Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND ASSEMBLY FOR MONITORING A HOT GAS REGION OF A GAS TURBINE
Document Type and Number:
WIPO Patent Application WO/2018/041467
Kind Code:
A1
Abstract:
The invention relates to a method and an assembly for monitoring a hot gas region of a gas turbine, wherein a) the hot gas region is connected to an imaging radar assembly which operates on a gas turbine location remote from the hot gas region by means of at least one hollow conductor, b) the hollow conductor end on which the radar assembly operates is closed such that the radar assembly operates outside of the closed hollow conductor, and the hollow conductor end facing the hot gas region is designed such that the hollow conductor opens into the hot gas region or is shielded against heat so as to be permeable to radar waves such that the radar waves reach the hot gas region c) the radar assembly is actuated and functionally connected to the hot gas chamber via the hollow conductor such that at least parts of the hot gas chamber are detected by the radar assembly in intervals so as to be imaged in a repeating manner in intervals, d) the detected image data is supplied to an analysis device, and e) a maintenance operation is initiated depending on the result of the analysis device, in particular by triggering an alarm.

Inventors:
PFEIFER UWE (DE)
ZIROFF ANDREAS (DE)
Application Number:
PCT/EP2017/068393
Publication Date:
March 08, 2018
Filing Date:
July 20, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
International Classes:
G01M15/14; F01D21/00; G01S13/00
Domestic Patent References:
WO2004042199A22004-05-21
WO1995035484A11995-12-28
Foreign References:
US6337654B12002-01-08
EP1126253A12001-08-22
GB2322988A1998-09-09
Other References:
None
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Überwachung eines Heißgasbereichs einer Gasturbine, dadurch gekennzeichnet, dass

a) der Heißgasbereich mit einer an einem dem Heißgasbereich fernen Ort an der Gasturbine betriebenen bildgebenden Radaranordnung mittels mindestens einem Hohlleiter verbunden wird, b) der Hohlleiter an dem Ende an dem die Radaranordnung betrieben wird derart verschlossen ist, dass die Radaranordnung außerhalb des verschlossen Hohlraums betrieben wird und an dem Ende dem Heißgasbereich zugewandten Ende des Hohlleiters derart ausgestaltet ist, dass der Hohlleiter in den Heißgas¬ bereich offen mündet oder derart für Radarwellen durchlässig vor Hitze geschirmt ist, dass die Radarwellen in den Heißbe- reich gelangen,

c) die Radaranordnung derart angesteuert und funktional über den Hohlleiter mit dem Heißgasraum verbunden ist, dass in zeitlichen Abständen zumindest Teile des Heißgasraums durch die Radaranordnung in zeitlichen Abständen wiederholt bildgebend erfasst werden,

d) die erfassten Bilddaten einer Auswertungseinrichtung zugeführt werden,

e) abhängig vom Ergebnis der Auswertungseinrichtung eine Wartung, insbesondere durch Auslösen eines Alarms, initiiert wird.

2. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass als Teile des Heißgasraums zumindest ein Teil der Schaufel der Gasturbine durch die Radaranordnung bildgebend erfasst wird.

3. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Betrag der zeitlichen Abstände der Wiederholung der bildgebenden Erfassung derart synchron mit der Umdrehungszahl der Schaufeln, insbesondere in einem Wertebereich von Ιμε - 2 μβ , einstellbar ist, so dass eine zu erfassende sich drehende Schaufel für die Bildgebung statisch erscheint .

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Radaranordnung derart einge¬ richtet und betrieben wird, dass der Teil der Schaufel op- tisch als, insbesondere 16, separierte Teilbereiche erfasst wird .

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Radaranordnung derart betrie- ben wird, dass Strahlformungsverfahren, erzeugt durch beispielsweise, auch als „Digital Beamforming" bezeichnete, di¬ gitales Strahlformungsverfahren und/oder von phasengesteuerten Gruppenantennen, so genanntes „Phased Array" durchgeführt werden .

