Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR ATTACHING CERAMIC PHOSPHOR PLATES ON LIGHT-EMITTING DEVICE (LED) DIES USING A DICING TAPE, METHOD TO FORM A DICING TAPE, AND DICING TAPE
Document Type and Number:
WIPO Patent Application WO/2016/144732
Kind Code:
A1
Abstract:
A method includes mounting a ceramic phosphor (102) on an acrylic-free and metal-containing catalyst-free tacky layer (108) of a dicing tape (104), dicing the ceramic phosphor (102) from the dicing tape (104) into ceramic phosphor plates (11)2, removing the ceramic phosphor plates (112) from the dicing tape (104), and attaching the ceramic phosphor plates (112) on light-emitting device (LED) dies.

Inventors:
SCHRICKER APRIL (US)
VAN LETH NIEK (US)
ROITMAN DANIEL (US)
Application Number:
PCT/US2016/020843
Publication Date:
September 15, 2016
Filing Date:
March 04, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KONINKLIJKE PHILIPS NV (NL)
SCHRICKER APRIL (US)
VAN LETH NIEK (NL)
ROITMAN DANIEL (US)
International Classes:
H01L33/00; H01L21/683; H01L21/78; H01L33/50
Foreign References:
US20120028442A12012-02-02
EP2610058A12013-07-03
JP2003177241A2003-06-27
US20090227089A12009-09-10
US5561231A1996-10-01
Other References:
H. BAI, IND. ENG. CHEM. RES., vol. 53, 2014, pages 1588 - 1597
Attorney, Agent or Firm:
HSIA, David, C. (465 Fairchild Drive Suite 12, Mountain View CA, US)
Download PDF:
Claims:
Claims:

Claim 1 : A method, comprising: mounting a ceramic phosphor on an acrylic-free and metal-containing catalyst-free tacky layer of a dicing tape; dicing the ceramic phosphor from the dicing tape into ceramic phosphor plates; removing the ceramic phosphor plates from the dicing tape; and attaching the ceramic phosphor plates on light-emitting device (LED) dies.

Claim 2: The method of claim 1, wherein the tacky layer is free of a metal -containing catalyst comprising platinum, tin, or zinc. Claim 3: The method of claim 1, wherein the dicing tape is mounted on a tape frame.

Claim 4: The method of claim 1, wherein the tacky layer comprises a silicone thermoforming resin free of acrylic and platinum.

Claim 5: The method of claim 1, wherein: the tacky layer comprises a photo-latent or photo-initiated amine catalyst; and removing the ceramic phosphor plates comprises photo-developing the tacky layer to lower its adhesive bond to the ceramic phosphor plates.

Claim 6: The method of claim 1, wherein attaching the ceramic phosphor plates on LED dies includes applying a high refractive index (HRI) silicone-based glue on the LED dies.

Claim 7: The method of claim 1, wherein the tacky layer is formed on a support film of the dicing tape or another tacky layer on the support film, the another tacky layer comprising acrylic.

Claim 8: The method of claim 1, further comprising forming the dicing tape by: depositing a liquid material for the tacky layer on a support film of the dicing tape or another tacky layer on the support film; and blade coating the liquid material on the support film or the another tacky layer to form the tacky layer.

Claim 9: The method of claim 1, further comprising forming the dicing tape by: depositing a liquid material for the tacky layer on a support film of the dicing tape or another tacky layer on the support film; and over-molding the liquid material on the support film or the another tacky layer to form the tacky layer. .

Claim 10: The method of claim 1, further comprising forming the dicing tape by: extruding the tacky layer on a support film of the dicing tape or another tacky layer on the support film through a roll-to-roll process. Claim 1 1 : The method of claim 1, wherein mounting the ceramic phosphor on the acrylic- free tacky layer of the dicing tape comprises: laminating a tacky film on a support film of the dicing tape or another tacky layer on the support film to form the tacky layer and placing the ceramic phosphor on the tacky layer; or laminating the ceramic phosphor and the tacky film on the support film or the another tacky layer in the same process.

Claim 12: A method to form a dicing tape, comprising: providing a support film; and forming an acrylic-free and metal-containing catalyst-free tacky layer over the support film.

Claim 13 : The method of claim 1 1, wherein the tacky layer comprises a silicone

thermoforming resin free of acrylic and a metal-containing catalyst comprising platinum, tin, or zinc.

Claim 14: The method of claim 14, wherein: the tacky layer comprises a photo-latent or photo-initiated amine catalyst; and removing the ceramic phosphor plates comprises photo-developing the tacky layer to lower its adhesive bond to the ceramic phosphor plates.

Claim 15 : The method of claim 12, wherein forming the tacky layer comprises: depositing a liquid material for the tacky layer on the support film or another tacky layer on the support film; and over-molding the liquid material on the support film or the another tacky layer to form the tacky layer.

