Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR AVOIDING OR REDUCING THE CONSEQUENCES OF A COLLISION BETWEEN A VEHICLE AND AT LEAST ONE OBJECT
Document Type and Number:
WIPO Patent Application WO/2008/031662
Kind Code:
A1
Abstract:
In a method for avoiding or reducing the consequences of a collision between a vehicle and at least one object, the current state of the vehicle is determined using a vehicle sensor system, objects in the sensor sensing range are detected by means of a surroundings sensing system and an avoidance trajectory for avoiding collision or reducing the consequences of a collision is specified taking into account the current state of the vehicle. Furthermore it is checked whether the driver exhibits an avoidance reaction and whether a vehicle state variable exceeds a criticality threshold. If this is the case, actuation signals are generated for setting at least one actuator in the vehicle.

Inventors:
OECHSLE FRED (DE)
BRANZ WOLFGANG (DE)
SCHMIDT CHRISTIAN (DE)
Application Number:
PCT/EP2007/057522
Publication Date:
March 20, 2008
Filing Date:
July 20, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
OECHSLE FRED (DE)
BRANZ WOLFGANG (DE)
SCHMIDT CHRISTIAN (DE)
International Classes:
B60W10/06; B60W10/08; B60W10/20; B60W10/22; B60W30/08
Foreign References:
DE102004008894A12005-09-08
DE10338760A12005-03-17
EP0970875A22000-01-12
EP1387183A12004-02-04
EP1387183A12004-02-04
Attorney, Agent or Firm:
ROBERT BOSCH GMBH (Stuttgart, DE)
Download PDF:
Claims:
Ansprüche

1. Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs (1) mit mindestens einem Objekt (2), bei dem mithilfe einer Fahrzeugsensorik aktuelle Fahrzeugzustands- und Fahrzeugbetriebsgrößen ermittelt werden, - mithilfe einer Umfeldsensorik Objekte (2) im Sensorerfassungsbereich erkannt werden, unter Berücksichtigung der aktuellen Fahrzeugzustands- und Fahrzeugbetriebsgrößen sowie eines erfassten Objekts mindestens eine Ausweichtrajektorie (3) zur Kollisionsvermeidung bzw. Kollisionsfolgenminderung ermittelt wird, bei überschreitung eines Grenzwertes mindestens einer aktuellen Fahrzeugzustands- oder Fahrzeugbetriebsgröße eine Vermeidungsreaktion des Fahrers auf das erfasste Objekt (2) angenommen wird, im Falle einer angenommenen Fahrervermeidungsreaktion ermittelt wird, ob eine Fahrzeugzustands- und Fahrzeugbetriebsgröße eine Kritikalitätsschwelle überschreitet, im Falle einer überschreitung der Kritikalitätsschwelle Stellsignale zur Einstellung mindestens eines Aktuators im Fahrzeug (1) zur Korrektur des Fahrzeugzustandes erzeugt werden, derart, dass das Fahrzeug in Richtung auf die Ausweichtrajektorie geführt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Schar (4) von Ausweichtrajektorien ermittelt wird, aus denen gemäß einer Optimierungsfunktion eine propagierte Ausweichtrajektorie (3) bestimmt wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Optimierungsfunktion das Integral des Quadrats der Krümmungskurve (K ) als Funktion der Bahnposition (s) ein Minimum einnimmt:

^K(s) 2 ds = Min\ . s=0

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Krümmungskurve (K ) als Polygonzug vorliegt.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Kritikalitätsschwelle ein Querbeschleunigungswert (a qi tϊiax ) bestimmt wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Querbeschleunigungswert (a q , max ) als maximale Querbeschleunigung aus einer Ausweichtraktorie (3) ermittelt wird.

7. Verfahren nach Anspruch 2 und 6, dadurch gekennzeichnet, dass der Querbeschleunigungswert (a q , max ) die kleinste maximale Querbeschleunigung aus der Schar (4) der Ausweichtraktorien darstellt.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Fahrervermeidungsreaktion die Lenkradbetätigung untersucht wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass eine Vermeidungsreaktion angenommen wird, falls eine Mindest-Lenkwinkeländerung ( δ LW ^ ) vorliegt.

10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass eine Vermeidungsreaktion angenommen wird, falls eine Mindest- Lenkwinkelgeschwindigkeitsänderung (δ iW%mm ) vorliegt.

