Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND COMPOSITION FOR TREATING SPASTICITY
Document Type and Number:
WIPO Patent Application WO/2014/116652
Kind Code:
A2
Inventors:
MARSALA MARTIN (US)
Application Number:
PCT/US2014/012467
Publication Date:
July 31, 2014
Filing Date:
January 22, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV CALIFORNIA (US)
International Classes:
A61K31/197; A61K48/00; A61P25/00
Other References:
See references of EP 2948138A4
Attorney, Agent or Firm:
NOVOM, Antony M. et al. (PLLC4250 Executive Square, Suite 90, La Jolla California, US)
Download PDF:
Claims:
What is claimed is:

1. A method of treating spasticity in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a gamma- aminobutryic acid (GABA) uptake inhibitor in combination with upregulation of GAD65 (glutamate decarboxylase) gene, thereby treating spasticity in the subject.

2. The method of claim 1, wherein the GABA uptake inhibitor is tiagabine.

3. The method of claim 2, wherein the tiagabine is systemically administered to the subject.

4. The method of claim 2, wherein the tiagabine is orally administered to the subject.

5. The method of claim 1 , wherein the upregulation of the GAD65 gene is spinal- specific upregulation of the GAD65 gene.

6. The method of claim 1, wherein upregulation of the GAD65 gene comprises

administering to the subject a viral vector encoding GAD65, wherein GAD65 is expressed and decreases spasticity.

7. The method of claim 6, wherein the GAD65 is overexpressed.

8. The method of claim 6, wherein the vector is a lentiviral vector, adenoviral vector (AV), or an adeno-associated vector (AAV).

9. The method of claim 8, wherein the vector is a lentiviral vector.

10. The method of claim 8, wherein the vector is an AAV.

1 1. The method of claim 10, wherein the AAV is AAV9.

12. A method of treating spasticity in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a gamma-aminobutryic acid (GAB A) uptake inhibitor in combination with a viral vector encoding GAD65 gene, thereby treating spasticity in the subject.

13. The method of claim 12, wherein the vector is an lenti viral vector, an AV, or an AAV.

14. The method of claim 13, wherein the vector is an AAV.

15. The method of claim 14, wherein the AAV is AAV9.

16. The method of claim 13, wherein the vector is administered directly into the spinal parenchyma of the subject, into the intrathecal space of the subject, or into a peripheral spastic muscle of the subject.

17. The method of claim 12, wherein the GABA uptake inhibitor is tiagabine.

18. The method of claim 17, wherein the tiagabine is systemically administered to the subject.

19. The method of claim 17, wherein the tiagabine is orally administered to the subject.

20. A treatment regimen for treating a subject having a spinal cord injury comprising administering a GABA uptake inhibitor in combination with spinal-specific upreg lation of the GAD65 gene.

21. The treatment regimen of claim 20, wherein the spinal-specific GAD65 upregulation comprises administering a viral vector encoding GAD65, wherein GAD65 is expressed, thereby decreasing spasticity.

22. The treatment regimen of claim 20, wherein the GAD65 is overexpressed.

23. The treatment regimen of claim 21, wherein the vector is a lenti viral vector, an AV, or an AAV.

24. The treatment regimen of claim 23, wherein the vector is a lentiviral vector.

25. The treatment regimen of claim 23, wherein the vector is an AAV.

26. The treatment regimen of claim 25, wherein the AAV is AAV9.

27. The treatment regimen of claim 25, wherein the AAV is administered directly into the spinal parenchyma of the subject, into the intrathecal space of the subject, or into a peripheral spastic muscle of the subject.

28. The treatment regimen of claim 20, wherein the GABA uptake inhibitor is tiagabine.

29. The treatment regimen of claim 20, wherein the tiagabine is systemically or orally administered to the subject.

Description:
METHOD AND COMPOSITION FOR TREATING SPASTICITY

CROSS REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Serial No. 61/755,567, filed January 23, 2013, the entire content of which is incorporated herein by reference.

GRANT INFORMATION

[0002] This invention was made with government support under Grant No. NS051644 awarded by The National Institutes of Health. The United States government has certain rights in the invention.

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

[0003] The invention relates generally to treating spinal injury and more specifically to a combined therapeutic regimen to modulate chronic spasticity in patients after spinal traumatic or ischemic injury.

BACKGROUND INFORMATION

[0004] Spinal cord injury (traumatic or ischemic) may lead to the development of clinically-defined spasticity and rigidity. One of the underlying mechanisms leading to the appearance of spasticity after spinal injury is believed to be the loss of local segmental inhibition and the resulting: i) increase in tonic motoneuron firing, ii) increase in primary afferent input during muscle stretch, and/or iii) exacerbated responses to peripheral sensory stimulation (i.e., allodynia). Loss of gamma-aminobutryic acid (GABA)-mediated presynaptic, recurrent and reciprocal postsynaptic inhibition as well as the loss of its inhibitory effect in flexor afferent pathways has been shown to represent one of the key mechanisms.

[0005] Interestingly, however, previous studies have shown a significant increase in spinal parenchymal GAD67 expression in lumbar spinal segments in Thl2 transected cats. Similarly, an increased density of inhibitory boutons apposing a-motoneuron membranes has been shown in adult rats with midthoracic spinal cord transection performed at postnatal 9 day 5. These data suggest that a static increase in GAB A synthesizing enzymes in spinal interneurons or increase in the number of inhibitory contacts with a-motoneurons after spinal trauma, in the absence of a specific inhibitory neuron-driven activity, is not sufficient to prevent the development of spasticity/hypereflexia. In addition to the role of decreased inhibition, several other potential mechanisms have been shown to contribute to the development of spasticity after spinal trauma, including: i) progressive increase in a- motoneuronal 5-HT?c receptor activity which became spontaneously active in the absence of brain-derived serotonin, or ii) the down regulation of the potassium-chloride co- transporter KCC2 in motoneurons and resulting switch to GABA-mediated depolarization. Jointly, these data indicate that the mechanism leading to the development of spasticity after spinal injury (traumatic or ischemic) is complex and can vary depending on the model used as well as the age of experimental animals when the injury is induced.

[0006] Clinical pharmacological -treatment studies show that the use of systemic or spinally-administered baclofen (GAB As receptor agonist) represents the most potent anti- spasticity pharmacological treatment. While effective in modulating spasticity of different etiologies including spinal trauma, amyotrophic lateral sclerosis or central stroke, major side effects such as general sedation and progressive tolerance development often limit its chronic use. The use of systemically-administered GABA-mimetic compounds such as tiagabine (GABA reuptake inhibitor) shows only a weak or no anti-spasticity effect in clinically-acceptable doses, which correlates with a relatively modest potentiation of brain or spinal parenchymal GABA release after systemic delivery (current data). In addition, currently available spinal drug delivery systems (such as epidural or intrathecal delivery) do not permit a spinal segment-restricted therapeutic effect. Because the origin of spasticity affecting individual muscle groups can be somatotopically mapped to specific spinal segments, the development of segment-targeted anti-spasticity treatments would represent a clear advantage over current therapeutic approaches by reducing unwanted side effects. Accordingly, there is a need for novel antispasticity treatments. SUMMARY OF THE INVENTION

[0007] The present invention is based on the observation that a combined treatment composed of spinal segment-specific upregulation of GAD65 (glutamatedecarboxylase) gene and systemic or oral delivery of tiagabine (GABA uptake inhibitor) in rats with ischemia-induced spasticity leads to an antispasticity effect, and that such a combined treatment is specific for GAD65 gene overexpressing spinal segments.

[0008] Accordingly, the invention provides a method of treating spasticity in a subject. The method includes administering to a subject in need thereof a therapeutically effective amount of a gamma-aminobutryic acid (GABA) uptake inhibitor in combination with upregulation of GAD65 (glutamate decarboxylase) gene, thereby treating spasticity in the subject. In one embodiment, the GABA uptake inhibitor is tiagabine. The tiagabine may be systemicallv or orally administered to the subject. Upregulation of the GAD65 gene may be spinal- specific upregulation of the GAD65 gene, by administering to the subject a viral vector encoding GAD65, wherein GAD65 is expressed and decreases spasticity. The GAD65 gene may be overexpressed. The vector may be a lentiviral vector, adenoviral vector, or an adeno-associated vector (AAV). The AAV may be AAV type 9 (AAV9).

[0009] In another aspect, the invention provides a method of treating spasticity in a subject. The method includes administering to a subject in need thereof a therapeutically effective amount of a gamma-aminobutryic acid (GABA) uptake inhibitor in combination with a viral vector encoding GAD65 gene, thereby treating spasticity in the subject. The vector may be a lentiviral vector, adenoviral vector, or an adeno-associated vector (AAV), and may be administered directly into the spine of the subject. The AAV may be AAV type 9 (AAV9). In one embodiment, the GABA uptake inhibitor is tiagabine. The tiagabine may be systemically or orally administered to the subject.