Claim 16: The method of claim 12, wherein forming the tacky layer comprises: extruding the tacky layer on the support film or another tacky layer on the support film through a roll-to-roll process.

Claim 17: The method of claim 12, wherein forming the tacky layer comprises: : laminating a tacky film on the support film of the dicing tape or another tacky layer on the support film.

Claim 18: The method of claim 17, wherein the tacky film is formed by blade coating, extruding, or over-mold casting.

Claim 19: A dicing tape, comprising: a support film; and an acrylic-free and metal-containing catalyst-free tacky layer over the support film.

Claim 20: The dicing tape of claim 19, wherein the tacky layer comprises a silicone thermoforming resin that is free of acrylic and a metal-containing catalyst comprising platinum, tin, or zinc, and includes a photo-latent or photo-initiated amine catalyst.

Description:
METHOD FOR ATTACHING CERAMIC PHOSPHOR PLATES ON LIGHT-EMITTING DEVICE (LED) DIES USING A DICING TAPE, METHOD TO FORM A DICING TAPE, AND DICING TAPE

Field of the invention

The present disclosure relates to semiconductor light-emitting diodes or devices (LEDs), and more particular ceramic phosphor plates for the LEDs.

5 Background

In a flip-chip light-emitting diode or device (LED), contacts are located on the bottom of the LED and light is emitted from the top of the LED. LED epitaxial layers are grown on a patterned sapphire growth substrate, which is left attached to the epitaxial layers to increase light output. The epitaxial layers and the growth substrate are singulated into dies and

10 directly attached to a ceramic tile substrate. Separately, a ceramic phosphor is formed and

diced to form ceramic phosphor plates. For each die, a silicone-based glue is dispensed onto its sapphire and a ceramic phosphor plate is picked and placed on the sapphire. A white titanium oxide silicone composite (TiO-silicone) is dispensed on and between the dies on the ceramic tile substrate. Excess TiO-silicone is removed from the top of the ceramic phosphor

15 plates by wet bead blasting and then the individual dies are singulated.

Summary

In one or more examples of the present disclosure, a method includes mounting a ceramic phosphor on an acrylic-free tacky layer of a dicing tape, dicing the ceramic phosphor from the dicing tape into ceramic phosphor plates, removing the ceramic phosphor plates 20 from the dicing tape, and attaching the ceramic phosphor plates on light-emitting device

(LED) dies.

Brief description of the drawings In the drawings:

Fig. 1 illustrates a cross-sectional view of a ceramic phosphor held by a dicing 25 tape mounted to a tape frame.

Fig. 2 illustrates a cross-sectional view of a dicing tape with a support film and an acrylic-free tacky layer over the support film in examples of the present disclosure. Fig. 3 illustrates a cross-sectional view of a dicing tape with another dicing tape and an acrylic-free tacky layer on the other dicing tape in examples of the present disclosure.

Fig. 4 is a flowchart of a method to provide ceramic phosphor plates to LED dies in examples of the present disclosure.

Fig. 5 is a flowchart of a method to provide the tacky layer by blade coating or over-mold casting in the method of Fig. 4 in examples of the present disclosure.

Fig. 6 is a flowchart of a method to provide the tacky layer by extruding in the method of Fig. 4 in examples of the present disclosure.

Fig. 7 is a flowchart of a method to provide the tacky layer by lamination in examples of the present disclosure.

Fig. 8 shows cross-sectional views of a lamination process implemented by the method of Fig. 7 in examples of the present disclosure. Use of the same reference numbers in different figures indicates similar or identical elements.

Detailed description

Fig. 1 illustrates a cross-sectional view 100 of a ceramic phosphor 102 held by a dicing tape 104 mounted to a tape frame 106. Dicing tape 104 may be a tacky tape having a tacky layer 108 on a support film 110. Ceramic phosphor 102 is diced from frame-mounted dicing tape 104 to form ceramic phosphor plates 1 12 (shown separated by phantom cut lines). Dicing tape 104 may be stretched to laterally separate ceramic phosphor plates 1 12. Dicing tape 104 may be a UV tape when the adhesive bond of tacky layer 108 can be modulated by UV-exposure, allowing the adhesive bond to be stronger during cutting and weaker during removal of ceramic phosphor plates 1 12.

Tacky layer 108 includes acrylic and leaves acrylic residues on ceramic phosphor plates 1 12 after they are removed from dicing tape 104. Ceramic phosphor plates 1 12 may undergo additional tape transfers subsequent to dicing, thereby exposing both sides of the plates to acrylic tapes. It has been determined that the acrylic residues from the acrylic tapes used in dicing and other tape transfers cause browning and light stressing (stress due to high dosage of photonic flux) in the ceramic phosphor plates, which leads to early failures of the LED dies. Even when ceramic phosphor plates 1 12 are cleaned with plasma to remove organic molecules and a "flip transfer" is used to minimize tape contact after cleaning, the resulting LED dies still experience a 5 to 6 % flux drop.