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Radaranordnung als so genannte „Synthetic Aperture Radar" Einrichtung betrieben wird. 7. Anordnung zur Überwachung eines Heißgasbereichs einer Gasturbine, dadurch gekennzeichnet, dass

a) eine an einem dem Heißgasbereich fernen Ort an der Gasturbine betriebenen bildgebenden Radaranordnung, welche mittels mindestens einem Hohlleiter mit dem Heißgasbereich ver- bunden ist,

b) ein Hohlleiter, der an dem Ende an dem die Radaranordnung angeordnet ist derart verschlossen ist, dass die Radar¬ anordnung außerhalb des verschlossen Hohlraums platziert ist und an dem Ende dem Heißgasbereich zugewandten Ende des Hohl- leiters derart ausgestaltet ist, dass der Hohlleiter in den Heißgasbereich offen mündet oder derart für Radarwellen durchlässig vor Hitze geschirmt ist, dass die Radarwellen in den Heißbereich gelangen,

c) die Radaranordnung derart angesteuert und funktional über den Hohlleiter mit dem Heißgasraum verbunden ist, dass in zeitlichen Abständen zumindest Teile des Heißgasraums durch die Radaranordnung in zeitlichen Abständen wiederholt bildgebend erfasst werden, d) eine Auswertungseinrichtung derart angeordnet und mit der Radaranordnung derart funktional verbunden ist, dass ihr die erfassten Bilddaten zugeführt werden,

e) die Auswertungseinrichtung derart ausgestaltet ist, dass eine Wartung, insbesondere durch Auslösen eines Alarms, ini¬ tiiert wird.

8. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Radaranordnung, der Hohlleiter

und/oder die Enden des Hohlleiters derart ausgestaltet und miteinander funktional verbunden sind, dass als Teile des Heißgasraums zumindest ein Teil der Schaufel der Gasturbine durch die Radaranordnung bildgebend erfasst wird. 9. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Radaranordnung derart ausgestaltet ist, dass der Betrag der zeitlichen Abstände der Wiederholung der bildgebenden Erfassung derart synchron mit der Umdrehungszahl der Schaufeln, insbesondere in einem Wertebereich von Ιμε - 2μβ, einstellbar ist, so dass eine zu erfassende sich drehende Schaufel für die Bildgebung statisch erscheint.

10. Anordnung nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, dass die Radaranordnung derart eingerichtet und mit Hohlleiter und/oder Heißgasraum funktional verbunden ist, dass der Teil der Schaufel optisch als, insbesondere 16, se¬ parierte Teilbereiche erfasst wird.

11. Anordnung nach einem der Ansprüche 8 bis 10, dadurch ge- kennzeichnet, dass die Radaranordnung derart ausgestaltet ist, dass Strahlformungsverfahren, erzeugt durch beispielsweise, auch als „Digital Beamforming" bezeichnete, digitales Strahlformungsverfahren und/oder von phasengesteuerten Gruppenantennen, so genanntes „Phased Array" durchgeführt werden.

12. Anordnung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Radaranordnung als so genannte

„Synthetic Aperture Radar" Einrichtung ausgestaltet ist.

13. Anordnung nach einem der Ansprüche 8 bis 12, dadurch kennzeichnet, dass die Verbindung von Radaranordnung und Heißgasraum derart ausgestaltet ist, dass sie durch eine Vielzahl nach Art eines Bündels angeordneter Hohlleiter ge bildet wird.

Description:
Beschreibung

Verfahren und Anordnung zur Überwachung eines Heißgasbereichs einer Gasturbine

Die Erfindung betrifft ein Verfahren zur Überwachung eines Heißgasbereichs einer Gasturbine gemäß dem Gattungsbegriff des Anspruchs 1 sowie eine Anordnung zur Überwachung eines Heißgasbereichs einer Gasturbine gemäß dem Gattungsbegriff des Anspruchs 8.

Moderne Gasturbinen weisen in der Turbine keramikbeschichtete Lauf- und Leitschaufeln auf. Diese als so genannte

„Temperature Barrier Coating" (TBC) bekannte Keramikschicht wird durch verschiedene Technologien auf die metallische

Grundstruktur der Schaufeln aufgebracht und weist Schichtdi ¬ cken im Bereich weniger Zehntelmillimeter auf.