[0010] In another aspect, the invention provides a treatment regimen for treating a subject having a spinal cord injury. The treatment regimen includes administering a GABA uptake inhibitor in combination with spinal-specific upregulation of the GAD65 gene. Upregulation of GAD65 includes administering a viral vector encoding GAD65, wherein GAD65 is expressed and decreases spasticity. The vector may be a lentiviral vector, adenoviral vector, or an adeno-associated vector, and may be administered directly into the spinal parenchyma of the subject, into the intrathecal space of the subject, or into a peripheral spastic muscle of the subject. In one embodiment, the GABA uptake inhibitor is tiagabine. The tiagabine may be systemically or orally administered to the subject.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Figures 1 A- I P are pictorial and graphical diagrams showing that loss of segmental inhibitory GABA-ergic interneurons and increased expression of GABA B R1+R2 receptor in a-motoneurons after transient spinal cord ischemia is associated with the development of chronic muscle spasticity. (Figures 1A and IB) Transverse spinal cord sections taken from L2-L5 segments in control (Figure 1 A) or spinal ischemia-induced- spastic rat (Figure IB) at 24 h after intrathecal colchicine injection and stained for GABA. Note an apparent loss of GABA-ergic interneurons in the intermediate zone in spastic rat (Figure IB). (Figures 1C-1F) Loss of GABAergic interneurons corresponds with loss of GABA-IR and GAD65-IR boutons on membranes of persisting CHAT-IR a-motoneurons in animals with ischemic spasticity (white arrows). (Figures 1G and 1H) Western blotting for GAD65 and GAD67 in lumbar spinal cord samples taken from control animals (n = 5-6) or animals with developed ischemic spasticity (n - 5-6), (*P - 0.017; **P = 0.045, unpaired t- test). (Figures II- IN) In comparison to control animals, an upregulation in GABA B R1+R2 receptors in lumbar α-motoneurons was identified in animals with spasticity (compare Fig. II to Fig. 1 J and Fig. 1L to Fig. 1M). Quantitative densitometric analysis showed significantly increased densities for both receptor subunits in spastic animals (*- P<0.()5; Fig. IK and Fig. IN). (Figures lO and IP) Measurement of EMG activity in gastrocnemius muscle and corresponding ankle resistance during computer-controlled ankle rotation (45°/3 sec) in awake control sham-operated animals (Figure 10) and in animals with ischemic spasticity (Figure IP).

[0012] Figures 2A-2N are pictorial and graphical diagrams showing that infection of rat primary spinal cord culture with HIV 1 -CM V-G AD65 or HIV1 -CMV-GAD65-GFP lentivirus leads to a preferential astrocyte GAD65 expression and release of biologically active GABA. (Figure 2 A) Rat spinal cord primary culture infected with HIVl-CMV- GAD65-GFP lentivirus and stained with anti-GFP antibody at 4 days after lentivirus infection. (Figures 2B-2D) Co-staining of HIV1 -CMV-GAD65-GFP infected cells with GAD65 antibody showed preferential GAD65 expression in GFP-IR cells. (Figures 2E-2G) Colocalization of GFP-IR with GFAP-IR in HIVl-CMV-GAD65-GFP-infected astrocytes at 14 days after infection. (Figure 2H) Western blotting for GFP or GAD65 in cell lysates taken from rat primary spinal cord culture infected with HIVl-CMV-GFP (control), HIVl- CMV-GAD65-GFP, and HIV 1 -CM V-G AD65 lentivirus. (Figure 21) Extracellular GAB A release measured in cell culture media taken from rat primary spinal cord culture 3-14 days after HIVl-CMV-GFP (control) or HIV1-CMV-GAD65-GFP lentivirus injection. (Figure 2J) Progressive increase in extracellular GABA release measured in Ca 2+ -free media 1-3 hrs after cell culture wash in HIV1-CMV-GAD65-GFP but not in HIVl-CMV-GFP (control) lentivirus-infected cells (* P<0.01 ; paired t test). (K) Human fetal spinal cord astrocytes infected with HIV 1 -CMV-G AD65-GFP lentivirus and stained with anti-GFP antibody at 7 days after lentivirus infection. (Figure 2L) Changes in whole-cell inward current in cultured human NT neurons after bath application of human astrocyte-HIVl- CMV-GAD65-GFP-conditioned media, (Figure 2M) 50 μΜ GABA or (Figure 2N) human astrocyte-HIVl-CMV-GFP-conditioned media (control); (neurons clamped at holding potential (-) 60 mV).

[0013] Figures 3A-3F are pictorial and graphical diagrams showing effective

suppression of spasticity after combined therapy with systemic tiagabine and intrathecal injection of GABA or spinal parenchymal GAD65 gene delivery. (Figure 3 A) EMG responses recorded from gastrocnemius muscle in spastic animals during computer- controlled ankle dorsiflexion before and after systemic treatment with tiagabine (40 mg/kg; i.p.; n = 6), intrathecal GABA (1 mg; IT; n = 6) or combined treatment with tiagabine+IT GABA (n = 6). (Figure 3B) Time-course of ankle resistance measured during ankle dorsiflexion at baseline and then in 5-min intervals up to 80 min after treatments (* P<0.01; one-way analysis of variance- ANOVA, Bonferroni' s posthoc test; MPE-maximum positive effect). (Figure 3C) EMG responses recorded from the gastrocnemius muscle in spastic animals previously injected spinally with HIVl -CMV-GFP (control; n = 6) or HIVl -CMV- GAD65 (n = 6) lentivirus and then treated with systemic 10 mg/kg or 40 mg/kg tiagabine. (Figure 3D) Time-course of anti-spastic effect after tiagabine treatment expressed as % of maximum possible effect in measured ankle resistance in HIVl-CMV-GFP or HIV1 -CMV- GAD65-GFP lenti virus-injected animals (* P<0.01 ; one-way analysis of variance-ANOVA, Bonferroni's posthoc test; MPE-maximum positive effect). (Figure 3E) Changes in H-wave amplitudes recorded from interdigital muscles of the lower extremity during high frequency (20 Hz) sciatic nerve stimulation in animals previously injected spinally with HIVl-CMV- GFP or HIV1 -CMV-GAD65 lenti virus and then treated with 40 mg/kg tiagabine. (Figure 3F) Time-course of changes in H-wave amplitudes before and up to 90 min after tiagabine administration (red line-P<0.05; unpaired t test).

[0014] Figures 4A-4G are pictorial and graphical diagrams showing that spinal parenchymal injections of HIV1-CMV-GAD65-GFP lentivirus leads to increased GAD65 expression in infected astrocytes in rat and minipig and is associated with increased extracellular GABA release after tiagabine treatment in rats with ischemic spasticity.

(Figures 4A-4C) Immunofluorescence images taken from a transverse lumbar spinal cord section of a spastic rat at 3 weeks after spinal injection of HIV 1-CMV-GAD65-GFP lentivirus. Sections were stained with GFP, GAD65 and GFAP antibody. (Figures 4D and 4E) Confocal images demonstrating the localization of GAD65-GFP (green) expressing processes in HIVl-CMV-GAD65-GFP-infected cells surrounding VGLUT1 (red)-IR primary afferent terminals in the vicinity of persisting CHAT (blue)-IR a-motoneurons. (Figure 4F) Western blot analysis for GAD65 in spinal cord homogenate taken from lumbar spinal parenchyma of naive -control (column 1) spastic non- treated (columns 2 and 3) and spastic HIVl-CMV-GAD65-GFP-injected animal (column 4). (Figure 4G) Extracellular GABA concentration measured by intraparenchymal microdialysis in lumbar gray matter in naive (n = 6), ischemic- spastic (n = 6), ischemic-spastic-HIVl-CMV-GFP (n = 6) and ischemic-spastic-HIVl-CMV-GAD65-GFP (n = 6) lentivirus-injected animals before and after systemic tiagabine (40 mg kg) injection. A significant increase in extracellular GABA concentration was measured at 20-40 min after tiagabine administration in naive animals and ischemic-spastic animals previously injected spinally with HIV1-CMV-GAD65-GFP lentivirus (P<0.05; paired t test). (Figure 4H) Confocal images of transverse spinal cord section taken from a minipig lumbal- spinal cord at 2 months after spinal HIV1-CMV- GAD65-GFP injections and stained with GFP, GAD65 and CHAT antibody.

DETAILED DESCRIPTION OF THE INVENTION

[0015] The present invention is based on the observation that a combined treatment composed of spinal segment-specific upregulation of GAD65 (glutamatedecarboxylase) gene and systemic delivery of tiagabine (GABA uptake inhibitor) in rats with ischemia- induced spasticity leads to an antispasticity effect, and ii) whether such a combined treatment will be specific for GAD65 gene overexpressing spinal segments.

[0016] Before the present compositions and methods are described, it is to be understood that this invention is not limited to particular compositions, methods, and experimental conditions described, as such compositions, methods, and conditions may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only in the appended claims.

[0017] As used in this specification and the appended claims, the singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise. Thus, for example, references to "the method" includes one or more methods, and/or steps of the type described herein which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.

[0018] The term "comprising," which is used interchangeably with "including," "containing," or "characterized by," is inclusive or open-ended language and does not exclude additional, unrecited elements or method steps. The phrase "consisting of excludes any element, step, or ingredient not specified in the claim. The phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristics of the claimed invention. The present disclosure contemplates embodiments of the invention compositions and methods corresponding to the scope of each of these phrases. Thus, a composition or method comprising recited elements or steps contemplates particular embodiments in which the composition or method consists essentially of or consists of those elements or steps.

[0019] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods and materials are now described.

[0020] The term "subject" as used herein refers to any individual or patient to which the subject methods are performed. Generally the subject is human, although as will be appreciated by those in the art, the subject may be an animal. Thus other animals, including mammals such as rodents (including mice, rats, hamsters and guinea pigs), cats, dogs, rabbits, farm animals including cows, horses, goats, sheep, pigs, etc., and primates (including monkeys, chimpanzees, orangutans and gorillas) are included within the definition of subject.

[0021] In vertebrates, gamma-aminobutryic acid (GABA) acts at inhibitory synapses in the brain by binding to specific transmembrane receptors in the plasma membrane of both pre- and postsynaptic neuronal processes. This binding causes the opening of ion channels to allow the flow of either negatively charged chloride ions into the cell or positively charged potassium ions out of the cell. This action results in a negative change in the transmembrane potential, usually causing hyperpolarization. Two general classes of GABA receptor are known: GABA A in which the receptor is part of a ligand-gated ion channel complex, and GABAB metabotropic receptors, which are G protein-coupled receptors that open or close ion channels via intermediaries (G proteins).

[0022] Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABA B receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The present study provides the assessment as to whether a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GAB A uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments.

[0023] Decreased or completely lost activity of a facilitatory supraspinal input into spinal GABA-ergic inhibitory interneurons and resulting decrease in local segmental inhibition has been postulated as one of the key mechanisms leading to the development of muscle spasticity in patients with SCI. Comparably, loss of spinal inhibitor)' interneurons, as seen after transient episodes of spinal cord ischemia leads to development of functionally defined muscle spasticity and rigidity. Independent of the insult nature (e.g., spinal trauma or ischemia), clinical and experimental animal pharmacology studies have shown a comparable and potent antispasticity effect after systemic or spinal treatment with most commonly used antispasticity agent baclofen (GABAB receptor agonist). The primary site of baclofen-mediated hyperpolarizing action is believed to be at presynaptic la afferents.

[0024] One of the major limitations of systemic baclofen treatment, however, is the lack of a localized spinal segment-restricted effect and relatively high doses required to achieve clinically relevant relief of spasticity frequently produce unwanted systemic side effects such as sedation. Direct spinal delivery of baclofen using chronic intrathecal catheter provides a more site -restricted effect with less pronounced systemic activity, however it requires surgical intervention and ensuing complications associated with chronic intrathecal catheterization such as cerebrospinal fluid leak or infection has been described. More importantly, limits of effective long-term use of IT baclofen include the development of baclofen tolerance (i.e., progressive escalation of dose to achieve consistent anti-spasticity effect) and withdrawal after an abrupt termination of baclofen treatment.

[0025] The data provided herein shows that animals with chronic ischemia-induced spasticity have a significant reduction in spinal parenchymal GAD65 expression which corresponds with a loss of GABA-ergic interneurons and GABA+ terminals on a- motoneuronal membranes and VGLUT1+ primary afferents. These data are in line with the postulated role of decreased GABA-ergic activity in the development of spinal ischemic spasticity. Spinal injection of lentivirus encoding the GAD65 gene targeted into ischemia- injured segments led to a significant increase in GAD65 expression primarily in astrocytes and was associated with increased extracellular G ABA release once combined with systemic tiagabine treatment.

[0026] Preferential expression of GAD65 gene in infected astrocytes (as opposed to neurons) appeal's to provide a specific advantage with respect to expected GABA mediated anti-spasticity effect. As has been shown in vitro, infection of primary astrocytes led to a Ca + independent increase in extracellular GABA concentration. Accordingly, it is expected that astrocyte -mediated GABA release in the spinal parenchyma will be independent of the functionality and connectivity of local neuronal inhibitory circuitry and will specifically exert its hyperpolarizing effect on GABAg receptor expressed on la afferents and/or a- motoneurons. The biological activity of astrocyte-produced GABA was confirmed by its depolarization-inducing effect on preferentially GABAA receptor- expressing cultured hNT neurons (see Fig. 2).

[0027] Interestingly, the upregulation of spinal GAD65 expression in the absence of any other treatment, however, had no detectable anti-spastic effect. Previous studies have demonstrated that GABA concentrations required for an effective GABA B receptor activation is in the ,umol range. It has therefore been speculated that while a significant increase in GAD65 gene expression was achieved in lentivirus-infected regions, efficient GABA metabolism mediated in-part by the GABA reuptake system prevented effective GABA accumulation in the synaptic cleft and resulted in lack of any functional effect. In contrast, animals that had received lumbar injections of GAD65 lentivirus and were treated systemically with tiagabine (a GABA uptake inhibitor) exhibited a potent, dose-dependent reduction in spasticity of the lower extremities up to 60 min after tiagabine administration. Importantly, no detectable effect on the motor performance of the upper extremities (i.e., mediated by the activity of muscle groups innervated by vims non-injected cervical segments) was seen. In animals receiving lumbar injection of control GFP-tagged lentivirus no antispasicity effect was seen after the treatment with the same dose of tiagabine. Jointly these data show that the use of tiagabine at doses which have no significant therapeutic anti- spatic effect nor detectable side effects when used as a monotherapy is highly effective in increasing local GABA-ergic inhibitory tone in GAD65-overexpressing spinal cord regions; the magnitude of such increased local inhibition provides a clinically-relevant relief of spasticity.

[0028] It is therefore believed that the ability of such combined therapy in which systemically administered drugs (such as tiagabine) is effective in regulating the activity of the therapeutic product (GABA) in remote GAD65 gene-overexpressing sites can potentially have a significant clinical implications for treatment of spinal ischemia and trauma-induced muscle spasticity and/or muscle spasticity and rigidity associated with any other neurological disorder.

[0029] First, the identity of specific spinal segments innervating the affected spastic muscle groups can be neurologically mapped, lateralized and selected for the segment/site- specific GAD65 gene delivery.

[0030] Second, extensive clinical data show a potent anti-spastic effect after intrathecal baclofen delivery and this effect is independent on the spinal or supraspinal origin of spasticity. Thus, it is likely that spinal segmental GAD65 upregulation once combined with systemic GABA uptake inhibitor treatment will have a similar therapeutic effect in spasticity of supraspinal and spinal origin.

[0031] Third, comparable site-specific delivery of GAD65-encoding vectors targeting functionally/electrophysiologically-defined brain epileptic foci can be performed. Previous data from other laboratories have confirmed an improvement in the parkinsonian behavioral phenotype and neuronal rescue after AAV-CBAGAD65 delivery into the subthalamic nucleus in 6-OHDA-lesioned rats. Thus, the proposed combination treatments can lead to a more pronounced anti-epileptic effect with less side effects such as general sedation.

[0032] Fourth, the serum half -life of tiagabine in human patients is between 5-8 hrs (in contrast to 55 min in rats) and therefore comparable duration of the antispasticty effect can be expected in human patients once combined with spinal parenchymal GAD65 gene delivery. [0033] Accordingly, in one embodiment, the present invention employs a CMV- promoter-driven lentiviral construct encoding GAD65, and astrocytes were the primary cells expressing the GAD65-GFP transgene both in vitro and in vivo. In addition to the rat spasticity model, testing the same lenti virus in a preclinical non-injured minipig model showed a similar expression profile and a stable expression of GAD65-GFP protein in astrocytes at 1 and 2 months after spinal lentivirus injections. This is consistent with recent studies that showed preferential astrocytic expression of GFP in spinal gray matter a ter direct parenchymal delivery of HIVl-CMV-EGFP lentivirus in rat.

[0034] In addition to cell integrating gene transfer after the use of lentiviral vectors, there are reports of successful GAD65 gene overexpression after AAV-GAD65 injections into subthalamic nuclei. In those studies, persistent GAD65 expression was seen up to 4-5 months after AAV-GAD65 injections. More importantly, recent systematic data

demonstrate a high efficiency of AAV-based gene delivery into rat or minipig striatum even after a limited number of AAV injections (1-2 injections). Thus, in another embodiment, the present invention employs an AAV-based, genome -non-integrating GAD65-encoding vector to achieve segment-specific GAD65 expression.

[0035] Viral vectors can be particularly useful for introducing a polynucleotide useful in performing a method of the invention into a target cell. Viral vectors have been developed for use in particular host systems, particularly mammalian systems and include, for example, retroviral vectors, other lentivirus vectors such as those based on the human immunodeficiency virus (HIV), adenovirus vectors (AV), adeno-associated virus vectors (AAV), herpes virus vectors, vaccinia virus vectors, and the like (see Miller and Rosman, BioTechniques 7:980-990, 1992; Anderson et aL, Nature 392:25-30 SuppL, 1998; Verma and Somia, Nature 389:239-242, 1997; Wilson, New Engl, J. Med. 334: 1185-1187 (1996), each of which is incorporated herein by reference). In one aspect of the invention, a lentivirus, an AV, or an AAV is utilized. Adenoviruses represent the largest nonenveloped viruses, because they are the maximum size able to be transported through the endosome (i.e. envelope fusion is not necessary). The virion also has a unique "spike" or fibre associated with each penton base of the capsid that aids in attachment to the host cell. AAV is a dependent parvovirus that by definition requires co-infection with another virus

(typically an adenovirus or herpesvirus) to initiate and sustain a productive infectious cycle. In the absence of such a helper virus, AAV is still competent to infect or transduce a target cell by receptor-mediated binding and internalization, penetrating the nucleus in both non- dividing and dividing cells.

[0036] Once in the nucleus, the virus uncoats and the transgene is expressed from a number of different forms—the most persistent of which are circular monomers. AAV will integrate into the genome of 1 -5% of cells that are stably transduced (Nakai et al., .1. Virol. 76: 11343-349, 2002). Expression of the transgene can be exceptionally stable. Because progeny virus is not produced from AAV infection in the absence of helper virus, the extent of transduction is restricted only to the initial cells that are infected with the virus. It is this feature which makes AAV a suitable gene therapy vector for the present invention.

[0037] Additional references describing adenovirus vectors and other viral vectors which could be used in the methods of the present invention include the following: Horwitz, M. S., Adenoviridae and Their Replication, in Fields, B., et al. (eds.) Virology, Vol. 2, Raven Press New York, pp. 1679-1721, 1990); Graham, F., et al., pp. 109-128 in Methods in Molecular Biology, Vol. 7: Gene Transfer and Expression Protocols, Murray, E. (ed.), Humana Press, Clifton, N.J. ( 1991); Miller, N., et al., FASEB Journal 9: 190-199, 1995; Schreier, H, Pharmaceutic a Acta Helvetiae 68: 145-159, 1994; Schneider and French, Circulation 88:1937-1942, 1993; Curiel D. T.. et al., Human Gene Therapy 3: 147-154, 1992; Graham, F. L., et al., WO 95/00655 (5 Jan. 1995); Falck-Pedersen, E. S., WO 95/16772 (22 Jim. 1995); Denefle, P. et al., WO 95/23867 (8 Sep. 1995); Haddada, H. et al., WO 94/26914 (24 Nov. 1994); Perricaudet, M. et al., WO 95/02697 (26 Jan. 1995); Zhang, W., et al, WO 95/25071 (12 Oct. 1995). A variety of adenovirus plasmids are also available from commercial sources, including, e.g., Microbix Biosystems of Toronto, Ontario (see, e.g., Microbix Product Information Sheet: Plasmids for Adenovirus Vector Construction, 1996).

[0038] Additional references describing AAV vectors which could be used in the methods of the present invention include the following: Carter, B., Handbook of

Parvoviruses, vol. I, pp. 169-228, 1990; Bems, Virology, pp. 1743-1764 (Raven Press 1990); Carter, B., Curr. Opin. BiotechnoL, 3: 533-539, 1992; Muzyczka, N., Current Topics in Microbiology and Immunology, 158: 92-129, 1992; Flotte, T. R., et al., Am. J. Respir. Cell Mol. Biol. 7:349-356, 1992; Chatterjee et al., Ann. NY Acad. Sc , 770: 79-90, 1995; Flotte, T. R., et al., WO 95/13365 (18 May 1995); Trempe. J. P., et al. WO 95/13392 (18 May 1995); Kotin, R., Human Gene Therapy, 5: 793-801, 1994; Flotte, T. R., et al., Gene Therapy 2:357-362, 1995; Allen, J. M., WO 96/17947 (13 Jun. 1996); and Du et al., Gene Therapy 3: 254-261, 1996.

[0039] As used herein, the term "adeno-associated virus" (AAV), includes but is not limited to, AAV type 1, AAV type 2, AAV type 3 (including types 3A and 3B), AAV type 4, AAV type 5, AAV type 6, AAV type 7, AAV type 8, AAV type 9, AAV type 10, AAV type 1 1 , avian AAV, bovine AAV, canine AAV, equine AAV, ovine AAV, and any other AAV now known. In one embodiment, the AAV is AAV type 2. In another embodiment, the AAV is AAV type 9.

[0040] Depending on the host cell/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, and the like can be used in the expression vector (Bitter et al., Meth. EnzymoL 153:516-544, 1987). Reference herein to a "promoter" or "promoter sequence" is to be taken in its broadest context and includes a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a polynucleotide or polypeptide coding sequence such as messenger RNA, ribosomal RNAs, small nuclear of nucleolar RNAs or any kind of RNA transcribed by any class of any RNA polymerase. "Promoters" contemplated herein may also include the transcriptional regulatory sequences of a classical genomic gene, including the Goldberg- Hogness box which is required for accurate transcription initiation in eukaryotic cells, with or without a CAT box sequence and additional regulatory elements (i.e., upstream activating sequences, enhancers and silencers).

[0041] Placing a sequence under the regulatory control of a promoter sequence means positioning said molecule such that expression is controlled by the promoter sequence. Promoters are generally positioned 5' (upstream) to the genes that they control. In the construction of heterologous promoter/structural gene combinations, generally promoter position may be a distance from the gene transcription start site that is approximately the same as the distance between that promoter and the gene it controls in its natural setting, i.e., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of promoter function. Similarly, the positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting, i.e., the genes from which it is derived. Again, as is known in the art, some variation in this distance can also occur.

[0042] Exemplary promoters useful in the methods and treatment regimens of the present invention include, but are not limited to, human ubiquitin promoter and human synapsin promoter. However, other known tissue-specific or cell-specific promoters may be used.

[0043] The AAV vectors can be formulated into preparations for injection or

administration by dissolving, suspending or emulsifying them in appropriate,

pharmaceutically acceptable carriers or diluents. Examples of such pharmaceutically acceptable carriers or diluents include an aqueous or nonaqueous solvent, such as oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.

[0044] Administering the instant combinational therapy can be effected or performed using any of the various methods and delivery systems known to those skilled in the art. As used herein, the term "administration" or "administering" is defined to include an act of providing a compound or pharmaceutical composition of the invention to a subject in performing the methods of the invention. Exemplary routes of administration include, but are not limited to, intravenously, intraarticularly, intracisternally, intraocularly,

intraventricularly, intrathecally, intramuscularly, intraperitoneally, intradermally, intracavitarilv, and the like, as well as combinations of any two or more thereof. In certain embodiments, the AAV may be delivered directly into the spinal parenchyma, intrathecal space of the spine, and/or into the peripheral spastic muscle to achieve spinal upregulation of the GAD65 gene. Likewise, in certain embodiments, the GABA uptake inhibitor (i.e., tiagabine) may be administered systemically or orally.

[0045] The term "effective amount" is defined as the amount of the compound or composition that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician, e.g. , spinal upregulation of the GAD65 gene. For example, a "therapeutically effective amount" of, e.g. , an AAV encoding the GAD65 gene, with respect to the subject method of treatment, refers to an amount of the AAV in a preparation which, when applied as part of a desired treatment regimen brings about upregulation of the GAD65 gene.

[0046] Determining a therapeutically or prophylactically effective amount of the delivery vector can be done based on animal data using routine computational methods. Appropriate doses will depend, among other factors, on the specifics of the transfer vector chosen, on the route of administration, on the mammal being treated (e.g., human or non- human primate or other mammal), age, weight, and general condition of the subject to be treated, the severity of the disorder being treated, the location of the area within the heart being treated and the mode of administration. Thus, the appropriate dosage may vary from patient to patient. An appropriate effective amount can be readily determined by one of skill in the art.

[0047] Dosage treatment may be a single dose schedule or a multiple dose schedule. Moreover, the subject may be administered as many doses as appropriate. One of skill in the art can readily determine an appropriate number of doses. However, the dosage may need to be adjusted to take into consideration an alternative route of administration, or balance the therapeutic benefit against any side effects. Such dosages may vary depending upon the therapeutic application for which the recombinant vector is employed.

[0048] Optionally, in specific embodiments, AAV-mediated delivery according to the invention may be combined with delivery by other viral and non-viral vectors. Such other viral vectors including, without limitation, adenoviral vectors, retroviral vectors, lentiviral vectors, herpes simplex virus (HSV) vectors, and baculovirus vectors may be readily selected and generated according to methods known in the art. Similarly, non-viral vectors, including, without limitation, liposomes, lipid-based vectors, polyplex vectors, molecular conjugates, polyamines and polycation vectors, may be readily selected and generated according to methods known in the art. When administered by these alternative routes, the dosage is desirable in the range described above.

[0049] Accordingly, the invention also provides a treatment regimen for treating a subject having a spinal cord injury. The treatment regimen includes administering a GABA uptake inhibitor and a spinal-specific upregulation of the GAD65 gene. Upregulation of GAD65 includes administering a viral vector encoding GAD65, wherein GAD65 is expressed and decreases spasticity. In one embodiment, the GABA uptake inhibitor is tiagabine. In certain embodiments, the tiagabine may be systemically or orally administered to the subject.

[0050] Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia ( 10 min) to induce muscle spasticity. Animals then received lumbal' injection of HIV1-CMV- GAD65 lentivirus (LVs) targeting ventral a-motoneuronal pools. At 2-3 weeks after lentivinis delivery, animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene.

[0051] Loss of GABA-ergic interneurons and upregulation of a-motoneuronal GABA B Rl and R2 receptor in animals with ischemic spasticity. [0052] First, the loss of GABA-ergic neurons and bouton-like terminals were quantified in laminae VII and IX of lumbar spinal cord sections taken from spastic and sham-operated control animals. In comparison with control animals spastic animals had 50% less GABA- ergic neurons (average 39.0 ± 13.4 vs. 19.5 ± 4.2 per section; p<0.01 ; Figures 1A and IB) in lamina VII. Li those same sections, GABA-ergic contact with a-motoneurons was also assessed, revealing a significant reduction in spastic animals (Figure ID- white arrows): 19.4 ± 0.9 GABA/Syn-immunoreactive (IR) boutons contacting each motoneuron soma in control tissue compared to 10.1 ± 0.8 in animals with spasticity (p<0.01 ; Figures 1C and ID). Next, the number of GAD65 or GAD67 bouton-like structures that contacted VGluTl - IR primary afferent terminals in lamina IX (i.e., the site of GABA-ergic presynaptic la afferent inhibition) was examined. In control animals 26.7 ± 4.2% of primary afferent terminals had clear GAD65 contact, compared to only 5.3% ± 1.2% in ischemia-injured tissue (p<0.001 ; Figures IE and IF). No statistical difference was noted in the number of VGluTl terminals that had GAD67 contact (25.3 ± 4.8% in control vs. 15.2 ± 4.3% in ischemic-spastic). No overall change in the number of VGluTl -IR terminals was noted in lamina IX (40.5 ± 8.2 for control vs. 41.7 ± 6.9 for ischemic-spastic). Li the subgroup of VGluTl -IR structures that had GAD65 contacts (that is ignoring those with zero GAD65 contact), an average of 3.9 ± 0.1 GAD65-IR boutons contacted each VGluTl terminal in control sections. In spastic animals this number was reduced to 2.6 + 0.3 (p = 0.003).

Similar analysis of GAD67 contact with VGluTl terminals showed a trend towards reduction in animals with spasticity (1.8 + 0.1 in control vs. 1.2 ± 0.06 in ischemic-spastic; p = 0.08). Western blotting of whole tissue homogenates from the lumbar spinal cord showed that, compared to control tissue, GAD65 protein was reduced by 26 ± 5% (p = 0.045), and GAD67 by 32 + 6% (p = 0.017; Figures 1G and lH) in ischemic-spastic animals. Next, the presence of GABA B Rl and R2 receptors on lumbar a-motoneurons was analyzed using immunofluorescence staining in control animals and animals at 3 months after induction of ischemic spasticity (n = 3). In control animals a sparse punctate- like GABA B Rl and R2 immunoreactivity was identified in α-motoneurons. In contrast, animals with spasticity had a clear increase in GABA B Rl and R2 immunoreactivity on a- motoneuron membrane and in cytoplasm (Figures II, 1J, IL, and 1M). Densitometric image analysis showed a significant increase for both GAB A B Rl and R2 receptor punctata in animals with spasticity if compared to controls (p<0.05; Figures IK and I ).

[0053] Animals with spinal ischemic injury showed progressive development of extensor-type paraplegia with components of muscle spasticity and rigidity. To assess the presence of spasticity, ankle resistance and EMG activity in gastrocnemius muscle was measured during computer-controlled ankle dorsiflexion. Compared to control animals, a clear increase in muscle resistance and EMG activity in spastic animals was measured at 7- 60 days after ischemic injury (Figures 10 and IP). In previous studies, a potent anti- spasticity effect after intrathecal baclofen delivery has been demonstrated. Jointly these data demonstrate that a selective loss of GABA-ergic segmental inhibition is the primary mechanism leading to the appeai'ance of muscle spasticity and rigidity resulting from spinal ischemic injury. Accordingly, it was hypothesized that an increase in the local spinal GABA-ergic tone (as achieved by spinal GAD65 gene delivery or intrathecal GABA delivery) in previously injured spinal segments should improve local inhibition and lead to amelioration of spasticity.

[0054] Release of biologically active GABA from GAD65 overexpressing rat spinal cord primary cells or human fetal spinal cord astrocytes.

[0055] Next, the efficacy of lentivirus-mediated GAD65 overexpression in primary rat spinal cord culture and resulting increase in extracellular GABA release were tested. Cells were infected with HIV 1 -CMV-G AD65, HIV1 -CMV-GAD65-GFP or HIVl-CMV-GFP lenti virus (LVs). At intervals longer than 3-4 days, clear GFP expression was seen in cells infected with GFP-tagged LVs (Figure 2A). In HIVl-CMV-GAD65-GFP-infected cells, GFP expression showed colocalization with GAD65 (Figures 2B-2D) and was primarily expressed in astrocytes (Figures 2E-2G). Western blot analyses of cell cultures infected with each of the constructs confirmed the presence of GFP, GAD65 or the GAD65-GFP- fused protein (Figure 2H). Media GABA concentrations from cell cultures infected with HIV 1 -CM V-G AD65-GFP (but not in HIVl-CMV-GFP-infected) showed a progressive and significant increase between 3-14 days after LV infection (baseline: 150 + 65 nmol -> 27 μηιοΐ ± 9 at 7 days; p<0.01), (Figure 21). Replacing the culture media at 14 days after infection with Ca ' + -free buffer showed Ca" + -independent increase in GAB A release and was seen in HIV 1 -CM V-G AD65 -GFP (baseline 4 + 3 nmol 445 + 95 nmol at 3 hrs; p<0.01) but not in HIVl-CMVGFP-infected cells (Figure 2 J).

[0056] Next it was determined whether the GAB A released from infected human fetal astrocytes is biologically active by measuring changes in inward current in patch-clamped human NT neurons. Human fetal astrocytes were infected with HIV1-CMV-GAD65-GFP (Figure 2K) or HIVl-CMV-GFP (control) lenti virus and cultured for additional 7 days. After 7 days the culture media was replaced with fresh HEPES -buffered Tyrode's solution, incubated for 24 h and conditioned media (ACM) harvested. ACM was then applied into bath of whole -patch-clamped human NT neurons for 60 seconds. As shown by the trace of Fig. 2L, the application of ACM (measured GABA concentration: 8-14 μπιοΐ) induced inward current, i.e., response consistent with GABA A receptor- mediated depolarization. This response was similar to that measured after application of 50 μΜ GABA (Figure 2M). Application of ACM harvested from astrocyte previously infected with control HIVl-CMV- GFP lentivirus was without response (Figure 2N).

[0057] Intrathecal delivery of GABA combined with systemic tiagabine treatment leads to potent anti-spasticity effect.

[0058] The above in vitro data suggest that the use of HIV 1 -CMVGAD65 lentivirus should similarly be effective in increasing GABA synthesis after targeted spinal

parenchymal delivery and that such a local upregulation in GABA synthesis can lead to an antispasticity effect. Similarly, topical-intrathecal delivery of GABA should lead to a similar anti-spasticity effect.

[0059] To test this hypothesis, GABA (1 mg) was injected intrathecally in rats with developed ischemic spasticity and the effect on spasticity response measured during computer-controlled ankle dorsiflexion for 60 min. No significant anti-spasticity effect was seen (Figures 3A and 3B). Because the baseline spinal extracellular concentration of GABA is in pmol range (20-30 pmol), but ,umolar (1-2 μιηοΐ) concentrations are required to exert its receptor-mediated effect on in vitro cultured neurons, it was hypothesized that the activity of spinal GABA reuptake systems are likely responsible for the lack of sufficient GABA accumulation in the synaptic cleft after even high dose GABA administration. To address this, the effect of systemic treatment with the GABA uptake inhibitor tiagabine, administered as a monotherapy or in combination with ΓΓ GABA, was tested next.

Systemic treatment with 40 mg/kg/i.p. tiagabine alone was without anti-spasticity effect (Figures 3A and 3B). Because tiagabine has good permeability across the blood brain barrier and increases brain levels of extracellular GABA (2-3 fold increase) after systemic administration of 11.5-21 mg/kg of tiagabine, it was speculated that the lack of functional effect in the current model likely reflects the documented loss of GABA-producing intemeurons in lumbal" ischemia-injured segments. To validate this, the effect of combined systemic treatment with tiagabine (40 mg/kg/i.p.) followed 15 min later by intrathecal injection of GABA (1 mg), was tested. In this combined therapy a potent and highly significant anti-spasticity effect was seen (Figures 3A and 3B) the potency of which was similar to the previously reported anti-spasticity effect after intrathecal baclofen (GABAB receptor agonist; 1 μ ) treatment using the same spinal ischemia-induced spasticity model. No suppressive effect on upper extremity motor function was noted and all animals showed continuing ability to move their upper limbs and grab food pellets if offered.

[0060] Increase in spinal parenchymal GAD65 expression provides a potent antispasticity effect if combined with systemic tiagabine treatment.

[0061] It was next determined if spinal GAD65 overexpression would lead to increased local GABA release and if such a release will have a similar anti-spastic effect once combined with systemic tiagabine (1, 4, 10, 20 or 40 mg/kg) treatment. Spastic animals received a total of 20 bilateral injections of HIV 1 -CMV-GAD65-GFP (n=6) or HIV1 - CMV-GFP (n=6; control) lenti virus targeted into ischemia-injured L2-L5 spinal segments and underwent spasticity assessments 7-21 days after virus delivery. In control HIVl- CMV-GFP -injected spastic animals, systemic administration of tiagabine (40 mg/kg, i.p.) was without effect (Figures 3C and 3D). In contrast, in HIVl-CMVGAD65-GFP-injected rats, treatment with tiagabine led to a potent and significant anti-spasticity effect, he peak effect was seen at 25 min after tiagabine administration and returned back to baseline by 60 min (Figures 3C and 3D; p<0.01). Dose response analysis for tiagabine showed that doses >4 mg kg provided significant (p<0.01 ) anti-spasticity effect at 15-25 min after tiagabine injection. No detectable effect on upper limb motor function was seen after tiagabine treatment and all animals showed continuing ability to move their upper limbs and grab food pellets if offered.

