Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF AUTOMATED ANALYSIS OF DIGITAL FLUOROGRAPHIC IMAGES
Document Type and Number:
WIPO Patent Application WO/2019/190358
Kind Code:
A1
Abstract:
The claimed technical solution relates to the field of digital image processing in medicine and is intended for the automated analysis of fluorographic images of the chest of patients as regards changes or pathologies present in the lung area. With the aid of a client module, at least one initial digital fluorographic image is uploaded to a set of convolutional neural networks. With the aid of the set of neural networks, one or more of the uploaded digital fluorographic images are sequentially processed to identify areas of interest according to the response of each neural network. The resultant processing during the neural network response is transmitted to a module for analyzing and combining the convolutional network output, which processes and applies the output from the set of neural networks to the initial digital image to identify pathologies if they are present.

Inventors:
ANDRIANOV NIKOLAY GRIGORIEVICH (RU)
KLASSEN VIKTOR IVANOVICH (RU)
MALTSEV ANTON VLADIMIROVICH (RU)
SAFIN ARTEM ALBERTOVICH (RU)
Application Number:
PCT/RU2019/050035
Publication Date:
October 03, 2019
Filing Date:
March 27, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PHTHISISBIOMED LLC (RU)
International Classes:
A61B6/00; G06T1/40
Foreign References:
US9589374B12017-03-07
US20170286769A12017-10-05
US20180071452A12018-03-15
Attorney, Agent or Firm:
KOTLOV, Dmitry Vladimirovich (RU)
Download PDF:
Claims:
ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ автоматизированного анализа цифровых флюорографических снимков с помощью автоматизированной системы анализа флюорографических снимков на предмет обнаружения патологий, содержащий этапы, на которых:

- осуществляют с помощью клиентского модуля загрузку по меньшей мере одного исходного цифрового флюорографического снимка в ансамбль сверточных нейросетей, причем ансамбль сверточных нейросетей содержит три нейросети, в котором одна из сетей настроена на обработку и выявление опасных патологий 1го рода, а остальные сети на обработку и выявление опасных патологий 1го рода и неопасных патологий 2го рода, и каждая сеть обучена с применением уникальных для данной сети пороговых значений;

выполняют с помощью упомянутого ансамбля нейросетей последовательную обработку загруженного одного или более цифровых флюорографических снимков для выявления областей интереса в зависимости от отклика каждой нейросети;

- полученную обработку в ходе отклика нейросетей передают в модуль анализа и объединения результатов работы сверточных сетей, который осуществляет обработку и наложение результатов работы ансамбля нейросетей на исходный загруженный цифровой снимок для выявления патологий при их наличии.

Description:
СПОСОБ АВТОМАТИЗИРОВАННОГО АНАЛИЗА ЦИФРОВЫХ ФЛЮОРОГРАФИЧЕСКИХ СНИМКОВ

ОБЛАСТЬ ТЕХНИКИ

[1] Заявленное техническое решение относится к области обработки цифровых изображений в медицине и предназначено для автоматизированного выполнения анализа флюорографических снимков грудной клетки пациентов на предмет наличия изменений или патологий в области легких. Заявленное решение может применяться в мобильных комплексах для ускорения обработки снимков, в поликлиниках для предобработки снимков, ранжирования по степени важности для чтения снимков врачом.

УРОВЕНЬ ТЕХНИКИ

[2] Известна автоматизированная система диагностики медицинских изображений с использованием глубоких сверточных нейронных сетей (патент США 9,589,374 В1, 07.03.2017). Данное изобретение раскрывает методы применения глубоких сверточных нейронных сетей (СНС) к анализу медицинских изображений для диагностики в режиме реального времени. В приведенном изобретении применяется анализ КТ и МРТ снимков, которые обрабатываются с применением двух сверточных нейронных сетей и других программных модулей, для получения отклика с вероятностью наличия областей интереса на снимках пациента, которые необходимы для дальнейшего анализа лечащим врачом.