Problematisch bei diesem Ansatz ist es, dass durch langandau- ernde Beaufschlagung der Schaufeln mit extrem hohen Temperaturen oder ausgelöst durch Überfeuerungen oder andere Brennerfehlfunktionen es jedoch vorkommen kann, dass die keramische Hitzeschutzschicht beschädigt wird und sich teilweise löst oder abplatzt.

Dadurch liegt die metallische Grundstruktur der Turbinenschaufeln frei und weitere starke und schnell fortschreitende Schädigungen sind die Folge. Im extremen Fall kann dies zu einem Turbinentotalschaden führen, welcher wiederum einen Schaden im Bereich mehrerer Millionen Euro verursacht.

Es ist daher von hohem Interesse, den Zustand der keramischen Schutzschicht zu überwachen. Bisher ist es bekannt, dass eine detaillierte und flächendeckend vollständige Inspektion des Zustandes der Keramikbeschichtung nur durch eine Stillsetzung und manuelle Kontrolle durchzuführen. Dies ist jedoch aufwän ¬ dig und kostentreibend, daher sind so genannte Real-Time Infrarotkameras entwickelt worden, die eine, aus einer Kontrastabbildung im sichtbaren/unsichtbaren Infrarotbereich gebildeten, Bildinformation sowohl vonder keramischen Schutzschicht der drehenden Laufschaufeln als auch eines be- grenzten Sichtfeldes einiger Leitschaufeln, liefern.

Diese Lösung hat jedoch den Nachteil hoher Kosten aufgrund des Kamerasystems selbst sowie auch aufgrund der Bereitstel ¬ lung des erforderlichen optischen Zugang herausgestellt.

Die der Erfindung zugrundeliegende Aufgabe ist es daher eine Überwachungstechnologie anzugeben, die die Nachteile des Standes der Technik überwindet. Diese Aufgabe wird durch das Verfahren zur Überwachung von Gasturbinen gemäß dem Gattungsbegriff des Anspruchs 1 durch dessen kennzeichnende Merkmale gelöst. Ferner wird diese Auf ¬ gabe durch die Anordnung zur Überwachung von Gasturbinen Anspruch 8 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.

Bei dem erfindungsgemäßen Verfahren zur Überwachung eines Heißgasbereichs einer Gasturbine

a) wird der Heißgasbereich mit einer an einem dem Heißgas- bereich fernen Ort an der Gasturbine betriebenen bildgebenden Radaranordnung mittels mindestens einem Hohllei ¬ ter verbunden,

b) ist der Hohlleiter an dem Ende an dem die Radaranordnung betrieben wird und der derart verschlossen, dass die Ra- daranordnung außerhalb des verschlossen Hohlraums be ¬ trieben wird und ist an dem Ende dem Heißgasbereich zugewandten Ende des Hohlleiters derart ausgestaltet ist, dass der Hohlleiter in den Heißgasbereich offen mündet oder derart für Radarwellen durchlässig vor Hitze ge- schirmt ist, dass die Radarwellen in den Heißbereich gelangen, ,

c) ist die Radaranordnung derart angesteuert und funktional über den Hohlleiter mit dem Heißgasraum verbunden, dass in zeitlichen Abständen zumindest Teile des Heißgasraums durch die Radaranordnung in zeitlichen Abständen wiederholt bildgebend erfasst werden,

d) werden die erfassten Bilddaten einer Auswertungseinrich- tung zugeführt,

e) wird abhängig vom Ergebnis der Auswertungseinrichtung eine Wartung, insbesondere durch Auslösen eines Alarms, initiiert . Vorzugsweise wird gemäß einer Weiterbildung der Erfindung wird als Teile des Heißgasraums zumindest ein Teil der Schau ¬ fel der Gasturbine durch die Radaranordnung bildgebend er ¬ fasst . Ist der Betrag der zeitlichen Abstände der Wiederholung der bildgebenden Erfassung derart synchron mit der Umdrehungszahl der Schaufeln, insbesondere in einem Wertebereich von Ιμβ - 2 μβ, einstellbar, so dass eine zu erfassende sich drehende Schaufel für die Bildgebung statisch erscheint, ist eine Wei- terbildung gegeben, die den sich sehr schnell drehenden Rotor auf dem Radara"foto" statisch erscheinen, so dass Abplatzungen gut erfasst werden können.