[0062] In separate experimental sessions, changes in H-reflex amplitudes evoked by high frequency stimulation were tested in ketamine-sedated animals. In spastic animals previously injected spinally with control lentivirus (HIV1 -CMV-GFP; n = 6) no change in H-reflex amplitudes were seen up to 90 min after tiagabine injections (Figures 3E and 3F). In animals receiving spinal injections of HIV1-CMV-GAD65-GFP lentivirus (n= 6) a significant (p<0.05) reduction of the H-wave amplitude was measured between 20-45 min after tiagabine injection and returned back to baseline by 65 min (Figures 3E and 3F).

Similar significant suppression of H-reflex activity in spastic patients after intrathecal baclofen treatment was reported.

[0063] Spinal parenchymal injection of HIV1 -CMV-GAD65 lentivirus leads to a significant increase in GAD65 expression and extracellular GABA release in rat and minipig.

[0064] To identify the spinal laminar distribution and cellular specificity of HIV1-CMV- GAD65-GFP lentivirus-infected cells, and to validate if such overexpression could increase spinal parenchymal GABA release, spastic rats received 20 bilateral injections (0.5 μΐ each) of HIV1-CMV-GAD65-GFP (n= 9) or HIVl-CMV-GFP (n =9; control) lentivirus. At 14 days after lentivirus injection, GABA concentrations were measured in LVs-injected spinal segments using concentric microdialysis and HPLC. The presence of GAD65-GFP expressing cells was validated with immunofluorescence staining and quantified with western blotting. Histological analysis showed a preferential expression of the GAD65- GFP fusion gene in astrocytes (Figures 4A-4C). Numerous GFP+/GAD65+ astrocytic processes were identified in the vicinity of VGluTl -stained primary afferents residing next to the membranes of persisting CHAT-IR a-motoneurons (Figures 4D and 4E). Western blot analyses of spinal cord homogenates prepared from lumbal- spinal cord of naive, spastic non-treated, and spastic HIV 1-CMV-GAD65-GFP -injected rats showed significant loss of GAD65 expression in spastic non-treated animals (if compared to naive control: see Figure 1G) and the presence of the GAD65-GFP fusion protein in HIV 1 -CM VG AD65 - GFP- injected rats (Figure 4F). Measurement of spinal extracellular GABA concentration before and after tiagabine (40 mg/kg; i.p.) administration showed a significant (p<().()5) increase in naive and HIV1-CMV-GAD65-GFP lenti virus-injected spastic animals if compared to spastic (non-injected) or spastic HIV1 -CMV-GFP lentivirus injected animals (Figure 4G).

[0065] It was next determined if spinal parenchymal injections of HIV 1-CMVGAD65- GFP in a preclinical minipig model (naive non-injured animals) would lead to a similar astrocyte-specific GAD65 upregulation. Guttingen-Minessota minipigs (n =2) received 20 bilateral injections of LVs (6 μΐ each injection; 10 M.O.I) and survived for 1 or 2 months. Histological analysis of spinal cord sections at 1 or 2 months after LVs injection showed similar preferential astrocytic GFP-GAD65 co-expression in LVs injected spinal cord segments (Figure 4H).

[0066] Accordingly, these data show that treatment with orally bioavailable GABA- mimetic drugs, if combined with spinal-segment-specific GAD65 gene overexpression, can represent a novel and highly effective anti-spasticity treatment which is associated with minimal side effects and is restricted to GAD65-gene over-expressing spinal segments.

[0067] The following examples are intended to illustrate but not limit the invention.

EXAMPLE 1

Methods

[0068] Induction of spinal ischemic spasticity in rat - Transient spinal cord ischemia (10 min) was induced as previously described. Briefly, in isoflurane (1.5-2%)-anesthetized SD rats, a 2F Fogarty catheter (Am.V. Muller, CV 1035; Baxter, Inc., Irvine, CA, USA) was passed through the left femoral artery to the descending thoracic aorta to the level of the left subclavian artery. Distal arterial pressure (i.e., below the level of aortic occlusion) was monitored by cannulation of the tail artery with PE-50 catheter. Spinal cord ischemia was induced by inflation of the intra-aortic balloon catheter (0.05 ml of saline) and concurrent systemic hypotension (40 mm Hg) induced by blood withdrawal (10.5-11 cc into a heated (37°C) external reservoir) via a 20-gauge polytetrafluoroethylene catheter placed in the left carotid artery. The efficacy of the occlusion was demonstrated by an immediate and sustained drop in distal blood pressure. After 10-min ischemia, the balloon was deflated, and the blood was reinfused. When the arterial blood pressure was stabilized (20-30 min after reflow), the arterial lines were removed, wounds closed and animals were allowed to recover. In this spinal ischemic model on average 50-60% of animals exposed to 10 min of aortic occlusion show development of progressive muscle spasticity at 5—21 days after ischemia.

[0069] Identification of muscle spasticity in rats with spinal ischemic injury - One to eight weeks after ischemia, animals were tested for the presence of spasticity. Spasticity was identified as an increase in ankle resistance during computer-controlled ankle dorsiflexion, which correlated with increased EMG activity measured in the gastrocnemius muscle during the same time frame. Direct measurement of ankle resistance during computer-controlled ankle dorsiflexion was performed as described previously. Rats were individually placed in a plastic restrainer, and one hind paw was securely fastened to the paw attachment metal plate, which is interconnected loosely to the "bridging" force transducer (LCL454G, 0-454 g range; or LCL816G, 0-816 g range; Omega, Stamford, CT). After a 20 min acclimation period, rotational force was applied to the paw attachment unit using a computer-controlled stepping motor (MDrive 34 with onboard electronics; microstep resolution to 256 microsteps/full step; Intelligent Motion Systems, Marlborough, CT), causing the ankle to dorsifiex (Fig. lO). The resistance of the ankle was measured during 45° of dorsiflexion lasting 3 sec (15° s "1 ), and data were collected directly to a computer using custom software (Spasticity version 2.01; Ellipse, Kosice, Slovak Republic).

[0070] To identify the mechanical component of measured ankle resistance, all animals were anesthetized with 2.5-3% isoflurane at the end of the experiment and the relative contribution of mechanical vs. neurogenic component (isoflurane-sensitive) was calculated. Data generated before and after treatment were expressed as % of maximum possible effect of neurogenic component contributing to measured resistance. Each recorded value was the average of three repetitions. To record EMG activity, a pair of tungsten electrodes was inserted percutaneously into the gastrocnemius muscle 1 cm apart. EMG signals were bandpass filtered (100 Hz to 10 kHz) and recorded before, during, and after ankle dorsiflexion. EMG responses were recorded with an alternating current-coupled differential amplifier (model DB4; World Precision Instruments, Sarasota, FL) and stored on a computer for subsequent analysis. EMG was recorded concurrently with ankle resistance measurement during dorsiflexion.

[0071] Intrathecal catheterization - In some animals intrathecal catheters were implanted into lumbar intrathecal space. Under isoflurane anaesthesia, an 8.5 cm PE-5 catheter (Spectranetics, Colorado Springs, CO) connected to 4 cm of PE-10 was inserted into the intrathecal space through an incision in the atlanto-occipital membrane of the cisterna magna. The PE-10 ann was externalized on the neck for bolus drug (GABA) delivery or for colchicine injections.

[0072] Construction and preparation of lentivirus vectors - Rat G AD65 cDNA, inserted into the EcoRI site of the pBluescript-SK (Stratagene, CA), was obtained. HIVl vector backbone plasmid pHIV7 containing the WPRE and cPPT sequences were obtained. To construct the HIVl vector expressing the GAD65 cDNA from hCMV promoter, hCMV promoter was isolated from pLenti6/V5~GW/lacZ (Invitrogen, CA) with ClalEcoRV digestion and inserted into the ClaTEcoRV sites of the pBIuescript-GAD65. The hCMV- GAD65 cassette was then isolated and inserted into the Bam HI site of the pHIV7 and the resulting plasmid was designated pHTV7-CMV-GAD65. Similarly, to construct the HIVl vector expressing GAD65-EGFP fusion gene, the GAD65 cDNA was inserted downstream of the hCMV promoter of the pEGFP-Nl (Clontech, CA) adjusting the reading frame with the downstream EGFP gene. The hCMV-GAD65-EGFP cassette was isolated and then inserted into the BamHI site of the pHIV7 to create the HIVl vector pHIV7-CMV-GAD65- EGFP. A control HIVl vector pHIV7-CMV-EGFP expressing EGFP gene from the same hCMV promoter was constructed by inserting the hCMV-EGFP unit isolated from the pEGFP-Nl into the pHIV7. [0073] Lentivirus vectors were produced by transient co-transfection of HEK293T cells (Invitrogen, CA; Cat. No: R70007) maintained in Dulbecco's modified Eagle's medium (DMEM) with 10% FCS. 293T cells in 150 mm dishes were co-transfected by the CaP M- DNA co- precipitation method with each HIV1 vector plasmid, pLPl and pLP2 (Invitrogen, CA), and pCMV-G. Conditioned media at day 1 , 2 and 3 post transfection were collected, filtered through a 0.45 μιη filter, and concentrated by centrifugation at 7000 rpm for 16 hrs at 4°C with a Sorvall GS-3 rotor. The resulting pellets were resuspended with buffer containing 10 niM Tris HC1, pH 7.8, 1 mM MgCl 2 and 3% sucrose.

[0074] Infectious titters of the HIV1 vectors were measured by realtime Q-PCR using the HIVl-CMV-GFP vector ( 1x10 "9 iu/ml) as the standard. HEK293T cells in a 6- well plate were infected with serially diluted vector preparations in the presence of polybrene (4 μg/ml). Infected cells were passaged once every 4 days and cell DNAs were prepared at day 14 post infection by the DNeasy Blood & Tissue kit (Qiagen Science, MD). Real-time QPCR was performed to measure the copy numbers of the provirus in the chromosome of the infected cells using a primer set selected from the WPRE sequence and the final virus titters were adjusted to lxlO "9 iu/ml.

[0075] Lentiviral infection of primary spinal cord cultures - Spinal cords were isolated from embryonic day 14 (E14) Sprague-Dawley rats (Harlan Sprague-Dawley Inc., Indianapolis, IN). Cells were isolated using the papain dissociation system (Worthington Biochemical Corp., Freehold, NJ), following the manufacturer's instructions with modification. Tissue was dissociated in 5 ml of papain dissociation solution by trituration, followed by agitation for 20 min at 37°C in 5% C0 2 . The cell suspension was centrifuged at 30()x g for 5 min and the cell pellet was resuspended in Deact solution (albumin-ovomucoid inhibitor/DNase solution). Resuspended cells were then layered on top of a discontinuous density gradient of albumin-ovomucoid inhibitor mixture and then centrifuged at 7()xg for 5 min. The cell pellet was resuspended in 50 μΐ of 10 M.O.I. HIVl-CMV-GFP, fflVl -CMV- GAD65 or HIV1-CMV-GAD65-GFP lentivirus and incubated at 37uC for 10 min. Infected cells were then plated into poly-d-lysine-coated chamber slides and cultured for 1-3 weeks in growth medium (DMEM high glucose supplemented with 10% FBS, 2 mM 1-glutamine, B27 supplement and 100 U/ml penicillin and 100 ^ig/ml streptomycin; GIBCO, Grand Island, NY). At 1-3 weeks some cells were washed with PBS 3x and then fixed with 4% paraformaldehyde for 30 min at RT and later used for immunofluorescence staining.

[0076] Measurement of extracellular GABA release in rat primary spinal cord culture and human fetal astrocyte culture - Tissue culture media was collected from cultured rat spinal cord cells at baseline and then at 3 days, 7 days and 2 weeks after infection with HIVl-CMV-GFP, HIV 1 -CMV-G AD65 or HIV1-CMV-GAD65-GFP lentivirus and filtered through 0.22 μπι filter. At 14 days cultures were washed with PBS solution 3x and incubated in Ca ^ free PBS for 3 hrs. Samples were collected at baseline and then at 1, 2 and 3 hrs. All samples were analyzed for GABA concentration using HPLC (HTEC-500;

EICOM, Japan).

[0077] Human fetal astrocytes (ScienCell, Carlsbad, CA, USA) were infected with HrVl-CMV-GAD65-GFP or HIVl-CMV-GFP (control) lentivirus and cultured for additional 7 days in DMEM/F12+10%FBS. After 7 days the culture media was replaced with fresh HEPES- buffered Tyrode's solution, incubated for 24 h and conditioned media (ACM) harvested for GABA measurement and for patch clamp experiment using cultured human NT neurons (see following paragraph).

[0078] Patch clamp recordings - Human NT neurons (Layton Biosciences) were co- cultured with human fetal astrocytes (ScienCell, Carlsbad, CA, USA) using DMEM/F12 +10% FBS for 3-4 weeks. The recording micropipettes (tip resistance 4-6 mOm) were filled with internal solution: 135 mM K-gluconate, 4 niM MgCl 2 , 10 mM HEPES, 10 mM EGTA, 4 mM Mg-ATP and 0.2 mM Na-GTP (pH 7.4). Recordings were made using a MultiClamp 700B amplifier and Digidata 1440A interface (Molecular Devices). Signals were filtered at 10 kHz and sampled at 10 kHz. The whole-cell capacitance was fully compensated. The bath was constantly perfused with fresh HEPES -buffered saline: 140 mM NaCL 5 mM KC1, 10 mM HEPES, 1 mM EGTA, 3 mM MgCl 2 , lOmM glucose (pH 7.4). Cells were visualized using an OLYMPUS BX51W1 fixed-stage upright microscope.

Whole-cell recordings were carried out at a holding potential of -60 mV in gap-free mode. Cells were constantly perfused with extracellular solution with flow rate 2 ml/min. Astrocyte-conditioned media (ACM) or 50 mol GAB A (Sigma) was applied to the bath solution when the holding current was stable for at least 4 min. All recordings were performed at room temperature.

[0079] Spinal parenchymal lentivirus injection in spastic rat and naive minipig - Rats with identified spasticity were anesthetized with 1.5-2% isoflurane (in room air), placed into a spinal unit apparatus (Stocking, Wood Dale, IL, USA) and a partial Thl2-Ll laminectomy was performed using a dental drill (exposing the dorsal surface of L2-L6 segments). Using a glass capillary (tip diameter 80-100 μιη) connected to a pressure- controlled microinjector (Stoelting), rats were injected with 0.5 μΐ of the HIV1-CMV- GAD65-GFP (n= 12) or HIVl-CMV-GFP (control; n= 12) lentivirus (10 M.O.I.). Animals received a total of 10 bilateral injections. The duration of each injection was 60 s followed by 30 s pause before capillary withdrawal. The injection was targeted into central gray matter (laminae V-VII) (distance from the dorsal surface of the spinal cord at L3 level: 1 mm). The rostrocaudal distance between individual injections ranged between 1000-1500 μιη. After virus injections, the incision was cleaned with 3% H?0 2 and

penicillin/streptomycin mixture and closed in two layers. After LVs injections animals were allowed to recover for minimum of 10 days before the effect of LVs injections on the magnitude of spasticity was measured.

[0080] Minnesota-Gottingen minipigs (males; 18-23 kg; n= 2) were premedicated with intramuscular azaperone (2 mg kg ; Biotika, SK) and atropine (1 mg/kg; Biotika, SK) and then induced with ketamine (20 mg/kg, i.v.). After induction, animals were intubated with a 2.5F tracheal tube. Anesthesia was maintained with a 1.5% isoflurane in 50/50% air - oxygen mixture at a constant 2 L/min flow rate. Oxygen saturation was monitored throughout the procedure using a pulse oximeter (Nellcor Puritan Bennett Inc., Ireland). To immobilize the lumbar spinal cord animals were mounted into a spinal immobilization apparatus and the lumbar portion of the animal was lifted 5" above the operating table to eliminate spinal cord pulsation due to respiration. A dorsal laminectomy of L2-L5 vertebrae, corresponding to L3-L6 spinal segments in minipigs, was then performed and epidural fat removed using cotton swabs. The dura was left intact. To deliver LVs, an XYZ manipulator (M325; WPI, Sarasota, FL, USA) was used and mounted directly to the operating table. A Hamilton syringe with a 30 gauge needle was then mounted into the manipulator and connected to a microinjector (Stoelting) using PE-50 tubing. To connect the PE-50 tubing to the Hamilton syringe the plunger was removed and one end of the PE- 50 tubing was inserted 1 cm into the syringe and sealed with silicone. Animals then received a total of 20 injections (10 on each side) of HIV1-CMV-GAD65-GFP lentivirus (10 M.O.I.; 6 μιΐ each) targeted into intermediate zone (lamina VII) of L2-L4 segments (distance from the dorsal surface of the spinal cord at L3 level: 3-3.5 mm). The distance between individual injections was 1-1.5 mm. All surgical interventions followed rigid aseptic procedures. All materials were subjected to autoclaving or gas sterilization. After LVs injections animals survived for 1 or 2 months.

[0081] Hoffmann reflex recording - H-reflex was recorded as previously described. Under ketamine anesthesia (100 mg kg/hr, i.m.) the right hind limb of the animal was secured and a pair of stimulating needle electrodes was transcutaneously inserted into the surroundings of the tibial nerve. For recording, a pair of silver needle electrodes was placed into the interosseous muscles between the fourth and the fifth or the first and the second metatarsal right foot muscles. The tibial nerve was stimulated using square pulses with increasing stimulus intensity (0.1-10 mA in 0.5 niA increments, 0.1 Hz, 0.2 ms; WPI; Isostim A320) and responses were recorded with an A/C-coupled differential amplifier (Model DB4; DPI, Sarasota, FL). After the M-max and H-max responses were identified the intensity of stimulus which evoked H-max amplitudes were used in subseq ent high frequency (20 Hz) stimulation experiment. In HIV1-CMVGAD65-GFP (n =6) or HIVl- CMV-GFP (n= 6) lentivirus-injected animals a high frequency stimulation was performed in 5 min intervals for up to 90 min after tiagabine (40 mg/kg, i.p.) injection. Changes in H- wave amplitude were then compared between both lentivirus-injected groups.