11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass als Aktuator ein Bremsaktuator über die Stellsignale angesteuert wird.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als Aktuator ein Lenkaktuator über die Stellsignale angesteuert wird.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass über einen Lenkaktuator ein Zusatzlenkwinkel zum Fahrerlenkwinkel addiert wird, beispielsweise in einem überlagerungslenkgetriebe.

14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass ein Geschwindigkeitsaktuator, beispielsweise ein die Kraftstoff- und/oder Luftzufuhr zu den Brennräumen der Brennkraftmaschine regulierender Aktuator oder ein Elektromotor, über die Stellsignale angesteuert wird.

15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass als Umfeldsensorik die Umgebung berührungslos abtastende Sensoren verwendet werden, insbesondere Ultraschall-, Lidar-, Radar- und/oder Videosensoren.

16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Stärke des Eingriffs des Systems variiert werden kann zwischen einem minimalem Eingriff bis hin zu einer autonomen Fahrzeugführung.

17. Regel- und Steuergerät zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 16.

Description:

Beschreibung

Titel

Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs mit mindestens einem Objekt

Die Erfindung bezieht sich auf ein Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs mit mindestens einem Objekt nach Anspruch 1.

Stand der Technik

In der EP 1 387 183 Al wird ein Verfahren zur Ermittlung des Bevorstehens einer unausweichbaren Kollision eines Fahrzeugs mit mindestens einem Objekt beschrieben, bei dem in Abhängigkeit der maximal möglichen Längs- bzw. Querbeschleunigungen des Fahrzeugs und des Objekts alle Aufenthaltsorte innerhalb eines bestimmten Vorhersagezeitraumes vorausbestimmt werden, die durch die maximal möglichen Längs- bzw. Querbeschleunigungen innerhalb des Vorhersagezeitraums erreichbar sind. Unter Berücksichtigung der Ausdehnung des Fahrzeugs und des Objektes kann eine Kollision vorausbestimmt und es können Maßnahmen eingeleitet werden, um die Kollisionsstärke und das Verletzungsrisiko der Fahrzeuginsassen zu mindern. Hierbei ist ein Katalog verschiedener Maßnahmen vorgesehen, zu denen die Warnung des Fahrers, das Einleiten einer Notbremsung, das Auslösen von Rückhaltesystemen wie Gurtstraffer oder Airbags oder die gezielte Abbremsung einzelner Räder umfasst. Zur Bestimmung eines Fremdobjektes ist eine Umfeldsensorik im Fahrzeug angeordnet, die beispielsweise Radarsensoren umfasst.

Bei derartigen Verfahren ist zu berücksichtigen, dass der Fahrer im Falle eines autonomen Fahrzeugeingriffs und daraus resultierender Fahrzustandsänderung Schreckreaktionen zeigen kann, die ein Gefahrenpotenzial darstellen.

Offenbarung der Erfindung

Von diesem Stand der Technik ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs mit mindestens einem Objekt anzugeben, bei dem die Wahrscheinlichkeit einer Schreckreaktion des Fahrers im Falle eines autonomen Eingriffs in den Fahrzustand das Fahrzeugs reduziert ist.

Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben zweckmäßige Weiterbildungen an.

Bei dem erfindungsgemäßen Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs mit mindestens einem Fremdobjekt werden zum einen mittels einer Fahrzeugsensorik aktuelle Fahrzeugzustandsgrößen sowie Fahrzeugsbetriebsgrößen ermittelt und zum andern mithilfe einer Umfeldsensorik Objekte innerhalb des Sensorerfassungsbereichs registriert. Unter Berücksichtigung dieser aktuellen Fahrzeugzustandsgrößen und Fahrzeugbetriebsgrößen sowie des bzw. der erfassten Objekte wird mindestens eine Ausweichtrajektorie ermittelt, entlang der eine Kollision vermieden oder zumindest die Folgen einer Kollision gemindert werden. Des Weiteren wird überprüft, ob der Fahrer in Anbetracht der zu erwartenden Kollision eine Vermeidungsreaktion zeigt, was anhand einer aktuellen Fahrzeugzustandsgröße oder Fahrzeugbetriebsgröße für den Fall angenommen wird, dass diese Größe einen Grenzwert überschreitet. Zeigt der Fahrer tatsächlich eine Vermeidungsreaktion, so wird in einem weiteren Schritt überprüft, ob eine der Fahrzeugzustandsgrößen bzw. Fahrzeugbetriebsgrößen eine kritische Schwelle (Kritikalitätsschwelle) überschreitet. Dabei kann es sich um die aktuelle Position des Fahrzeugs handeln, falls beispielsweise das Fahrzeug der berechneten

Ausweichtrajektorie nicht in dem gewünschten Maße folgt, woraufhin autonome Unterstützungsmaßnahmen eingeleitet werden. Unter autonomen Unterstützungsmaßnahmen werden vom System durchgeführte Aktionen bzw. Eingriffe verstanden, die zusätzlich zum Fahrerwunsch wirken.

