Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR CONTROLLING A CURRENT-CONTROLLED DIRECT VOLTAGE CONVERTER AND CURRENT-CONTROLLED DIRECT VOLTAGE CONVERTER
Document Type and Number:
WIPO Patent Application WO/2018/149643
Kind Code:
A1
Abstract:
The invention relates to a method (200) for controlling an output voltage of a current-controlled direct voltage converter comprising a controller, having the following steps: determining (210) a rate of change of the output voltage of the current-controlled direct voltage converter, determining (220) a load current change dependent on the rate of change of the output voltage of the current-controlled direct voltage converter and an output capacity of the current-controlled direct voltage converter, determining (230) a second manipulated variable dependent on the load current change, and adding (240) the second manipulated variable during a certain time duration to a first manipulated variable of the controller.

Inventors:
QUENZER-HOHMUTH SAMUEL (DE)
RITZMANN STEFFEN (DE)
MESSNER JONAS (DE)
ROSAHL THORALF (DE)
WICHT BERNHARD (DE)
Application Number:
PCT/EP2018/052376
Publication Date:
August 23, 2018
Filing Date:
January 31, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
H02M3/156
Foreign References:
US20150008895A12015-01-08
US20050127881A12005-06-16
Other References:
V. YOUSEFZADEH; S. CHOUDHURY: "Nonlinear digital PID controller for DC-DC converters", APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2008, pages 1704 - 1709, XP031253482
EN-CHIEH TSAI ET AL.: "Modified Hysteretic Current Control for improving Transient response of boost converter", CIRCUITS AND SYSTEMS I: REGULAR PAPERS, IEEE TRANSACTIONS ON, vol. 58, no. 8, August 2011 (2011-08-01), pages 1967 - 1979, XP011336649, DOI: doi:10.1109/TCSI.2011.2106231
Download PDF:
Claims:
Ansprüche

1. Verfahren (200) zur Regelung einer Ausgangsspannung eines

stromgesteuerten Gleichspannungswandlers umfassend einen Regler mit den Schritten:

• Bestimmen (210) einer Änderungsrate der Ausgangsspannung des

stromgesteuerten Gleichspannungswandlers,

• Bestimmen (220) einer Laststromänderung in Abhängigkeit der

Änderungsrate der Ausgangsspannung des stromgesteuerten

Gleichspannungswandlers und einer Ausgangskapazität des

stromgesteuerten Gleichspannungswandlers,

• Bestimmen (230) einer zweiten Stellgröße in Abhängigkeit der

Laststromänderung, und

• Addieren (240) der zweiten Stellgröße während einer bestimmten

Zeitdauer auf eine erste Stellgröße des Reglers.

2. Verfahren (200) nach Anspruch 1, dadurch gekennzeichnet, dass die bestimmte Zeitdauer eine geringe Anzahl von Rechentakten des Reglers umfasst, insbesondere 1 - 10 Rechentakte des Reglers.

3. Verfahren (200) nach einem der Ansprüche 1 oder 2, dadurch

gekennzeichnet, dass die bestimmte Zeitdauer aus einem Rechentakt des Reglers besteht. 4. Verfahren (200) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Laststromänderung in Abhängigkeit von Messungen des Laststroms bestimmt wird.

5. Stromgesteuerter Gleichspannungswandler (100) mit einem Regler (150) und einer Steuereinheit (110), dadurch gekennzeichnet, dass die

Steuereinheit (110)

• eine Änderungsrate einer Ausgangsspannung des stromgesteuerten Gleichspannungswandlers bestimmt,

• eine Laststromänderung in Abhängigkeit der Änderungsrate der

Ausgangsspannung des stromgesteuerten Gleichspannungswandlers und einer Ausgangskapazität des stromgesteuerten Gleichspannungswandlers bestimmt,

• eine zweite Stellgröße in Abhängigkeit der Laststromänderung

bestimmt und

• die zweite Stellgröße während einer bestimmten Zeitdauer auf eine erste Stellgröße des Reglers (150) addiert.