It is believed that residual molecules trapped in the gap (glue) between a ceramic phosphor plate and a LED die undergo photo and thermo-chemical degradation (photo- pyrolisis) that lead to light-absorbing species. This is especially prevalent if there is a lack of oxygen to photobleach the light-absorbing species as the glued area is very large relative to the bondline (glue thickness) so there is a long path across the narrow gap filled with glue that limits gas exchange.

Examples of the present disclosure prevent acrylic contamination by using dicing tape with an acrylic-free tacky layer. The tacky layer may be formed over a support film of the dicing tape, or the tacky layer may be a tacky film or sheet laminated over the support film of the dicing tape.

Fig. 2 illustrates a cross-sectional view 200 of a dicing tape 201 with a support film 1 10 and an acrylic -free tacky layer 202 on the support film 1 10 in examples of the present disclosure. Dicing tape 201 is mounted on tape frame 106 via tacky layer 202.

Ceramic phosphor 102 may be diced from frame-mounted dicing tape 201. Ceramic phosphor may be Lumiramics from Lumileds of San Jose, California. Tacky layer 202 may be a silicone thermosetting resin that is free of acrylic. Tacky layer 202 may also be free of any metal -containing catalyst including platinum (Pt), tin (Sn), or zinc (Z). A metal- containing catalyst may be a compound that includes a metal coordinated or forming salts with several organic ligands. Examples of metal-containing catalysts are found in U.S. Patent No. 5,561,231. For example, Pt-based catalysts are undesirable because it forms light- absorbing colloidal nanoparticles towards the end of the crosslinking process, for example, as discussed by H. Bai in Ind. Eng. Chem. Res. 2014, 53, 1588-1597. Pt is also a catalyst for certain organic reactions, including some that lead to browning in phenylene-containing silicones. Furthermore, silicones are typically spiked with inhibitors in Pt-catalyzed systems to lengthen pot lifetime (working time), and these additives may brown or inhibit the polymerization of the die-attaching glue if they inhibit the catalyst of the glue. Tacky layer 202 may include a photo-latent or photo-initiated amine catalyst (also known as a "photo-base generator" or "photo-anionic initiator") so the adhesive bond of tacky layer 202 can be modulated by photo-developing tacky layer 202. This allows the adhesive bond of tacky layer 202 to be stronger during ceramic phoshpor cutting and weaker during ceramic phosphor plates removal. The amine catalyst forms a neutral salt between a base and an acide. The base may be DBU (l,5-diazabicyclo[5.4.0]undec-5-ene), DBN (1,5- diazabicyclo[4.3.0]non-5-ene), or etc., and the acid may be Ketoprofen ((RS)2-(3- benzoylphenyl) -propionic acid) or a phenylgly colic acid. Upon UV irradiation, the phenylglycolic or benzoylphenyl component of the acid absorbs light and undergoes a decarboxylation reaction (generating CO2) and the base (DBN, DBU, etc.) becomes free. The base is then capable of catalyzing condensation and ring opening polymerization reactions.

Tacky layer 202 may be LF-1010, LF-1011, or LF-1012 (also known as "Hot Melt") adhesives available from Dow Corning of Midland, Michigan, or HT-8200, HT-8800, or HT- 8660 (also known as "XLED") encapsulants available from SiVance LLC of Gainesville, Florida, which is a subsidiary of Milliken Chemical of Spartanburg, South Carolina.

Fig. 3 illustrates a cross-sectional view 300 of a dicing tape 301 with dicing tape 104 and an acrylic-free tacky 202 on dicing tape 104 in examples of the present disclosure. Dicing tape 301 is mounted on tape frame 106 via tacky layer 202. Ceramic phosphor 102 may be diced from frame-mounted dicing tape 301.

In Fig. 3, tacky layer 202 is located on the tacky layer 108 side of dicing tape 104. Tacky layer 202 prevents ceramic phosphor 102 from interacting with tacky layer 108 of dicing tape 104. In some examples, tacky layer 202 is located on support film 110 side of dicing tape 104. In such examples, dicing tape 104 may be without tacky layer 108 so the thickness of the final frame-mounted tape 104 with ceramic phosphor 102 is reduced.

Reducing the thickness of frame-mounted tape 104 may improve the pickup of ceramic phosphor plates 112 from the tape after dicing ceramic phosphor 102.

Fig. 4 is a flowchart of a method 400 to provide ceramic phosphor plates to LED dies in examples of the present disclosure. Method 400 may begin in block 402. In block 402, ceramic phosphor 102 is mounted on tacky layer 202 (Fig. 2 or 3) of dicing tape 201 or 301 (Fig. 2 or 3). Dicing tape 201 or 301 may be mounted on tape frame 106. In the examples shown in Fig. 3, tacky layer 202 may be between ceramic phosphor 102 and either the tacky layer 108 or support film 1 10 side of dicing tape 104. Block 402 may be followed by block 404.

In block 404, ceramic phosphor 102 is diced from dicing tape 201 or 301 into ceramic phosphor plates 1 12 (Fig. 2 or 3). Block 404 maybe followed by block 406.

In block 406, ceramic phosphor plates 1 12 are removed from dicing tape 201 or 301 and attached on LED dies (not shown). Prior to removal, tacky layer 202 may be photo- developed to lower its adhesive bond. For each die, a high refractive index (HRI) silicone- based glue is dispensed onto its sapphire and a ceramic phosphor plate 1 12 is picked and placed on the sapphire. The silicon-base glue may be XLED encapsulants available from SiVance LLC of Gainesville, Florida, which is a subsidiary of Milliken Chemical of

Spartanburg, South Carolina.

Fig. 5 is a flowchart of a method 500 to implement block 402 in examples of the present disclosure. Method 500 forms tacky layer 202over support film 1 10 by blade coating or over-mold casting. Method 500 may begin in block 502.

In block 502, a liquid material for tacky layer 202 is deposited on support film 1 10 or tacky layer 108 on support film 110. Block 502 may be followed by block 504.

In block 504, the liquid material is blade coated or over-molded on support film 1 10 or tacky layer 108 to form tacky layer 202. For blade coating, a knife edge is dragged over the liquid material to form tacky layer 202 having a uniform thickness. For over-molding, a mold is applied to form tacky layer 202 having a uniform thickness. Block 504 may be followed by block 506.

In block 506, ceramic phosphor 102 is placed on and bonded to tacky layer 202. Ceramic phosphor 102 or tacky layer 202 may be preheated to aid the bonding process. Fig. 6 is a flowchart of a method 600 to implement block 402 in examples of the present disclosure. Method 600 forms tacky layer 202 on over support film 1 10 by extrusion. Method 600 may begin in block 602.

In block 602, tacky layer 202 is extruded on support film 1 10 or tacky layer 108 on support film 1 10 using a roll-to-roll process. Block 602 may be followed by block 606. In block 606, ceramic phosphor 102 is placed on and bonded to tacky layer 202.

Fig. 7 is a flowchart of a method 700 to implement block 402 in examples of the present disclosure. Method 700 forms tacky layer 202 over support film 1 10 by lamination. Method 700 may occur after dicing tape 201 or 301 (Fig. 2 or 3) is mounted on tape frame 106. Fig. 8 shows cross-sectional views of this lamination process in examples of the present disclosure. Referring back to Fig. 7, method 700 may begin in block 702.

In block 702, a tacky sheet or film 801 (Fig. 8) is provided. Tacky film 801 may be formed by blade coating, over-mold casting, or extrusion using a roll-to-roll process. Block 702 may be followed by block 704. In block 704, tacky film 801 is placed on support film 1 10 or tacky layer 108 on support film 1 10. Tacky film 801 may be preheated prior to laminating the film over support film 1 10. For example, tacky film 801 may be heated for 1 to 20 minutes at a temperature between 80 to 170 degrees Celsius. Ceramic phosphor 102 may be placed on tacky film 801 if it is to be laminated in the same process. A first release tape 802 (Fig. 8) may be placed on the top surface of ceramic phosphor 102 and a second release tape 804 (Fig. 8) may be placed on the bottom surface of support film 1 10. Block 704 may be followed by block 706.

In block 706, tacky film 801 is laminated over support film 1 10 to form tacky layer 202. Opposing presses or rollers 806, 808 (Fig. 8) apply the proper pressure and temperature to laminate the layers together. Although not shown, a vacuum pump may be used to squeeze out bubbles between the layers. The lamination of tacky film 801 over support film 1 10 may occur over multiple stages with different times, temperatures, or pressures. For example, lamination may occur for a time of 0.5 second to several minutes, at a temperature between 80 to 170 degrees Celsius, and between a pressure of 1 to 30 bar. The pressure may be reduced when ceramic phosphor 102 is laminated in the same process due to its brittle nature. If release tapes 802 and 804 (Fig. 8) are used, they are removed after lamination. Block 706 may be followed by block 708.

In block 708, ceramic phosphor 102 may be placed on tacky layer 202 if it had not already been placed in block 704 and laminated in block 706, and another lamination process is used to laminate ceramic phosphor 102 on tacky layer 202. Various other adaptations and combinations of features of the embodiments disclosed are within the scope of the invention. Numerous embodiments are encompassed by the following claims.