Als weitere, alternativ oder kumulativ zu berücksichtigende Kritikalitätsschwelle kann beispielsweise die Querbeschleunigung herangezogen werden, wobei im Falle der überschreitung eines Querbeschleunigungsgrenzwertes die Situation mit hoher Wahrscheinlichkeit als kritisch und für den Fahrer schwer beherrschbar eingestuft wird; durch geeignete Gegenmaßnahmen, die autonom durchgeführt werden, wird die Situation entschärft und es werden die in der Kritikalitätsschwelle betrachteten

Zustands- oder Betriebsgrößen wieder unter den Grenzwert gedrückt. Der Eingriff in das Fahrzeug beeinflusst den Fahrzeugzustand, wobei eine Beeinflussung sowohl auf Lage-, Geschwind igkeits- als auch auf Beschleunigungsebene in Betracht kommt.

Dieses Verfahren weist den Vorteil auf, dass ein autonomer Eingriff an eine

Vermeidungsreaktion des Fahrers gekoppelt ist. Ein autonomer Eingriff wird nur für den Fall durchgeführt, dass der Fahrer bereits von sich aus eine Vermeidungsreaktion in Anbetracht der Gefahrensituation gezeigt hat. In dieser Situation hat der Fahrer bereits zu erkennen gegeben, dass er sich der Gefahrensituation bewusst ist und bereits Gegenmaßnahmen eingeleitet hat. Der Fahrer befindet sich in einem Zustand erhöhter Wachsamkeit und im Bewusstsein der Gefahrensituation, so dass die zusätzlichen, autonomen Eingriffe in den Fahrzustand des Fahrzeugs nicht zu einer Panik- oder Schreckreaktion des Fahrers führen werden. Der autonome Eingriff erfolgt somit nicht unabhängig von der Fahrerreaktion, sondern findet in einer die Fahrerreaktion begleitenden Weise statt.

Eine weitere Sicherheitsstufe stellt die Kritikalitätsschwelle dar. Hierdurch wird sichergestellt, dass auch im Falle einer Gefahrensituation ein autonomer Eingriff nur bei einer unzureichenden Fahrerreaktion durchgeführt wird, wobei der Eingriff auf ein bestimmtes Maß beschränkt werden kann. Bereits über die Höhe der

Kritikalitätsschwelle wird Einfluss darauf genommen, ob und in welcher Weise ein autonomer Eingriff durchgeführt werden soll. Darüber hinaus können zusätzliche Begrenzungen die Höhe des Eingriffes betreffend vorgenommen werden. Auf diese Weise kann der Eingriff zwischen einer minimalen Beeinflussung und einer vollständig autonomen Fahrzeugführung variiert werden.

Gemäß einer bevorzugten Ausführung wird die Ausweichtrajektorie aus einer Schar von Ausweichtrajektorien unter Berücksichtigung eines Kostenfunktionais bzw. einer Optimierungsfunktion ermittelt. Die ausgewählte bzw. propagierte Ausweichtrajektorie wird der Kollisionsvermeidungs- bzw. Kollisionsminderungsstrategie zugrunde gelegt. Bei der Schar von potenziell möglichen Ausweichtrajektorien handelt es sich um einen so genannten Trajektorienschlauch, der die Gesamtheit aller möglichen Bewegungen des Fahrzeugs wiedergibt. Ein derartiger Trajektorienschlauch wird vorteilhaft nicht nur für das Fahrzeug selbst, sondern auch für jedes beteiligte Objekt innerhalb des von der Umfeldsensorik abgedeckten Sensorerfassungsbereichs ermittelt. überschneidungen und überlappungen zwischen dem Trajektorienschlauch des Fahrzeugs und dem oder

- A -

den Trajektorienschläuchen der Fremdobjekte werden bestimmt und für die Auswahl einer Ausweichtrajektorie eliminiert. Sodann wird aus dem verbleibenden Bereich des Trajektorienschlauches des Fahrzeuges mittels des Kostenfunktionais bzw. der Optimierungsfunktion die propagierte Ausweichtrajektorie bestimmt.

Die Ermittlung des Trajektorienschlauches hat den Vorteil, dass sich über Schnitte durch den Trajektorienschlauch zu bestimmten Zeitpunkten Gebiete extrahieren lassen, die sämtliche erreichbaren Aufenthaltspunkte zu ebendiesem Zeitpunkt darstellen. Die räumliche übereinanderschichtung verschiedener Schnittebenen, die jeweils einem bestimmten Schnittzeitpunkt entsprechen, ergeben den gesamten Trajektorienschlauch, innerhalb dessen über die Berücksichtigung der Optimierungsfunktion die propagierte Ausweichtrajektorie bestimmt wird.

Als Optimierungsfunktion können unterschiedliche Funktionen verwendet werden. Beispielsweise wird als Optimierungsfunktion das Integral des Quadrats der

Krümmungskurve als Funktion der Bahnposition zu einem Minimum bestimmt. Dies bedeutet, dass als propagierte Ausweichtrajektorie diejenige Trajektorie innerhalb des Trajektorienschlauches gewählt wird, die gemäß der genannten Optimierungsfunktion den kleinsten Wert liefert. Die Krümmungskurve, die im genannten Ausführungsbeispiel in der Optimierungsfunktion berücksichtigt wird, liegt zweckmäßig als Polygonzug vor.

Als Fahrervermeidungsreaktion, die der Beurteilung zugrunde gelegt wird, ob der Fahrer auf die eingetretene Gefahrensituation reagiert, können verschiedene Fahrerbetätigungen alternativ oder kumulativ berücksichtigt werden. Infrage kommt beispielsweise eine Lenkradbetätigung des Fahrers, wobei eine Vermeidungsreaktion angenommen wird, falls eine Mindest- Lenkwinkeländerung vom Fahrer vorgenommen wird, was beispielhaft über einen Lenkwinkelsensor detektiert wird. Möglich ist darüber hinaus, die Lenkwinkelgeschwindigkeitsänderung zu berücksichtigen. Als weitere Fahrerreaktion kommt beispielsweise die Bremspedalbetätigung in Betracht, wobei sowohl die Bremspedalpositionsänderung als auch die Bremspedalgeschwindigkeitsänderung berücksichtigt werden kann.

Als Kritikalitätsschwelle, die zusätzlich überschritten werden muss, damit ein autonomer Eingriff durchgeführt wird, kann zusätzlich oder alternativ zur aktuellen Fahrzeugposition die Fahrzeugquerbeschleunigung berücksichtigt werden. Als

Kritikalitätsschwelle wird in diesem Fall zweckmäßig die maximale Querbeschleunigung ermittelt, die sich beim Befahren einer Ausweichtrajektorie einstellen würde. Bevorzugt wird die kleinste maximale Querbeschleunigung aus der ermittelten Schar aller Ausweichtrajektorien, also dem Trajektorienschlauch berücksichtigt. Auf diese Weise wird sichergestellt, dass die tatsächlich auftretenden Querbeschleunigungen im Fahrzeug unterhalb dieser Kritikalitätsschwelle liegen. Der autonome Eingriff in das Fahrzeug hilft hierbei, die Querbeschleunigung unterhalb der Kritikalitätsschwelle zu halten, die andernfalls, also ohne autonomen Eingriff, überschritten werden würde, was zu einer gefährlichen Fahrsituation führen würde, die von dem Fahrer nur schwer beherrschbar wäre.

Sofern eine Vermeidungsreaktion des Fahrers vorliegt und eine Kritikalitätsschwelle überschritten ist, werden von einem Regel- und Steuergerät im Fahrzeug Stellsignale erzeugt, über die ein Aktuator im Fahrzeug zur Korrektur des Fahrzeugzustandes eingestellt wird. Möglich ist eine autonome Beeinflussung des Bremssystems, des

Lenksystems und/oder des Antriebssystems. Darüber hinaus können auch Aktuatoren eingestellt werden, die das Fahrverhalten beeinflussen, insbesondere Aktuatoren im Fahrwerk wie beispielsweise eine aktive Wankeinstellung. Im Falle eines Bremseingriffes kann sowohl eine gleichmäßige als auch eine bezogen auf die einzelnen Räder des Fahrzeuges ungleichmäßige Bremsung erfolgen, wobei im letztgenannten Fall das Fahrzeug zusätzlich stabilisiert werden kann. Bei einem Eingriff in das Antriebssystem des Fahrzeugs wird im Falle einer Brennkraftmaschine die Luftzufuhr und/oder die Kraftstoffzufuhr beeinflusst, im Falle eines ausschließlich oder zusätzlich eingesetzten Elektromotors wird die elektrische Leistung dieses Elektromotors reguliert; möglich ist auch ein Eingriff in eine Getriebeeinheit. Bei einem Lenkeingriff sind ebenfalls verschiedenartige Eingriffsmöglichkeiten denkbar. Falls ein Lenküberlagerungsgetriebe im Lenksystem vorgesehen ist, kann zusätzlich zum Fahrerlenkwinkel ein Zusatzlenkwinkel vorgegeben werden, der auf den Fahrerlenkwinkel addiert oder von diesem subtrahiert wird. Möglich ist aber auch eine Beeinflussung auf Lenkmomentebene, um ein positives oder negatives Lenkmoment zu generieren, welches in das Lenksystem eingespeist wird.

Die autonom durchgeführte Fahrerunterstützung erfolgt vorteilhafterweise nur solange, wie die Kritikalitätsschwelle überschritten ist. Da eine laufende, zyklische überprüfung hinsichtlich der Kritikalitätsschwelle durchgeführt wird, kann die Fahrerunterstützung wieder zurückgenommen werden, wenn der betrachtete Wert bei einer Fahrt entlang

der Ausweichtrajektorie wieder unter den zugeordneten Grenzwert fällt. Die Rücknahme des autonomen Eingriffes erfolgt zweckmäßig sukzessive. Sobald die Aktivierungsbedingungen wieder erfüllt sind, wird der Eingriff erneut aktiviert.

Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:

Fig. 1 eine schematische Darstellung einer Ausweichsituation eines Fahrzeuges vor einem Hindernis,

Fig. 2 eine Darstellung eines Trajektorienschlauches des Fahrzeuges, der die Gesamtheit aller möglichen Bewegungen des Fahrzeuges zeitabhängig wiedergibt, wobei eine bevorzugte, propagierte Ausweichtrajektorie innerhalb des Trajektorienschlauches eingetragen ist.

In Fig. 1 ist eine Fahrsituation eines Fahrzeuges 1 dargestellt, welches mit „Ego" bezeichnet ist und bei dem es sich um dasjenige Fahrzeug handelt, bei dem der Fahrer mittels autonomer Eingriffe beim Ausweichen eines Hindernisses unterstützt wird. Dieses Hindernis ist im Ausführungsbeispiel nach Fig. 1 ein weiteres Fahrzeug 2 dargestellt, welches die Bezeichnung „Obs" (obstacle) trägt. Sowohl das Fahrzeug 1 als auch das Fahrzeug 2 - im Folgenden Fremdobjekt genannt - bewegen sich entlang einer Straße mit der Längskoordinate x, wobei die Geschwindigkeit des Fahrzeuges 1 höher ist als die Geschwindigkeit des Fremdobjektes 2. Aufgrund dieser Geschwindigkeitsdifferenz verringert sich der Abstand zwischen Fahrzeug 1 und Fremdobjekt 2, was mithilfe einer Umfeldsensorik im Fahrzeug 1 festgestellt werden kann. Bei dieser Fahrzeugsensorik handelt es sich insbesondere um Ultraschall-, Lidar-, Radar- und/oder Videosensoren. Diese Sensoren detektieren das Fremdobjekt 2, sobald dieses im Sensorerfassungsbereich liegt.

Zusätzlich zu der Umfeldsensorik besitzt das Fahrzeug 1 eine Fahrzeugsensorik zur Ermittlung der aktuellen Fahrzeugzustandsgrößen und diversen Fahrzeugbetriebsgrößen. über die bordeigene Fahrzeugsensorik wird insbesondere die aktuelle Fahrzeuglängs- und Fahrzeugquerdynamik auf Lage-, Geschwindigkeitsund Beschleunigungsebene ermittelt.

Nach der Erfassung des Fremdobjektes 2 wird überprüft, ob der Fahrer eine Vermeidungsreaktion zeigt, um eine Kollision zwischen dem Fahrzeug 1 und dem Fremdobjekt 2 zu vermeiden oder zumindest die Folgen einer derartigen Kollision zu vermindern. Diese Vermeidungsreaktion wird mithilfe der Fahrzeugsensorik im Fahrzeug 1 detektiert, indem beispielsweise die Lenkradbetätigung oder die

Bremspedalbetätigung sensiert und die Sensorsignale einer Regel- und Steuereinheit im Fahrzeug zugeführt werden, in der eine Auswertung stattfindet. Sofern die betrachteten Signale bestimmte, festgelegte Grenzwerte überschreiten, kann davon ausgegangen werden, dass eine typische Reaktion des Fahrers auf die aufgetretene Gefahrensituation stattgefunden hat. In diesem Fall wird eine so genannte propagierte Ausweichtrajektorie zur Kollisionsvermeidung bzw. zur Kollisionsfolgenminderung berechnet.

