawings merely explain and illustrate the invention, and the invention is not limited thereto, except insofar as the claims are so limited. Those skilled in the art that have the disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention.