Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR CHECKING THE OPERABILITY OF MEASURING TRANSDUCERS
Document Type and Number:
WIPO Patent Application WO/2018/041968
Kind Code:
A1
Abstract:
The invention relates to a method for checking the operability of two-wire measuring transducers in automation technology which output a measurement signal as an impressed loop direct current (IS) via a two-wire line and the active assemblies of which are supplied with electrical energy via the same two-wire line, wherein the loop direct current (IS) and the input voltage (UE) of the measuring transducer (100) are measured, wherein the loop direct current (IS) is increased in the range from the minimum value to the maximum value (ISM) independently of the measured values and the input voltage (UE) of the measuring transducer (100) is measured in the process. It is proposed to store the measured values of the input voltage (UE) at the selected measuring points of the loop direct current (IS) as an individual signature of the measuring transducer (100). During ongoing operation, the input voltage (UE) at the connection terminals of the two-wire line is measured via the internal resistance of the measuring transducer (100) with a prevailing loop direct current (IS) and is recursively compared with the signature for the same loop direct current (IS). As soon as the input voltage (UE) at the connection terminals of the two-wire line (200) leaves a predefined tolerance via the internal resistance of the measuring transducer (100) with a prevailing loop direct current (IS), a predefined reaction of the measuring transducer (100) is triggered.

Inventors:
SCHWANZER HORST (DE)
MERLIN TILO (DE)
Application Number:
PCT/EP2017/071903
Publication Date:
March 08, 2018
Filing Date:
August 31, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB SCHWEIZ AG (CH)
International Classes:
G01D18/00; G05B19/042
Foreign References:
DE102005047894A12007-04-19
DE102007062919A12009-06-25
DE29917651U12000-11-09
DE102005047894A12007-04-19
Attorney, Agent or Firm:
MARKS, Frank (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Prüfung der Betriebsfähigkeit von Zweileiter-Meßumformern in der Automatisierungstechnik, die ein Messsignal als eingeprägten Schleifengleichstrom (Is) über eine Zweidraht-Leitung ausgeben und deren aktive Baugruppen über dieselbe Zweidraht-Leitung mit elektrischer Energie versorgt werden, wobei der Schleifengleichstrom (ls) und die Eingangsspannung (UE) des Messumformers (100) gemessen werden, wobei der Schleifengleichstrom (!s) messwertunabhängig in der Spanne vom Minimalwert bis zum Maximalwert (ISM) erhöht und dabei die Eingangsspannung (UE) des Messumformers (100) gemessen wird

dadurch gekennzeichnet,

a. dass werden die Messwerte der Eingangsspannung (UE) an den

ausgewählten Messpunkten des Schleifengleichstroms (Is) als individuelle Signatur des Messumformers (100) abgespeichert,

b. dass während des laufenden Betriebes die Eingangsspannung (UE) an den Anschlußklemmen der Zweidraht-Leitung über den Innenwiderstand des Messumformers (100) bei vorherrschendem Schleifengleichstrom (Is) gemessen und mit der Signatur bei gleichem Schleifengleichstrom (ls) wiederholend verglichen wird und

c. dass eine vorgegebene Reaktion des Messumformers (100) ausgelöst wird, sobald die Eingangsspannung (UE) an den Anschlußklemmen der Zweidraht-Leitung (200) über den Innenwiderstand des Messumformers (100) bei vorherrschendem Schleifengleichstrom (Is) eine vorgegebene Toleranz verläßt.

2. Verfahren nach Anspruch 1

dadurch gekennzeichnet,

dass aus der Signatur eine Spannungsreserve (UER) bei maximalem Schleifenstrom (Is) als Differenz aus der Eingangsspannung (UEO) beim Maximalwert (ISM) des Schleifengleichstroms (Is) und der erforderlichen Mindesteingangsspannung (UEM) des Messumformers (100) ermittelt wird.

3. Verfahren nach Anspruch 2

dadurch gekennzeichnet,

dass die vorgegebene Toleranz der Eingangsspannung (UE) aus der Spannungsreserve (UER) abgeleitet wird.

4. Verfahren nach einem der vorstehenden Ansprüche

dadurch gekennzeichnet,

dass die Eingangsspannung (UE) bei zwei extremen Schleifengleichströmen (ls) gemessen wird und die Werte weiterer Tupel bestehend aus Schleifengleichstrom (Is) und zugehöriger Eingangsspannung (UE) interpoliert werden

5. Verfahren nach Anspruch 4

dadurch gekennzeichnet,

dass die interpolierten Tupel des Schleifengleichstroms (Is) und zugehöriger Eingangsspannung (UE) in Form einer Tabelle gespeichert werden.

6. Verfahren nach einem der Ansprüche 1 bis 3

dadurch gekennzeichnet,

dass aus den gemessenen Tupeln Koeffizienten eines Gleichungssystems errechnet werden, welche als Signatur abgespeichert werden.

7. Verfahren nach einem der vorstehenden Ansprüche

dadurch gekennzeichnet,

dass die extremen Schleifengleichströme (Is) außerhalb der Spanne des Messstroms (IM) liegen.

Description:
Verfahren zur Prüfung der Betriebsfähigkeit von Messumformern

Beschreibung

Die Erfindung betrifft ein Verfahren zur Prüfung der Betriebsfähigkeit von Zweileiter- Meßumformern in der Automatisierungstechnik, die ein Messsignal als eingeprägten Strom ausgeben, nach dem Oberbegriff des Patentanspruchs 1 .

Dabei befindet sich der Messumformer prozeßnah und dezentral im Feldbereich und ist mit Sensormitteln zur Aufnahme einer physikalischen Prozessgröße und Mitteln zu deren Umwandlung in eine elektrische Größe ausgestattet.

Für eine Mehrzahl von Messumformern sind in einem zentralen Wartenbereich Mittel zu deren Energieversorgung und zur Messwertverarbeitung und -Visualisierung vorgehalten.

Bei einem Zweileiter-Messumformer wird über eine einzige Zweidraht-Leitung zwischen dem Messumformer im Feldbereich und einer im Wartenbereich befindlichen Messumformerversorgungseinheit sowohl die elektrische Energieversorgung der aktiven Baugruppen des Messumformers als auch die Übertragung der Messwerte zu den Mitteln der Messwertverarbeitung und -Visualisierung im Wartenbereich realisiert.

Dazu wird ausgehend von einer in der Messumformerversorgungseinheit

angeordneten Spannungsquelle über die erste Ader der Zweidraht-Leitung, den Innenwiderstand des Messumformers, die zweite Ader der Zweidraht-Leitung und einem in der Messumformerversorgungseinheit angeordneten Messwiderstand eine Stromschleife gebildet, deren Schleifenstrom in Abhängigkeit von der detektierten Prozessgröße durch adäquate Veränderung des Innenwiderstands des

Messumformers bestimmt wird. Die am Messwiderstand abfallende Spannung ist dann ein Maß für die detektierte Prozessgröße des Messumformers.

Zur Energieversorgung der aktiven Baugruppen des Messumformers wird eine Mindesteingangsspannung über den Innenwiderstand des Messumformers benötigt. Bei zu großer Leitungsimpedanz und / oder zu geringer Ausgangsspannung der Messumformerversorgungseinheit führt ein in Abhängigkeit von der detektierten Prozessgröße hoher Schleifenstrom zu einem hohen Spannungsabfall über der Zweidraht-Leitung, wobei die erforderliche Mindesteingangsspannung des

Messumformers statisch unterschritten wird.

In Anwendungen mit großen Leitungslängen, wie beispielsweise Tanklager oder Anlagen mit zentralem Schaltraum mit Auswerteeinheiten und weit verteilten

Messstellen, kann es zu erhöhtem Spannungsabfall entang der Stromschleife kommen. Der Widerstand der Anschlussleitung ist weiterhin abhängig von der

Umgebungstemperatur. Zwischen den Kontaktstellen (Anschluss- und

Verteilerklemmen) kommt es zu Übrgangswiderständen, die u.a. von der

Luftfeuchtigkeit und Salzgehalt der Umgebungsluft abhängen und tendenziell über den Lebenszyklus zunehmen (Korrosion). Über diesen Widerständen bildet sich bei Stromfluss ein Spannungsabfall, der die dem 2-Leiter-Messumformer zur Verfügung stehende Betriebsspannung vermindert. Es kann dabei vorkommen, dass der

Spannungsabfall entlang der Leitung und über Kontakstellen so groß wird, dass die minimal zulässige Versorgungsspannung des Messumformers unterschritten wird.

Teilweise haben Messumformer dafür eine Überwachung und nehmen bei

Unterschreitung einen sicheren Fehlerstrom an bzw. werden zurückgesetzt und starten neu. Diese Erkennung dient dazu, einen unsicheren Betrieb mit Undefiniertem

Ausgangssignal zu vermeiden. Besonders kritisch ist der Zustand, wenn bei kleinem Schleifenstrom die zulässige minimale Versorgungsspannung des Messumformer noch eingehalten wird, jedoch erst bei zunehmendem Schleifenstrom unterschritten wird. Durch schleichende Widerstandserhöhung in der Stromschleife kommt es dann zu Ausfällen, wenn der Schleifenstrom einen höheren Betrag annimmt. Aus der DE 10 2005 047 894 A1 ist ein Verfahren bekannt, die Versorgungsspannung am Stromschleifenanschluss des Messumformers zu messen und bei Erkennung einer Unterspannung in den sicheren Zustand zu gehen.

Nachteilig an diesem Verfahren ist die Notwendigkeit, wiederkehrend den gesamten Strombereich messwertunabhängig zu durchfahren, um so Unterschreitungen der minimal zulässigen Versorgungsspannung zu erkennen. Der Auswerteeinheit oder Prozesssteuerung muss während dieser Messung mitgeteilt werden, dass der gemessene Schleifenstrom keinem Messignal entspricht. Damit erfordert die Messung eine Synchronisation zwischen Wartungsarbeiten und Prozesssteuerung in Bezug auf die Auswertung der Eingangssignale. Wünschenswert ist eine Überwachung während des normalen Bestriebs.

Der Erfindung liegt daher die Aufgabe zugrunde, die Betriebsfähigkeit eines gattungsbildenden Messumformers während des normalen Bestriebs zu überwachen.

Erfindungsgemäß wird diese Aufgabe mit den Mitteln des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den rückbezogenen Ansprüchen angegeben.

Die Erfindung geht aus von einem Messumformer der gattungsgemäßen Art, bei dem über eine einzige Zweidraht-Leitung zwischen dem Messumformer im Feldbereich und einer im Wartenbereich befindlichen Messumformerversorgungseinheit sowohl die elektrische Energieversorgung der aktiven Baugruppen des Messumformers als auch die analoge Kommunikation mit den Mitteln der Messwertverarbeitung und

Messwertvisualisierung im Wartenbereich erfolgt. Dabei ist die analoge Kommunikation unidirektional von dem Messumformer im Feldbereich zu den Mitteln der

Messwertverarbeitung und -Visualisierung im Wartenbereich gerichtet und über den Schleifengleichstrom einer über den Messumformer geführten Stromschleife abgebildet.

In einem bekannten Vorbereitungsschritt wird mindestens einmalig der

Schleifengleichstrom in der Spanne vom Minimalwert bis zum zulässigen Höchstwert durchfahren und an ausgewählten Messpunkten des Schleifengleichstroms die Klemmenspannung an den Anschlußklemmen der Zweidraht-Leitung über den Innenwiderstand des Messumformers gemessen wird.

Erfindungsgemäß werden die Messwerte der Klemmenspannung an den ausgewählten Messpunkten des Schleifengleichstroms als individuelle Signatur der Stromschleife mit dem Messumformer abgespeichert. Aus der Signatur wird die Spannungsreserve bei maximalem Schleifenstrom ermittelt. Die Spannungsreserve ist die Differenz aus dem Messwert der Klemmenspannung bei maximalem Schleifengleichstrom und der minimalen Betriebsspannung des Messumformers. In einem weiteren Schritt wird aus der Klemmenspannung und dem Schleifengleichstrom der Schleifenwiderstand der Zweidraht-Leitung berechnet.

Während des laufenden Betriebes wird wiederholend die Klemmenspannung an den Anschlußklemmen der Zweidraht-Leitung über den Innenwiderstand des

Messumformers bei vorherrschendem Schleifengleichstrom gemessen und mit der Signatur bei gleichem Schleifengleichstrom verglichen. Dadurch ist eine Aussage über die Veränderung der Klemmenspannung und damit indirekt des Schleifenwiderstandes möglich.

Sobald die Klemmenspannung an den Anschlußklemmen der Zweidraht-Leitung über den Innenwiderstand des Messumformers bei vorherrschendem Schleifengleichstrom eine vorgegebene Toleranz verläßt, wird eine vorgegebene Reaktion des

Messumformers ausgelöst.

In einer vorteilhaften Weiterbildung der Erfindung hängt die vorgegebene Toleranz proportional von der Spannungsreserve ab.

In einer weiteren vorteilhaften Weiterbildung der Erfindung ist als vorgegebene Reaktion des Messumformers die Ausgabe eines zulässigen Schleifenstroms außerhalb der Spannne zur Messwertübertragung vorgesehen. Insbesondere bei sicherheitskritischen Applikationen ist die Ausgabe eines solchen Fehlerstroms vorteilhafterweise eine schnelle Signalisierungsform für einen Fehlerzustand.

Darüber hinaus kann die Ausgabe einer Warnungsmeldung vorgesehen sein. Vorteilhafterweise werden unerwartete Ausfälle vermieden, die plötzlich auftreten, wenn aufgrund des Messwertes der Schleifenstrom einen so hohen Wert annimmt, dass durch den Spannungsabfall entlang der Stromschleife die minimale

Versorgungsspannung des Messumformers unterschritten wird. Darüber hinaus entfällt die wiederholende Prüfung der Stromschleife verbunden mit der Notwendigkeit, die übergeordnete Auswerteeinheit zu passivieren (Nichtweiterleitung des gemessenen Stromsignals).

Die Erfindung wird nachstehend anhand eines Ausführungsbeispiels näher erläutert. Die dazu erforderlichen Zeichnungen zeigen:

Figur 1 ein Ersatzschaltbild eines Messumformer-Speisekreises

Figur 2 eine Darstellung von Kennlinien zur Betriebsfähigkeit in einem Strom-/

Spannungsdiagramm

In Figur 1 ist ein Ersatzschaltbild eines Messumformer-Speisekreises im Umfang der zur Erläuterung der vorliegenden Erfindung erforderlichen Mittel dargestellt. Ein Messumformer 100 ist über eine Zweidraht-Leitung 200 mit einer im Wartenbereich befindlichen Messumformerversorgungseinheit 300 verbunden. Die

Messumformerversorgungseinheit 300 weist zumindest eine Gleichspannungsquelle 310 mit einer Betriebsspannung U B und einen Messwiderstand 320 auf. Ausgehend von der Gleichspannungsquelle 310 ist eine Leiterschleife als Masche über die

Zweidraht-Leitung 200, den Messumformer 1 00 und den Messwiderstand 320 geführt.

Die Zweidraht-Leitung 200 weist in Abhängigkeit von Querschnitt und der Länge der Leitung einen Leitungswiderstand 210 je Ader auf. Die über die Zweidraht-Leitung 200 und den Messumformer 1 00 geführte Stromschleife wird von einem

Schleifengleichstrom ls durchflössen. Dieser Schleifengleichstrom ls setzt sich aus einem Betriebsstrom IB zur Versorgung des Messumformers 1 00 und einem

Messstrom IM zusammen, wobei der Messstrom IM den Messwert des Messumformers 100 repräsentiert.

Während des bestimmungsgemäßen Gebrauchs des Messumformers 100 wird der Betriebsstrom l B konstantgehalten. Im Ersatzschaltbild nach Figur 1 weist der Messumformers 100 für die Strompfade des Messstroms IM und des Betriebsstrom IB jeweils einen Ersatzwiderstand 1 1 0 und 120 auf. Dabei ist der vom während des bestimmungsgemäßen Gebrauchs konstanten Betriebsstrom l B durchflossene Ersatzwiderstand 120 als Festwiderstand dargestellt, während der vom variablen Messstrom IM durchflossene Ersatzwiderstand 1 1 0 als Potentiometer dargestellt ist. Jeder der Ersatzwiderstände 1 10 und 120 repräsentiert komplexe elektronische Schaltungen zur Messwertgewinnung und -Verarbeitung sowie zur Aufrechterhaltung des bestimmungsgemäßen Betriebes des Messumformers 100 und bilden den Innenwiderstand des Messumformers 100.

Der feste Ersatzwiderstand 120 symbolisiert dabei die Belastung des Stromkreises der Leiterschleife durch die aktiven Baugruppen des Messumformers 100, die durch den Betriebsstrom l B angegeben ist.

Der Messumformer 100 ist mit nicht dargestellten Sensormitteln zur Aufnahme einer physikalischen Prozessgröße und Mitteln zu deren Umwandlung in eine elektrische Größe ausgestattet. Während des bestimmungsgemäßen Gebrauchs des

Messumformers 100 wird die elektrische Größe über den variablen Innenwiderstand 1 10 als Messstrom l M dem Schleifengleichstrom l s aufgeprägt.

Dabei fließt der Schleifengleichstrom Is durch die Leitungswiderstände 21 0 der Zweidraht-Leitung 200, den Messumformer 1 00 und den Messwiderstand 320. Im Messumformer 100 wird der Schieifengleichstrom Is in den festen Betriebsstrom IB und den variablen Messstrom l M aufgeteilt.

Der Fluss des Schleifengleichstroms Is erzeugt über den Messwiderstand 320 einen Spannungsabfall, der als Messspannung UM nach Abzug der durch den Betriebsstrom IB hervorgerufenen Anteil des Spannungsabfalls den aufgenommenen Messwert repräsentiert.

In Abhängigkeit von der Betriebsspannung UB der Gleichspannungsquelle 310, dem eingeprägten Schleifengleichstrom l s und der Summe aus dem Messwiderstand 320 und den Leitungswiderständen 210 stellt sich an den Anschlussklemmen des

Messumformers 100 für die Zweidraht-Leitung 200 eine Eingangsspannung U E ein. Zur betriebsfähigen Energieversorgung der aktiven Baugruppen des Messumformers 100 wird unter Bezugnahme auf Figur 2 eine Mindesteingangsspannung UEM über den Innenwiderstand des Messumformers 100 benötigt. Bei zu großen

Leitungswiderständen 21 0 der Zweidraht-Leitung 200 und / oder zu geringer

Betriebsspannung UB der Gleichspannungsquelle 31 0 der

Messumformerversorgungseinheit 300 führt ein in Abhängigkeit von der detektierten Prozessgröße hoher Schleifengleichstrom Is zu einem so hohen Spannungsabfall über den Leitungswiderständen 210 der Zweidraht-Leitung 200, dass die erforderliche Mindesteingangsspannung UEM des Messumformers 100 statisch unterschritten wird.

Hierzu ist in Figur 2 ein Diagramm gezeigt, in dem für eine erste Kennlinie 401 und eine zweite Kennlinie 402 die Eingangsspannung UE über den Schleifengleichstrom Is aufgetragen ist. Dabei zeigt die erste Kennlinie 401 den Spannungsverlauf der Eingangsspannung UE eines betriebsfähigen Messumformers 100. Wie die erste Kennlinie 401 zeigt, ist die Eingangsspannung UEO auch beim Maximalwert IS des Schleifengleichstroms Is stets größer als die Mindesteingangsspannung UEM des Messumformers 100.

Die Differenz aus der Eingangsspannung UEO beim Maximalwert ISM des

Schleifengleichstroms Is und der erforderlichen Mindesteingangsspannung UEM des Messumformers 100 wird als Spannungsreserve UER bezeichnet.

Im Gegensatz dazu zeigt die zweite Kennlinie 402 den Spannungsverlauf der

Eingangsspannung UE eines nicht in vollem Umfang betriebsfähigen Messumformers 100. Sobald der Schleifengleichstrom l s einen Grenzstrom I S G überschreitet, fällt die Eingangsspannung UE unter die erforderliche Mindesteingangsspannung UEM und der Messumformer 100 schaltet ab.