6. Stromgesteuerter Gleichspannungswandler (100) nach Anspruch 5, dadurch gekennzeichnet, dass die bestimmte Zeitdauer eine geringe Anzahl von Rechentakten des Reglers (150) umfasst, insbesondere 1 - 10

Rechentakte des Reglers (150).

7. Stromgesteuerter Gleichspannungswandler (100) nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die bestimmte Zeitdauer aus einem Rechentakt des Reglers (150) besteht.

8. Stromgesteuerter Gleichspannungswandler (100) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Steuereinheit (110) die Lastromänderung bestimmt.

9. Stromgesteuerter Gleichspannungswandler (100) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der stromgesteuerte Gleichspannungswandler (100) einen analogen Regler umfasst.

10. Stromgesteuerter Gleichspannungswandler (100) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der stromgesteuerte Gleichspannungswandler (100) einen digitalen Regler umfasst.

11. Stromgesteuerter Gleichspannungswandler (100) nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass der stromgesteuerte Gleichspannungswandler (100) einen Aufwärtswandler umfasst.

12. Stromgesteuerter Gleichspannungswandler (100) nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass der stromgesteuerte Gleichspannungswandler (100) einen Abwärtswandler umfasst.

Description:
Beschreibung

Verfahren zur Regelung eines stromgesteuerten Gleichspannungswandlers und stromgesteuerter Gleichspannungswandler

Stand der Technik

Die Erfindung betrifft ein Verfahren zur Regelung eines stromgesteuerten

Gleichspannungswandlers und einen stromgesteuerten

Gleichspannungswandler.

Aus dem Stand der Technik sind stromgesteuerte Aufwärtswandler und

Abwärtswandler bekannt, die das dynamische Verhalten der Ausgangsspannung nach einem Lastsprung regeln. Diese Stromregelungen können eine digitale

Regelung der Ausgangsspannung aufweisen und als Peak-, Valley- oder

Average-Stromregelung realisiert werden.

Das Paper„Nonlinear digital PID Controller for DC-DC Converters", V. Yousefzadeh and S. Choudhury, Applied Power Electronics Conference and Exposition, APEC (2008). Twenty-Third Annual I EEE, Austin, TX, 2008, pp. 1704 - 1709, offenbart eine nichtlineare Regelstruktur, die das dynamische Verhalten der Ausgangsspannung nach einem Lastsprung kontrolliert. Bei diesem Konzept wird abhängig von der

Reglereingangsgröße, das ist die Regelabweichung, der Regler so verändert, dass ein schnelleres Ausregelverhalten entsteht. Dazu wird zwischen verschiedenen

Regelalgorithmen gewechselt, die sich in ihren dynamischen Eigenschaften unterscheiden und so das dynamische Gesamtverhalten verbessern

Der Nachteil ist hierbei, dass der Regleraufbau sehr komplex ist und dass der

Rechenaufwand sehr hoch ist. Das Paper„Modified Hysteretic Current Control for improving Transient response of boost Converter", Jen-Chieh Tsai et al., Circuits and Systems I: Regulär Papers, I EEE Transactions on , vol. 58, no. 8, pp. 1967-1979, Aug. 2011, beschreibt eine modifizierte hysteretische analoge Stromregelung. Hierbei wird eine analoge Reglerkonfiguration durch Anpassung der Kompensationsbauelemente, Widerstände und Kondensatoren, umgeschaltet, sodass das dynamische Verhalten verbessert wird. Der Zeitpunkt der Umschaltung wird abhängig von der Ausgangsspannung gewählt. Bricht die

Ausgangsspannung ein, so wird die Anpassung der Kompensationsbauelemente durchgeführt.

Nachteilig ist hierbei, dass sowohl der Hardwareaufwand für die Anpassung der Kompensationsbauelemente, die zur Umschaltung von Kapazitäten und Widerständen sind extra Schaltungen notwendig sind, als auch der Messaufwand für die Erkennung eines Lastsprungs zur Bestimmung des Zeitpunkts des Umschaltens der

Kompensationsbauelemente und für die Erkennung eines Wendepunkts der

Ausgangsspannung zum Zurückschalten der Kompensationsbauelemente sehr hoch sind.

Die Aufgabe der Erfindung ist es diese Nachteile zu überwinden. Offenbarung der Erfindung

Das erfindungsgemäße Verfahren zur Regelung einer Ausgangsspannung eines stromgesteuerten Gleichspannungswandlers umfasst das Bestimmen einer

Änderungsrate der Ausgangsspannung des stromgesteuerten

Gleichspannungswandlers. Des Weiteren wird eine Laststromänderung in

Abhängigkeit der Änderungsrate der Ausgangsspannung des stromgesteuerten Gleichspannungswandlers und einer Ausgangskapazität des stromgesteuerten Gleichspannungswandlers bestimmt. Außerdem wird eine zweite Stellgröße in

Abhängigkeit der Laststromänderung bestimmt und die zweite Stellgröße

während einer bestimmten Zeitdauer auf eine erste Stellgröße des Reglers

addiert. Mit anderen Worten tritt ein Lastsprung in einem stromgeregelten

Gleichspannungswandler auf, geht die aktuelle Stellgröße des Regelkreises von einem ersten stationären Wert in einen zweiten stationären Wert über. Bei der ersten Stellgröße handelt es sich somit um die aktuelle Stellgröße des Reglers vor einem Lastsprung. Wird im Folgenden der Begriff Gleichspannungswandler verwendet, so ist hierbei immer ein stromgesteuerter Gleichspannungswandler zu verstehen.

Der Vorteil des erfindungsgemäßen Verfahrens ist, dass ein Überschwingen bzw. ein Unterschwingen der Ausgangsspannung bei Laständerungen bzw.

Lastsprüngen gering ist. Des Weiteren ist es vorteilhaft, dass die

Ausgangskapazität des Gleichspannungswandlers, sowie die Kosten des

Gleichspannungswandlers gering sind.

In einer Weiterbildung umfasst die bestimmte Zeitdauer eine geringe Anzahl von Rechentakten bzw. Rechenraten des Reglers, insbesondere 1 - 10 Rechentakte des Reglers. Unter dem Begriff Rechentakt wird dabei die Zeitdauer verstanden, die der Regler benötigt um einen neuen Ausgangswert zu berechnen bzw. um einen Rechenschritt zu verarbeiten.

Vorteilhaft ist hierbei, dass die Zeitdauer des Übergangs der aktuellen Stellgröße zwischen dem ersten stationären Wert und dem zweiten stationären Wert kurz ist. Da diese Zeitdauer die Dauer des Ausregelvorgangs des Lastsprungs kennzeichnet, ist die Dauer des Ausregelvorgangs ebenfalls kurz.

In einer weiteren Ausgestaltung besteht die bestimmte Zeitdauer aus einem Rechentakt des Reglers. Mit anderen Worten es handelt sich um einen kurzzeitigen Eingriff in den Regler bzw. in den Regelvorgang während dem die zweite Stellgröße aufaddiert wird.

Der Vorteil ist hierbei, dass der Ausregelvorgang schnell vonstatten geht.

In einer Weiterbildung wird die Laststromänderung in Abhängigkeit einer

Messung des Laststroms bestimmt.

Vorteilhaft ist hierbei, dass eine Messung des Laststroms sehr genau möglich ist und demnach auch die Berechnung der zweiten Stellgröße sehr genau erfolgt. Ein stromgesteuerter Gleichspannungswandler umfasst einen Regler und eine Steuereinheit. Erfindungsgemäß bestimmt die Steuereinheit eine Änderungsrate einer Ausgangsspannung des stromgesteuerten Gleichspannungswandlers. Des Weiteren bestimmt die Steuereinheit eine Laststromänderung in Abhängigkeit der Änderungsrate der Ausgangsspannung des stromgesteuerten

Gleichspannungswandlers und einer Ausgangskäpazität des stromgesteuerten Gleichspannungswandlers. Außerdem bestimmt die Steuereinheit eine zweite Stellgröße in Abhängigkeit der Laststromänderung und addiert die zweite

Stellgröße während einer bestimmten Zeitdauer auf eine erste Stellgröße des Reglers.