[0082] Spinal cord microdialysis and extracellular GABA release measurement - Spinal cord microdialysis was performed in naive (n= 6), spastic-non treated (n= 6), spastic HIV1- CMV-GFP lentivirus-injected (n= 6) and spastic HIV 1 -CMV-GAD65-GFP (n= 6) lentivirus-injected animals. Rats were anesthetized with 2% isoflurane, previous laminectomy site (in lentivirus injected animals) re-exposed and concentric microdialysis probe (A-2-8-02; cut off: MW 50, 000; EICOM, Japan) placed into central gray matter between L3-L6 spinal cord segments. Microdialysis fiber was perfused with artificial CSF at 2 μΐ/min and samples collected on dry ice. After 120 min washout samples were collected in 20 min intervals before and after tiagabine (40 mg/kg, i.p.) injections and analyzed for GABA using HPLC (HTEC-500; EICOM).

[0083] Intrathecal administration of colchicine - To decrease axonal transport of GABA and increase its concentration in the neuronal soma, control animals (n= 3) and animals with ischemic spasticity (n= 3) previously implanted with PE-10 intrathecal catheters received intrathecal bolus injection of colchicine (10 μΐ, 1% in saline) 48 h prior to sacrifice. This treatment was used to determine the presence or loss of GABA-ergic neurons in animals with ischemic spasticity. These animals were not used in any functional measurements.

[0084] In vivo perfusion fixation and tissue processing - At the end of the survival periods, animals were anesthetized with pentobarbital (40 mg/kg; i.p.) and transcardially perfused with heparinized saline (100 ml-rat; 51-minipig) followed by 4% paraformaldehyde in 0.1 M phosphate buffer (PB; 500 ml-rat; 51-minipig). The spinal cords were dissected and postfixed in the same fixative overnight at 4°C. After postfixation tissue was cryoprotected in graded sucrose solutions (10, 20 and 30%). For GABA staining animals were perfused with 2% paraformaldehyde +0.3% glutaraldehyde solution.

[0085] Immunofluorescence staining - A standard immunofluoresence staining protocol was followed. After cryoprotection frozen coronal spinal cord sections (20-30 μιη) were cut. Free floating sections were placed in PBS (0.1 M; pH = 7.4) containing 5% normal donkey serum (NDS), 0.2% Triton X-100 (TX), for 2 h at room temperature to block nonspecific background. This was followed by overnight incubation at 4°C with the following primary antibodies: mouse anti-GAD65( 1 :500; Developmental Studies

Hybridoma Bank, University of Iowa, Iowa City, IA); rabbit anti-GAD65 (1: 1000,

Chemicon), mouse anti-GAD67 (1: 1000, Chemicon), rabbit anti-GFAP (1 :500; Chemicon); mouse anti-VGLUTl-3 (1 :2000; Chemicon Inc.), goat anti-CHAT (1 : 100; Chemicon Inc.), mouse anti-GABA (1 : 15000; Chemicon), guinea pig- anti GABA B Rl and R2 (1:2000; Millipore Inc.,), rabbit anti-synaptophysin (SYN) (1 :200; Novocastra Laboratory). After incubation with primary antibodies, sections were washed 3x in PBS and incubated with fluorescent-conjugated secondary donkey anti-rabbit, donkey antimouse, donkey anti-goat and donkey anti-guinea pig antibodies (Alexa 488, 594, 680; 4 μΐ/ml; Molecular Probes, Eugene, OR, USA). All blocking and antibody preparations were made in 0.1 M PBS/0.2% TX in 5% normal donkey serum. For general nuclear staining DAPI (1 μΐ/ml) was added to the final secondary antibody solutions. After staining, sections were mounted on slides, dried at room temperature and covered with Prolong anti-fade kit (Molecular Probes). Stained sections were analyzed and photographed with epitluorescence microscope (AX70; Olympus) and confocal microscope (Fluoview 1000, Olympus).

[0086] Quantitative analysis ofGABA neurons, GAD65/67 and VGLUT1 terminals and a-motoneuron-expressed GABA B RI+R2 receptor in L2-L5 spinal segments

[0087] GABA-ergic cell bodies. Five sections from each animal were stained for GABA and a blinded investigator counted all GABA-positive neuronal bodies using UTHSCA Imagetool (developed at the University of Texas Health Science Center at San Antonio, Texas, USA); the same limits for pixel intensity and structure size were set in all images analyzed.

[0088] VGluTl/GAD65/GAD67-positive terminals. Analysis was performed according to Todd et al. and Hughes et al. Briefly, 3 sections were selected from each rat (3 naive and 3 ischemic) and analyzed by confocal microscopy (Leica Microsystems,

Bannockburn, IL) using a lOOx oil-immersion objective with 2x zoom (200x magnification, 75x75 mm field size). In all cases sequential scanning with the 488, 543, and 647 nm laser lines was used to capture two random scan fields (8-10 optical layers, z-separation 0.5) in lamina IX with identical confocal settings for all images. Firstly, using images constructed from 2 optical layers, the total number of immunoreactive structures in each scan field was counted using UTHSCA Imagetool with the same limits for pixel intensity. Secondly, for each VGluTl terminal in the constructed image, the number of GAD65 and GAD67 boutons in contact with each VGluTl-IR terminal was counted by a blinded investigator. Thirdly, each VGluTl -positive terminal identified in the constructed images was classified as having contact with zero (no inhibitory contact) or 1 or more GAD65/67 boutons (some inhibitory contact).

[0089] GABA-ergic input to motoneuron cell bodies. Three sections from each animal were stained for GAB A, synaptophysin and ChAT and confocal microscope (Leica

Microsystems, Bannockburn, IL) images of lamina IX a-motoneurons were captured using a lOOx oil-immersion objective; the same settings were used to capture all images. GABA- IR terminals were identified and only those that were double-labeled with synaptophysin and in contact with the motor cell soma (not associated processes) were counted. A total of 89 or 58 cells were assessed from naive and ischemic-spastic animals, respectively.

[0090] GABA B R1+R2 receptor in lumbar a-motoneurons. Three sections were selected from each rat (3 naive and 3 spastic) and analyzed using digital images captured with 20x objective (Leica BMX). The total number of GABA B Rl or R2 immunoreactive punctata m each NeuN+ a- motoneuron (cell body size < 700 μιη ) m the ventral horn was counted using UTHSCA Image tool with the same limits for pixel intensity. Population distribution of immunoreactive receptors (punctata) with different intensity was then calculated and used for statistical analysis.

[0091] Western blot analysis ofGAD65 and GAD67 protein in rat spinal cord - Samples of L2-L6 spinal cord segments were collected by hydroextrusion from naive (n=3), spastic non-treated (n=3) and spastic-HIVl-CMV-GAD65-GFP-injected animals (n=3). Harvested segments were cryo-sectioned (40 μιη thick sections) and lysed for 30 minutes using lysis buffer containing 50 mM Tris (pH 7.4) (5429.3; Roth), 250 mM NaCl (3957.2; Roth), 5 mM EDTA (E5134; Sigma), 50 mM NaF (S-1504; Sigma), 1 mM Na 3 V0 4 (S6508; Sigma) in 1% Triton® X-100 (T8532; Sigma) with protease inhibitor cocktail tablets (Complete Mini, EDTA-free; 1 1836170001; Roche) and 1 mM phenylmethylsulphonyl fluoride (PMSF; 837091; Roche). All samples were sonicated in a cold water bath for 5 minutes, followed by centrifugation at lOOOOx g at 4°C for 20 min. Total protein levels were determined by the BCA Protein Assay method (23225, Thermo Scientific). Samples were incubated with sample buffer (distilled water with 125 mM Tris-HCl, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromophenol blue) at 95°C for 5 minutes and 15 micrograms of total protein was loaded from each sample on the 10% gel acrylamide gel. After electrophoresis, proteins were transferred to nitrocellulose membrane (Trans-Blot, 0.45 micrometer, Bio-Rad, CA) using a semidry blotting system (TE70XP, Hoefer, USA). The membrane was blocked with 5% nonfat dry milk (NFDM) in Tris-buffered saline with 0.5% Tween 20 (TBS-T, pH 7.4), incubated with the primary antibody (mouse anti-GAD65 or -GAD67 (Hybridoma Bank, Iowa) diluted 1 :200 in 5% NFDM in TBS-T) overnight at 4°C on a shaker. The next day, the membrane was washed 3 times in TBS-T and consequently incubated in donkey anti-mouse Ab HRP conjugate, (Jackson Lab, full source info) diluted 1: 10000 in 5% NFDM in TBS-T for one hour at RT with gentle shaking. SuperSignalWest Pico Chemihiminescent Substrate (34077, Pierce) detection system was used for visualization. Western blotting signal was quantified by determining the grey values of given band using the ImageJ software.

[0092] Statistical analysis - Statistical analysis of spasticity data was performed with one way ANOVA followed by Bonferroni post hoc test. H-reflex data were analyzed using unpaired t-test. The GABA release data were analyzed using paired t-test. Statistical analysis of GABA-ergic neurons and GABA+; GAD65/67 terminals was performed using unpaired /-test. Values of P<0.05 were considered significant.

[0093] Although the invention has been described with reference to the above example, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.