Unter Anderem für die Gewährleistung einer guten Ortsauflö- sung wird die Radaranordnung derart eingerichtet und betrie ¬ ben, dass der Teil der Schaufel optisch als, insbesondere 16, separierte Teilbereiche erfasst wird.

Bei einer Weiterbildung der Erfindung werden die Radaranord- nung derart betrieben wird, dass Strahlformungsverfahren, erzeugt durch beispielsweise, auch als „Digital Beamforming" bezeichnete, digitales Strahlformungsverfahren und/oder von phasengesteuerten Gruppenantennen, so genanntes „Phased Ar- ray" durchgeführt. Dies trägt zur Verbesserung der Aufnahmen und somit führt zu akkurateren Ergebnissen bei der Auswertung . Bevorzugt wird dabei wird die Radaranordnung als so genannte „Synthetic Aperture Radar" Einrichtung betrieben.

Bei der erfindungsgemäßen Anordnung zur Überwachung eines Heißgasbereichs einer Gasturbine

a) ist eine an einem dem Heißgasbereich fernen Ort an der Gasturbine betriebenen bildgebenden Radaranordnung, welche mittels mindestens einem Hohlleiter mit dem Heißgas ¬ bereich verbunden,

b) ist ein Hohlleiter, der an dem Ende an dem die Radaranordnung angeordnet ist derart verschlossen, dass die Ra ¬ daranordnung außerhalb des verschlossen Hohlraums plat ¬ ziert ist und an dem Ende dem Heißgasbereich zugewandten Ende des Hohlleiters derart ausgestaltet ist, dass der Hohlleiter in den Heißgasbereich offen mündet oder derart für Radarwellen durchlässig vor Hitze geschirmt ist, dass die Radarwellen in den Heißbereich gelangen, , c) ist die Radaranordnung derart angesteuert und funktional über den Hohlleiter mit dem Heißgasraum verbunden, dass in zeitlichen Abständen zumindest Teile des Heißgasraums durch die Radaranordnung in zeitlichen Abständen wiederholt bildgebend erfasst werden,

d) ist eine Auswertungseinrichtung derart angeordnet und mit der Radaranordnung derart funktional verbunden, dass ihr die erfassten Bilddaten zugeführt werden,

e) ist die Auswertungseinrichtung derart ausgestaltet, dass eine Wartung, insbesondere durch Auslösen eines Alarms, initiiert wird. Die erfindungsgemäße Anordnung ist eine Implementierung, die die Vorteile des erfindungsgemäßen Verfahrens besonders vor ¬ teilhaft zur Wirkung bringt. Dies gilt ebenso für die folgen ¬ den Weiterbildungen der Anordnung, die jeweils die Vorteile der entsprechenden Verfahrensweiterbildungen besonders geeig- net zur Wirkung bringen.

Eine Weiterbildung der Anordnung ist dabei dadurch gegeben, dass die Radaranordnung, der Hohlleiter und/oder die Enden des Hohlleiters derart ausgestaltet und miteinander funktio ¬ nal verbunden sind, dass als Teile des Heißgasraums zumindest ein Teil der Schaufel der Gasturbine durch die Radaranordnung bildgebend erfasst wird.

Ferner kann die Anorndung derart weitergebildet werden, dass die Radaranordnung derart ausgestaltet ist, dass der Betrag der zeitlichen Abstände der Wiederholung der bildgebenden Erfassung derart synchron mit der Umdrehungszahl der Schaufeln, insbesondere in einem Wertebereich von Ιμβ - 2μβ, einstell ¬ bar ist, so dass eine zu erfassende sich drehende Schaufel für die Bildgebung statisch erscheint.

Ist die Radaranordnung derart eingerichtet und mit Hohlleiter und/oder Heißgasraum funktional verbunden, dass der Teil der Schaufel optisch als, insbesondere 16, separierte Teilberei ¬ che erfasst wird, wird die Implementierung des erfindungsge ¬ mäßen Verfahrens zusätzlich gestützt. Vorzugsweise ist die Radaranordnung derart ausgestaltet, dass Strahlformungsverfahren, erzeugt durch beispielsweise, auch als „Digital Beamforming" bezeichnete, digitales Strahlfor ¬ mungsverfahren und/oder von phasengesteuerten Gruppenantennen, so genanntes „Phased Array" durchgeführt werden.

Ebenfalls bevorzugt ist die Radaranordnung als so genannte „Synthetic Aperture Radar" Einrichtung ausgestaltet.

Wenn die Anordnung derart weitergebildet ist, dass die Ver- bindung von Radaranordnung und Heißgasraum derart ausgestaltet ist, dass sie durch eine Vielzahl nach Art eines Bündels angeordneter Hohlleiter gebildet wird, ist beispielsweise Re ¬ dundanz gegeben, die den Ausfall einzelner Hohlleiter durch irgendwelche Verunreinigungen aus dem Inneren der Turbine ab- fängt. Mit der Erfindung wird also ein optischer Zugang zu einem Heißgasraum möglich, welcher den enormen Anforderungen, die in einem Heißgasraum existieren, wie beispielsweise Temperaturen in einem Temperaturbereich von bis zu 1700°C und sowie einem Druck von -20 bar, Rechnung trägt.

Auch damit dem durch die dort vorliegenden erheblichen Strömungsturbulenzen erforderlichen sonst extrem hohen Bauaufwand und den tiefgreifenden Designkompromissen der Turbinenkompo- nenten Rechnung getragen werden.

Durch den durch den gemäß Erfindung vorgesehenen Einsatz einer Radaranordnung an einem einseitig verschlossenen Hohlleiter muss optische Pfad nicht zweingend permanent mit Luft ge- kühlt werden, an die zudem die Anforderung gestellt wird, dass sie sehr sauber sein muss, was einen hohen Aufwand für Filterung der Luft bedeuten würde.

Zur Bereitstellung der Kühlluft mit erheblichen Mengen und auf hohem Druckniveau wären ferner sehr umfangreiche techni ¬ sche Anlagen erforderlich, welche ihrerseits einen hohen Überwachungs- und Regelungsaufwand erfordern. Auch würde die eingemischte Kühlluft den Wirkungsgrad der Maschine nachtei ¬ lig beeinflussen.

Die Anwendung der Erfindung und/oder seiner Weiterbildungen wird bei erfindungsgemäßer Umsetzung keine aktive Kühlung für das

System benötigen. Dadurch werden einerseits erheblichste Kos- tenvorteile erzielt und andererseits wird die

negative Beeinflussung des thermodynamischen Kreisprozesses durch Kaltlufteintritt vollständig vermieden. Es wird somit Wirkungsgrad der sie einsetzenden Anlage ebenfalls erhöhen. Unterstützt wird dies, wenn die Erfindung, die unter anderem in der Anwendung einer bildgebenden Radartechnologie besteht, durch ein Digital Beamforming oder ein Phased Array oder SAR oder durch Verwendung konventioneller Strahlformungsverfahren oder Rotman-Linsen oder Ähnlichem zur Bestimmung des Zustan- des der Keramikbeschichtung im laufenden

Betrieb der Gasturbine gekennzeichnet ist. Weitere Vorteile und Einzelheiten der Erfindung werden anhand eines in der Figur dargestellten Ausführungsbeispiels erläu ¬ tert. Es zeigt diese einzige

Figur eine schematische Darstellung eines möglichen Aus- führungsbeispiels der erfindungsgemäßen Anordnung.

Die Figur zeigt schematisch eine mögliche Anordnung der Komponenten im Turbinenbereich einer schweren Gasturbine G . Zu erkennen ist eine Turbinenrotorbereich HGR, der auch als Heißgasraum im Sinne der Erfindung bezeichnet ist und die zu überwachenden Turbinenschaufeln (nicht dargestellt) beherbergt. Dieser Heißgasraum HGR ist von einer inneren Ummante- lung („Inner Turbine Case") ITC - in diesem Ausführungsbei- spiel mündet der erfindungsgemäße Hohlraum also nicht offen in den Heißgasraum, sondern ist derart ausgestaltet, dass er derart für Radarwellen durchlässig vor Hitze geschirmt ist, dass die Radarwellen in den Heißbereich gelangen - und einer äußeren Ummantelung („Outer Turbine Case") umhüllt.