Zur Prüfung der Betriebsfähigkeit wird erfindungsgemäß der Schleifengleichstrom Is messwertunabhängig ausgehend vom Minimalwert in Richtung des Maximalwerts ISM erhöht und dabei die Eingangsspannung UE des Messumformers 100 gemessen und als individuelle Signatur der Stromschleife mit dem Messumformer 100 abgespeichert.

Dazu wird die Eingangsspannung UE bei zwei extremen Schleifengleichströmen Is gemessen und die Werte weiterer Tupel bestehend aus Schleifengleichstrom l s und zugehöriger Eingangsspannung UE interpoliert. Insbesondere ist vorgesehen, dass die extremen Schleifengleichströme Is außerhalb der Spanne des Messstroms IM liegen.

In einer ersten Ausführungsform der Erfindung werden aus den gemessenen Tupeln Koeffizienten eines Gleichungssystems errechnet, welche als Signatur abgespeichert werden.

In einer alternativen Ausführungsform der Erfindung werden die interpolierten Tupel des Schleifengleichstroms Is und zugehöriger Eingangsspannung UE in Form einer Tabelle gespeichert.

Aus der Signatur wird die Spannungsreserve UER bei maximalem Schleifenstrom I S M ermittelt. In einem weiteren Schritt wird aus der Eingangsspannung UE und dem Schleifengleichstrom Is der Schleifenwiderstand der Zweidraht-Leitung 200 berechnet.

Zweckmäßigerweise wird die Aufzeichnung der Signatur bereits bei der

Inbetriebnahme des Messumformers 100 erstmalig durchgeführt. Besonders vorteilhaft ist dabei der automatische Aufruf des Prüfvorganges während des

Inbetriebnahmeprozesses.

Während des laufenden Betriebes wird wiederholend die Eingangsspannung UE an den Anschlußklemmen der Zweidraht-Leitung 200 über den Innenwiderstand des Messumformers 100 bei vorherrschendem Schleifengleichstrom Is gemessen und mit der Signatur; Kennlinie 401 , bei gleichem Schleifengleichstrom Is verglichen. Dadurch ist eine Aussage über die Veränderung der Eingangsspannung UE und damit indirekt des Schleifenwiderstandes möglich.

Soweit die Eingangsspannung UE an den Anschlußklemmen der Zweidraht-Leitung 200 über den Innenwiderstand des Messumformers 100 bei vorherrschendem

Schleifengleichstrom l s eine vorgegebene Toleranz verläßt, wird eine vorgegebene Reaktion des Messumformers 100 ausgelöst. In einer vorteilhaften Weiterbildung der Erfindung hängt die vorgegebene Toleranz proportional von der Spannungsreserve U ER ab. In einer weiteren vorteilhaften Weiterbildung der Erfindung ist als vorgegebene Reaktion des Messumformers 100 die Ausgabe eines zulässigen Schleifenstroms Is außerhalb der Spannne zur Messwertübertragung vorgesehen. Insbesondere bei sicherheitskritischen Applikationen ist die Ausgabe eines solchen Fehlerstroms vorteilhafterweise eine schnelle Signalisierungsform für einen Fehlerzustand.

Wie bereits ausgeführt setzt sich der Schleifengleichstrom l s aus dem Betriebsstrom l B und dem Messstrom IM zusammen. In einer industriell gebräuchlichen 4..20 mA- Stromschleife ist der Betriebsstrom l B auf 4 mA eingestellt und die Messspanne auf einen Strombereich des Messstroms IM von 0..16 mA abgebildet. Die Spanne des Schleifengleichstroms is beträgt somit während des bestimmungsgemäßen Gebrauchs 4..20 mA. Alle Stromstärken außerhalb der Spanne von 4..20 mA liegen außerhalb der gültigen Messspanne und werden von der Messumformerversorgungseinheit 300 als Fehlerstrom interpretiert. Zur schnellen Signalisierung eines Fehlerzustand ist somit jeder Schleifengleichstrom Is von 4 mA > Is >20 mA geeignet.