[3] В статье «Automatic Liver and Tumor Segmentation of CT and MRI Volumes Using Cascaded Fully Convolutional Neural Networks» (Patrick Ferdinand Christ et al. Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI). 20.02.2017) рассматриваются подходы к автоматизированному анализу КТ и МРТ снимков для и выявления патологий печени, при этом используется сверточная нейронная сеть U-NET типа. [4] Известно также применение ансамбля из трех СНС для анализа медицинских изображений на предмет наличия релевантной информации, в зависимости от типа обучения СНС. В совокупности использования ансамбля из трех СНС такой подход позволяет получать более точные данные с минимизацией ошибок распознавания (Костин К.А. Магистерская диссертация «Адаптивный классификатор патологий для компьютерной диагностики заболеваний с использованием сверточных нейронных сетей по медицинским изображениям и видеоданным». 30.05.2017).

[5] Данное решение является, по своей технической сути, наиболее близким аналогом. Основным недостатком данного решения является такая настройка СНС, которая не подразумевает разделения откликов по весомым коэффициентам с их последующим перевзешиванием в слоях каждой СНС и разделением обучающей выборке по типу патологий в процессе обучения ансамбля, что приводит к достаточно высокой степени появления ошибок в ходе распознавания изменений структур на флюорографических снимках. При этом данное решение, как таковое, не используется для анализа флюорографических снимков.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[6] Решаемой технической проблемой заявленного решения является минимизации ошибки ложных срабатываний ансамбля СНС и, соответственно, увеличение точности распознавания областей интереса при анализе графический информации, за счет нового принципа обучения ансамбля СНС и их последующей работы на основании выполненного обучения.

[7] Технический результат совпадает с решаемой технической проблемой.

[8] Благодаря автоматизированной системе время анализа флюорографических снимков значительно уменьшается, при этом точность обнаружения патологий устанавливается на высоком уровне и снижается влияние человеческого фактора. ОПИСАНИЕ ЧЕРТЕЖЕЙ

[9] Фиг. 1 иллюстрирует систему автоматизированного анализа флюорографических снимков.

[10] Фиг. 2 иллюстрирует пример входного изображения.

[11] Фиг. 3 иллюстрирует обработанное изображение с помощью заявленной системы.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

[12] Ключевая особенность технического решения заключается в способе обучения и структуре сверточной нейронной сети. Для достижения технического результата применяется:

1. Размеченная специальным образом база флюорографических снимков для обучения с классификацией каждой области.

2. Использование ансамбля из трех сверточных нейронных сетей типа U-NET с разными настройками и организацией входных данных для обучения.

3. Перевзвешивание классов в соответствии с их важностью в выборке.

4. Комбинация выходных изображений для увеличения обучающей базы.

[13] Первая сеть настроена на работу только с опасными областями (патологии 1го рода), вторая и третья сети - со всеми областями, но с разными порогами и архитектурой.

[14] Области разбиты на две группы: опасные и неопасные. Все области в группах классифицированы по типам патологий. Использовалась следующая классификация:

Патологии 1го рода (опасные)

I. Инфильтрация (фокус) - свыше 1,5 см.

II. Полость

III. Пневмоторакс

IV. Гидроторакс

V. Очаг

VI. Патологические изменения корней лёгких VII. Уровень жидкости

VIII. Очаги

Патологии 2го рода (неопасные)

I. Интерстициальные изменения в лёгочной паренхиме

II. Цирроз

III. Фиброторакс

IV. Изменения плевры

V. Кальцинаты / обызвествления

VI. Диафрагмальная грыжа

VII. Изменения в костях

VIII. Цепочки металлических швов

IX. Инородные тела

X. Участок повышенной прозрачности (не полость)

XI. Ателектаз

XII. Изменения в органах средостения

[15] На Фиг. 1 представлен вид системы по автоматизированному анализу флюорографических снимков.

поз. 1 - входное изображение (цифровой флюорографический снимок) поз. 2 - клиентский модуль для удаленного анализа изображений (работа возможна и без него)

поз. 3 - модуль загрузки изображений

поз. 4 - сверточная нейронная сеть N°1

поз. 5 - сверточная нейронная сеть N°2

поз. 6 - сверточная нейронная сеть N°3

поз. 7 - модуль анализа и объединения результатов работы сверточных сетей, вывод изображений

поз. 8 - обработанное изображение.