Ferner ist zu erkennen, dass außerhalb der Gasturbine GT eine Radaranordnung RC angeordnet ist, wobei der in der Darstel ¬ lung gewählte Abstand zur Gasturbine GT keine Indikation für das Ausmaß des Abstands von Radaranordnung RC darstellen soll.

Das Radarsystem RC ist dabei so gestaltet, dass sowohl eine hinreichende Ortsauflösung als auch eine hinreichende Kon ¬ trastauflösung erreicht wird. Als hinreichende Ortsauflösung wird dabei bei den derzeit bekannten Turbinen ein Wert ange ¬ sehen, der die abzubildende Schaufel in mindestens 16 ver ¬ schiedene Bereiche unterteilen kann und dafür eine Kontrast ¬ auflösung liefert, die eine eindeutige Erkennung einer teil- weisen oder vollständigen Abplatzung in diesem Bereich ermöglicht. Hiervon abweichende größere oder geringere Aufteilung ist je nach eingesetzten Turbinen möglich. Gemäß Ausführungsbeispiel ist die Radaranordnung RC mit einem Bildverarbeitungssystem und einem Auswertesystem zusammenge- fasst, wobei das elektronische Auswertesystem so gestaltet ist, dass die zeitliche Auflösung, also das bildliche Erfas ¬ sung (Foto), der mit hoher Geschwindigkeit vorbeilaufenden Schaufeln ermöglicht wird.

Hierzu ist bei gängigen Turbinen eine „Belichtungszeit" im Bereich von 1..2 \is erforderlich, um die Schaufeln „einzufrieren". Das angeschlossene Bildverarbeitungssystem ist da- bei so ausgestaltet und mit dem Auswertesystem funktional verbunden, das im Falle einer Abplatzung des „Temperature Barrier Coating" (TBC) , der Keramik der keramikbeschichteten Lauf- und Leitschaufeln ein Alarm ausgelöst wird. Mit der Erfindung werden u.a. die folgenden Vorteile erzielt:

1. Die Anwendung dieser Technologie wird bei erfindungsgemä ¬ ßer Umsetzung keine aktive Kühlung für das System benötigen. Dadurch werden einerseits erheblichste Kostenvorteile erzielt und andererseits wird die negative Beeinflussung des thermo- dynamischen Kreisprozesses durch Kaltlufteintritt vollständig vermieden .

2. Es wird abgeschätzt, daß ein Komplettsystem nur ca.

10..25% der Kosten eines Infrarotkamerasystemsverursachen wird .

3. Die Anwendung dieser Technologie wird bei erfindungsgemä ¬ ßer Umsetzung keine aktive Kühlung für das System benötigen. Dadurch werden einerseits erheblichste Kostenvorteile erzielt und andererseits wird die negative Beeinflussung des thermo- dynamischen Kreisprozesses durch Kaltlufteintritt vollständig vermieden . Erzielt wird dies durch die Anwendung der Radartechnologie, die keinen optischen Zugang zum Heißgasbereich HGR erfordert. 4. Durch die Anwendung der Technologie ergeben sich erhebliche Vorteile im langjährigen Betrieb der Gasturbine GT . Die Möglichkeit einer sofortigen Warnung im Fehlerfall verhindert Turbinenfolgeschäden im Millionenbereich. Die permanente Zustandsinformation liefert ein langfristiges und kontinuierliches Bild über den Alterungsprozess jeder in ¬ dividuellen Schaufel. Das ermöglicht eine zuverlässige und kostenoptimale Planung des Instandhaltungsprozesses und der Planung der Bereitstellung der sehr teuren Turbinenschaufeln.

Durch die beiden letztgenannten Vorteile können so sehr hohe Kosteneinsparpotentiale für jede Kraftwerksanlage im Millio ¬ nenbereich realisiert werden.