Der Vorteil ist hierbei, dass das Ausregelverhalten des

Gleichspannungswandlers geringe Überschwinger bzw. Unterschwinger der Ausgangsspannung aufweist.

In einer Weiterbildung umfasst die bestimmte Zeitdauer eine geringe Anzahl von Rechentakten des Reglers, insbesondere 1-10 Rechentakte des Reglers.

In einer weiteren Ausgestaltung besteht die bestimmte Zeitdauer aus einem Rechentakt des Reglers.

Der Vorteil ist hierbei, dass der Ausregelvorgang des Gleichspannungswandlers schnell erfolgt. In einer Weiterbildung bestimmt die Steuereinheit die Laststromänderung.

In einer weiteren Ausgestaltung umfasst der stromgesteuerte

Gleichspannungswandler einen analogen Regler. In einer Weiterbildung umfasst der stromgesteuerte Gleichspannungswandler einen digitalen Regler.

Der Vorteil ist hierbei, dass eine Addition der zweiten Stellgröße

digitalen Regler einfach ausgeführt werden kann. In einer weiteren Ausgestaltung umfasst der stromgesteuerte Gleichspannungswandler einen Aufwärtswandler.

Der Vorteil ist hierbei, dass ein Aufwärtswandler mit dem erfindungsgemäßen Verfahren sehr schnell auf Laststromänderungen reagiert, während

herkömmliche Aufwärtswandler stark bandbreitenbegrenzt sind und dadurch nur sehr langsam auf Laststromänderungen reagieren können.

In einer Weiterbildung umfasst der stromgesteuerte Gleichspannungswandler einen Abwärtswandler.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von

Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.

Kurze Beschreibung der Zeichnungen

Die vorliegende Erfindung wird nachfolgend anhand bevorzugter

Ausführungsformen und beigefügter Zeichnungen erläutert. Es zeigen:

Figur 1 einen stromgesteuerten Gleichspannungswandler,

Figur 2 ein Verfahren zur Regelung eines stromgesteuerten

Gleichspannungswandlers,

Figur 3 ein weiteres Verfahren zur Regelung eines stromgesteuerten

Gleichspannungswandlers,

Figur 4a einen beispielhaften Verlauf der Stellgrößen eines Reglers aus dem Stand der Technik,

Figur 4b einen beispielhaften Verlauf der Stellgrößen eines Reglers des erfindungsgemäßen stromgesteuerten Gleichspannungswandlers und Figur 5 einen Vergleich des Lastsprungverhaltens in Bezug auf die

Ausgangsspannung verschiedener Regler.

Figur 1 zeigt einen stromgesteuerten Gleichspannungswandler 100 mit einer Steuereinheit 110, einer Messeinrichtung 120, einem Regler 150 und einem Speicher 160. Die Steuereinheit 110 erfasst erste Signale 130. In einem ersten Ausführungsbeispiel umfasst die Messeinrichtung 120 eine

Spannungsmesseinheit, sodass die ersten Signale 130 der Ausgangsspannung des stromgesteuerten Gleichspannungswandlers 100 entsprechen. In einem zweiten Ausführungsbeispiel umfasst die Messeinrichtung 120 eine

Strommesseinheit, sodass die ersten Signale 130 einen Laststrom des stromgesteuerten Gleichspannungswandlers 100 repräsentieren. Die ersten Signale 130 können dabei in dem Speicher 160 abgelegt werden. Des Weiteren erzeugt die Steuereinheit 110 ein zweites Signal 140, das der zweiten Stellgröße entspricht. Die Steuereinheit 110 umfasst beispielsweise einen Mikrocontroller oder einen field programmable gate array FPGA. Der stromgesteuerte

Gleichspannungswandler 100 kann einen analogen oder einen digitalen Regler umfassen. Handelt es sich um einen digitalen Regler, so kann die Steuereinheit 110 Teil eines Digitalteils einer integrierten Schaltung, beispielsweise eines A/D- Wandlers sein. Außerdem kann der stromgesteuerte Gleichspannungswandler 100 einen Aufwärtswandler oder einen Abwärtswandler aufweisen.