[16] Система автоматизированного анализа флюорографических снимков представляет собой программное обеспечение. Для реализации используются библиотеки для машинного обучения TensorFlow и Keras. ПО может работать на любом современном компьютере с графическим процессором от Nvidia или на мобильных платформах Jetson ТХ2.

[17] Автоматизированный анализ флюорографических снимков выполняется с помощью трех сверточных нейронных сетей типа U-NET. Для обучения подготовлена специальная база снимков. На снимках отмечены области с изменениями структуры легких, которые свидетельствуют о наличии туберкулеза или других патологиях, как опасных для здоровья человека, так и неопасных. Области разбиты на две группы: опасные и неопасные. Все области в группах классифицированы по типам патологий. Использовалась следующая классификация:

Патологии 1го рода (опасные)

I. Инфильтрация (фокус) - свыше 1,5 см.

II. Полость

III. Пневмоторакс

IV. Гидроторакс

V. Очаг

VI. Патологические изменения корней лёгких

VII. Уровень жидкости

VIII. Очаги

Патологии 2го рода (неопасные)

I. Интерстициальные изменения в лёгочной паренхиме

II. Цирроз

III. Фиброторакс

IV. Изменения плевры

V. Кальцинаты / обызвествления

VI. Диафрагмальная грыжа

VII. Изменения в костях

VIII. Цепочки металлических швов

IX. Инородные тела

X. Участок повышенной прозрачности (не полость) XL Ателектаз

XII. Изменения в органах средостения.

[18] На Фиг. 2 представлен пример входного изображения. Для увеличения базы применялись трансформации к входным изображениям. Из отмеченных областей формируются сегментационные карты и подаются на вход обучения вместе с исходными изображениями.

[19] На вход первой сети подаются карты только с опасными областями, на вход второй и третей, карты со всеми областями, но они имеют разные пороги и архитектуру. Архитектура: Unet (8 сфорачивающих слоёв, 8 разворачивающих слоёв, 32 стартовых фильтра, каждый слой х1.5 фильтров на свёртке, х1.5 фильтров на разворачивании. Вход - 1 канал, выход - 1 канал). Подбор пороговых значений осуществляется экспериментально по картине на выходе.

[20] В процессе обучения веса в слоях перевзвешиваются для лучшей сходимости, на основании достоверности того что отмечают врачи (данные от врачей/сравнение разных разметок). Происходит выбор более и менее достоверных классов. В обученную сеть на вход подается исходное изображение, а на выходе получается три сегментационных карты с весами в каждом пикселе всего изображения, но карты активны только в тех местах где происходит выделение патологий.

[21] В остальных точках вероятность изменений близка к нулю. Данные карты обрабатываются, выделяются области с повышенным откликом, характеризующие в разных слоях, патологии разного типа, их площадь и вес, результаты сравниваются с порогами, которые экспериментально подобраны и установлены для каждой сети.

[22] Обработка отклика нейронной сети происходит без нейронной сети, «вручную». Ищется общая энергетика отклика, максимальный отклик и оценивается площадь превышения пороговых значений. Все пороги и алгоритмы подобранны эмпирически. [23] Загрузка изображения (цифрового флюорографического снимка) на обработку происходить с помощью специального программного модуля 3. Изображение поочередно обрабатывается каждой сверточной нейронной сетью, каждая из которых на основании полученного в ходе обучения опыта выдает суждение, при наличие подозрительного участка, подсвечивает его. Следующий программный модуль 7 собирает результаты работы всех трех сетей, объединяет их и накладывает на исходное изображение. Модуль вывода изображения 8 выводит обработанный снимок с выделенным патологическим участком, в случае его наличия. Отклик от сетей отображается разным цветом и разной интенсивностью в зависимости от величины отклика.

[24] Фиг. 3 иллюстрирует пример работы системы по обработке изображений. Анализ изображений может выполняться как локально, так и дистанционно. Для дистанционного доступа используется клиентский модуль 2. В качестве модуля 2 может применяться любое пригодное компьютерное устройство (персональный компьютер, ноутбук, планшет и т.п.).

[25] Данный способ возможен только при доступе к сети Интернет. В этом случае клиентская часть программы 2 удаленно подключается к серверу где развернута система автоматизированного анализа флюорографических снимков и реализует передачу изображения для анализа, а также прием и вывод результата обработки.