Die propagierte Ausweichtrajektorie ist in den Figuren 1 und 2 mit dem Bezugszeichen 3 gekennzeichnet. Das Fahrzeug 1 folgt dieser Ausweichtrajektorie, was in Fig. 1 mit dem Bezugszeichen 1' für das Fahrzeug gekennzeichnet ist, welches sich entlang der Ausweichtrajektorie 3 bewegt. Die Ausweichtrajektorie 3 wird in der Weise festgelegt, dass das sich ebenfalls weiter fortbewegende Fremdobjekt 2' möglichst kollisionsfrei umfahren wird. Das Befahren der Ausweichtrajektorie 3 erfolgt bevorzugt in erster Linie durch eine Fahrzeugbetätigung über den Fahrer, der jedoch durch einen autonom durchgeführten Eingriff in die Aktuatoren des Fahrzeuges beim Befolgen der Ausweichtrajektorie 3 unterstützt wird. Diese Unterstützung kann gegebenenfalls so weit gehen, dass das Fahren entlang der Trajektorie ausschließlich oder fast ausschließlich über einen autonomen Eingriff erfolgt.

Die Ausweichtrajektorie 3 wird aus dem Trajektorienschlauch 4 bestimmt, der in Fig. 2 dargestellt ist. Dieser Trajektorienschlauch 4 stellt die Gesamtheit aller möglichen Bewegungen des Fahrzeuges 1 dar, wobei zweckmäßig der Bereich aus dem Trajektorienschlauch 4 herausgeschnitten ist, welcher zu einer Kollision mit dem Fremdobjekt 2 führen würde. Innerhalb des Trajektorienschlauches 4 gibt es theoretisch unendlich viele Möglichkeiten zur Bestimmung der Ausweichtrajektorie 3. Wie in Fig. 2 dargestellt, stellen verschiedene Schichten bei konstanten z-Werten innerhalb des Trajektorienschlauches verschiedene Zeitpunkte der Trajektorien dar. Die z-Achse ist als Produkt von Zeit und Fahrzeuggeschwindigkeit v E darstellbar. Die verschiedenen Zeitpunkte sind in Fig. 2 mit t n bis t n+3 eingetragen.

Zur Festlegung der propagierten Ausweichtrajektorie 3 wird ein Kostenfunktional bzw. eine Optimierungsfunktion herangezogen. Als Optimierungsfunktion können grundsätzlich unterschiedliche Funktionen berücksichtigt werden. Beispielhaft sei als Optimierungsfunktion das Integral des Quadrats der Krümmungskurve K als Funktion der Bahnposition s genannt, das gemäß

^κ(s) 2 ds = Min\ s=0

ein Minimum einnehmen soll, wobei das Integral sich über die gesamte Länge L der Ausweichfunktion bezieht. Die Krümmungskurve K wird beispielsweise als Polygonzug festgelegt.

Des Weiteren kann eine Kritikalitätsschwelle berücksichtigt werden, beispielsweise ein Beschleunigungswert. Diese Kritikalitätsschwelle wird im Ausführungsbeispiel als kleinste maximale Querbeschleunigung a q , max aus der Schar der Ausweichtrajektorien, also dem Trajektorienschlauch 4 bestimmt. Nach der Bestimmung der Kritikalitätsschwelle a q , max wird überprüft, ob der Wert der aktuellen Fahrzeugquerbeschleunigung, der aus der Fahrzeugsensorik ermittelt wird, diese Kritikalitätsschwelle überschreitet. Sofern dies der Fall ist, werden Stellsignale im Fahrzeug 1 zur Einstellung eines oder mehrerer Aktuatoren im Fahrzeug erzeugt, um den Fahrzeugzustand in gewünschter Weise zu korrigieren. Diese Korrektur bezieht sich zweckmäßig auf die Fahrzeugposition, die Fahrzeuggeschwindigkeit und die Fahrzeugbeschleunigung.

Als möglicher Eingriff in einen Aktuator des Fahrzeuges 1 kommt eine Einstellung des Bremssystems, des Lenksystems und des Antriebsstranges in Betracht, insbesondere ein Eingriff in das Motormanagement einer Brennkraftmaschine sowie ein Eingriff in ein Automatikgetriebe.