Figur 2 zeigt ein Verfahren 200 zur Regelung eines stromgesteuerten

Gleichspannungswandlers. Das Verfahren 200 startet mit dem Schritt 210, in dem erste Signale des stromgesteuerten Gleichspannungswandlers mittels der Spannungsmesseinheit erfasst werden und im Speicher der Steuereinheit gespeichert werden, wodurch die ersten Signale die Ausgangsspannung des stromgesteuerten Gleichspannungswandlers repräsentieren. In einem folgenden Schritt 220 wird eine Änderungsrate der Ausgangsspannung mit Hilfe der Steuereinheit bestimmt. Dazu wird ein vorangegangener Wert V aus i der

Ausgangsspannung, der im Speicher der Steuereinheit hinterlegt ist, mit der aktuellen Ausgangsspannung V auS 2 verglichen. Dabei ergibt sich die

Änderungsrate mittels der Formel: wobei T die Zeitdauer zwischen der Erfassung der aktuellen Ausgangsspannung und dem vorangegangenen Wert der Ausgangsspannung repräsentiert. In einem folgenden Schritt 230 wird eine Laststromänderung in Abhängigkeit der

Änderungsrate der Ausgangsspannung und einer Ausgangskapazität des stromgesteuerten Gleichspannungswandlers mit Hilfe der Steuereinheit bestimmt. Die Laststromänderung Äkast wird mittels folgender Formel bestimmt: Äli_ast = C d Uaus/dt, wobei C die Ausgangskapazität des stromgesteuerten Gleichspannungswandlers darstellt, U aU s der Ausgangsspannung und d U aU s/dt der Änderungsrate entspricht. In einem folgenden Schritt 240 wird eine zweite Stellgröße in Abhängigkeit der Laststromänderung bestimmt. Umfasst der stromgesteuerte Gleichspannungswandler einen peak-stromgeregelten

Aufwärtswandler, so wird die zweite Stellgröße mittels folgender Formel bestimmt: S2= R- Äli_asi/(1-D), wobei S2 die zweite Stellgröße, R einen

Strommesswiderstand und D ein Tastverhältnis des stromgesteuerten

Gleichspannungswandlers darstellt. Umfasst der stromgesteuerte

Gleichspannungswandler einen peak-stromgeregelten Abwärtswandler, so wird die zweite Stellgröße mittels folgender Formel bestimmt: S2= R- Äkast. Die Formeln können auch für average-stromgeregelte Aufwärtswandler und

Abwärtswandler, sowie für valley-stromgeregelte Aufwärtswandler und

Abwärtswandler hergeleitet werden. In einem folgenden Schritt 250 wird die zweite Stellgröße während einer bestimmten Zeitdauer auf eine erste Stellgröße des Reglers addiert. Mit anderen Worten, die zweite Stellgröße wird auf die aktuelle Reglerausgangsgröße addiert, sodass der Ausregelvorgang mit der Gesamtstellgröße, die sich aus der Summe der ersten Stellgröße und der zweiten Stellgröße ergibt, durchgeführt wird. Umfasst der Regler einen Integrator, so wird die Addition während bzw. innerhalb eines einzigen Rechentakts des Reglers durchgeführt, wodurch der Ausgangsregelvorgang sehr kurz ist und geringe Überschwinger bzw. Unterschwinger aufweist. Mit anderen Worten der Verlauf der Stellgröße S weist eine stark sprunghafte Änderung innerhalb eines Rechentakts auf. Umfasst der Regler keinen integrierenden Teil bzw. keinen Integrator, so wird die Addition über mehrere Rechentakte durchgeführt.