Darüber hinaus kann die Ausgabe einer Warnungsmeldung bereits bei drohender erwarteter Unterschreitung der minimalen Versorgungsspannung UEM im Falle eines Schleifenstroms Is >= 20 mA oder auch bei auffallender Verschlechterung von

Eingangsspannung UE gegenüber der gespeichertem Signatur vorgesehen sein.

Vorteilhafterweise werden unerwartete Ausfälle vermieden, die plötzlich auftreten, wenn aufgrund des Messwertes der Schleifenstrom Is einen so hohen Wert annimmt, dass durch den Spannungsabfall entlang der Stromschleife die minimale

Versorgungsspannung UEM des Messumformers 1 00 unterschritten wird. Darüber hinaus entfällt die wiederholende Prüfung der Stromschleife verbunden mit der Notwendigkeit, die übergeordnete Auswerteeinheit 300 zu passivieren

(Nichtweiterleitung des gemessenen Stromsignals).

In weiterer vorteilhafter Ausgestaltung der Erfindung kann vorgesehen sein, diese Prüfung während des bestimmungsgemäßen Gebrauchs des Messumformers 1 00 bedarfsweise und/oder turnusmäßig durchzuführen. Der Bedarf kann dabei durch aufgetretene Alarme und/oder Fehlermeldungen initiiert sein, die auf

Unregelmäßigkeiten oder unerwartete Reaktionen der automatisierungstechnischen Anlage oder Teile davon folgen. Dazu sind insbesondere Messpausen zwischen zwei aufeinanderfolgenden Messvorgängen geeignet.

In besonderer Ausgestaltung der Erfindung wird der Fehlerzustand mit einem gleichstromkompensierten Wechselstromsignal an Mittel der Messwertverarbeitung und -Visualisierung im Wartenbereich gemeldet. Dazu ist der gattungsbildende Messumformer 100 mit nicht dargestellten Mitteln zur digitalen Kommunikation mit den Mitteln der Messwertverarbeitung und -Visualisierung im Wartenbereich ausgestattet. Die digitale Kommunikation erfolgt bidirektional zwischen dem Messumformer 100 im Feldbereich und den Mitteln der Messwertverarbeitung und -Visualisierung im

Wartenbereich mittels eines gleichstromkompensierten Wechselstromsignals.

Dazu ist insbesondere das in automatisierungstechnischen Anlagen gebräuchliche FS K-Verfahren (frequency shift keying), bei dem eine Frequenz zur Darstellung einer logischen Null und eine weitere Frequenz zur Darstellung einer logischen Eins entsprechend dem zu übertragenden Bitstrom wechselweise umgetastet werden.

Darüber hinaus kann der Übertragung ein Übertragungsprotokoll zugrunde liegen. Zur Kommunikation in automatisierungstechnischen Anlagen sind dabei insbesondere das HART-Protokoll sowie verschiedene Feldbusse gebräuchlich.

Vorteilhafterweise wird durch die Verwendung eines gleichstromkompensierten Wechselstromsignals zur Übertragung der Meldung jede Beeinflussung des

Schleifengleichstromes ls auf der Zweidraht-Leitung 200 und damit der

Eingangsspannung UE über den Innenwiderständen 110 und 120 des Messumformers 100 vermieden. Dadurch wird dem entfernten Bedienpersonal insbesondere bei der bedarfsweisen oder turnusmäßigen Prüfung des Messumformers 100 sofort der erkannte Fehler angezeigt. Folglich wird die fehlende Betriebsfähigkeit des betroffenen Messumformers 100 sofort erkannt, so dass der bestimmungsgemäße Gebrauch eines nichtbetriebsfähigen Messumformers 100 vermieden wird. Bezugszeichenliste

100 Messumformer

1 1 0, 120 Ersatzwiderstand

200 Zweidraht-Leitung

21 0 Leitungswiderstand

300 Messumformerversorgungseinheit

31 0 Spannungsquelle

320 Messwiderstand

401 ; 402 Kennlinie l s Schleifengleichstrom

IB Betriebsstrom

IM Messstrom

Up, Betriebsspannung

UE Eingangsspannung

UM Messspannung