Figur 3 zeigt ein weiteres Verfahren 300 zur Regelung eines stromgesteuerten Gleichspannungswandlers. Das Verfahren 300 startet mit dem Schritt 310, in dem erste Signale des stromgesteuerten Gleichspannungswandlers mittels der Messeinrichtung erfasst wird. Bei der Messeinrichtung handelt es sich in diesem Ausführungsbeispiel um eine Strommesseinheit, z. B. um einen

Strommesswiderstand, der als Shunt-Widerstand ausgestaltet sein kann oder ein Hall-Element. Die ersten Signale repräsentieren in diesem Ausführungsbeispiel einen Laststrom des stromgesteuerten Gleichspannungswandlers. In einem folgenden Schritt 330 wird die Laststromänderung mit Hilfe der Steuereinheit erkannt bzw. bestimmt. In einem folgenden Schritt 340 wird die zweite Stellgröße in Abhängigkeit der Laststromänderung bestimmt. In einem folgenden Schritt 350 wird die zweite Stellgröße während einer bestimmten Zeitdauer auf eine erste Stellgröße des Reglers addiert.

Figur 4a zeigt einen beispielhaften Verlauf der Stellgrößen eines Reglers aus dem Stand der Technik. Auf der Abszisse ist die Zeit t in is aufgetragen und auf der Ordinate der Verlauf der Stellgröße bzw. der Gesamtstellgröße des Reglers. Vor dem Lastsprung, der zum Zeitpunkt t=0 s stattfindet, weist die Stellgröße S einen ersten Wert 410 auf, der der ersten Stellgröße bzw. der aktuellen

Stellgröße des Reglers entspricht. Die Stellgröße des Reglers wird schrittweise um einen Gesamtbetrag 420 erhöht. Die Zeitdauer für die schrittweise Erhöhung um den Gesamtbetrag 420 kennzeichnet die Dauer des Ausregelvorgangs. Die gestrichelte Linie stellt den idealen Verlauf der Stellgröße bei einem Lastsprung dar.

Figur 4b zeigt einen beispielhaften Verlauf der Stellgrößen eines Reglers des erfindungsgemäßen stromgesteuerten Gleichspannungswandlers. Auch hier stellt die gestrichelte Linie den idealen Verlauf der Stellgröße bei einem

Lastsprung dar. Auf der Abszisse ist die Zeit t in is aufgetragen und auf der Ordinate der Verlauf der Stellgröße bzw. der Gesamtstellgröße des Reglers. Vor dem Lastsprung, der zum Zeitpunkt t=0 s stattfindet, weist die Stellgröße S einen ersten Wert 460 auf, der der ersten Stellgröße bzw. der aktuellen Stellgröße des Reglers entspricht. Die zweite Stellgröße 140 wird kurz nach dem Lastsprung für eine bestimmte Zeitdauer zur ersten Stellgröße 460 addiert. Dabei beträgt die bestimmte Zeitdauer einen Rechentakt des Reglers. Mit anderen Worten die Stellgröße S wird direkt auf den zweiten stationären Wert angehoben, indem der ersten Stellgröße ein passendes Delta addiert wird. Der optimale Wert für das Delta entspricht dabei der Differenz des ersten stationären Werts und des zweiten stationären Werts der Stellgröße, wobei der optimale Wert zum Zeitpunkt des Lastsprungs eine unbekannte Größe ist, die mittels der Laststromänderung bestimmt wird.

Figur 5 zeigt einen Vergleich des Lastsprungverhaltens in Bezug auf die

Ausgangsspannung verschiedener Aufwärtsregler. Auf der Abszisse ist die Zeit t in is aufgetragen und auf der Ordinate die Ausgangsspannung U aU s in Volt. Die gestrichelte Kurve 510 zeigt dabei das Lastsprungverhalten der

Ausgangsspannung eines Reglers aus dem Stand der Technik. Dabei hängt der Spannungseinbruch ÄU aU s von der Laststromänderung Äkast, der

Ausgangskapazität C des Gleichspannungswandlers und der Transitfrequenz fr des Regelkreises ab und lässt sich näherungsweise mit der Formel: ÄU aU s~ Äli_asi/(C-2TT- fr) bestimmen. Die durchgezogene Kurve 520 zeigt das

Lastsprungverhalten der Ausgangsspannung eines Reglers des

erfindungsgemäßen stromgesteuerten Gleichspannungswandlers. Im Vergleich zum Stand der Technik fällt der Spannungseinbruch bzw. der Betrag des

Spannungseinbruchs der Ausgangsspannung des stromgesteuerten

Gleichspannungswandlers wesentlich geringer aus.