Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR CONTROLLING A RECHARGEABLE BATTERY ON A MACHINE TOOL
Document Type and Number:
WIPO Patent Application WO/2019/048275
Kind Code:
A1
Abstract:
Method for controlling a rechargeable battery on a machine tool, wherein the rechargeable battery contains a first data interface and a wake-up circuit for activating control electronics of the rechargeable battery, and the machine tool contains a second data interface and a controller, and wherein the data interfaces are connected to one another via a first communication line and a second communication line for differential communication between the rechargeable battery and the machine tool. The method contains the method steps of - setting the control electronics of the rechargeable battery to a deactivation mode, with the result that no current flows from the rechargeable battery into the control electronics and to the machine tool; - transmitting at least one signal from the machine tool to the rechargeable battery via the first and second communication lines; - activating the wake-up circuit to activate control electronics by detecting a voltage value of the first or second communication line, wherein the voltage value corresponds to either the dominant or recessive state of the first or second communication line; - setting the control electronics of the rechargeable battery to an activation mode by means of the wake-up circuit; and - enabling current to be drawn from the rechargeable battery by the machine tool. System containing a rechargeable battery and a machine tool for carrying out the method, wherein the rechargeable battery contains a first data interface and a wake-up circuit for activating control electronics of the rechargeable battery, and the machine tool contains a second data interface and a controller, and wherein the data interfaces are connected to one another via a first communication line and a second communication line for differential communication between the rechargeable battery and the machine tool. Rechargeable battery for carrying out the method, wherein the rechargeable battery contains a first data interface and a wake-up circuit for activating control electronics of the rechargeable battery. Machine tool for carrying out the method, wherein the machine tool contains a second data interface and a controller.

Inventors:
HAUSER, Klaus (Mayerwiese 12, Schwabmünchen, 86830, DE)
CANDUSSIO, Michael (Karwendelstr. 9, Olching, 82140, DE)
MAYER, Stefan (Buergermeister-Scharl-Strasse 7, Dachau, 85221, DE)
KOSCHECK, David (Zugspitzstr. 68, Augsburg, 86163, DE)
Application Number:
EP2018/072990
Publication Date:
March 14, 2019
Filing Date:
August 27, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HILTI AKTIENGESELLSCHAFT (Feldkircherstr. 100, 9494 Schaan, 9494, LI)
International Classes:
H01M10/42; B25B21/00; H02J7/00
Foreign References:
DE102015010739A12016-02-25
EP2562905A12013-02-27
US20160064776A12016-03-03
Other References:
None
Download PDF:
Claims:
Patentansprüche

Verfahren zum Steuerung eines Akkumulators (3) an einer Werkzeugmaschine (2), wobei der Akkumulator (3) eine erste Datenschnittstelle (29) sowie einen Aufweckschaltkreis (26) enthält zum Aktivieren einer Steuerungselektronik (24) des Akkumulators (3) und die Werkzeugmaschine (2) eine zweite Datenschnittstelle (19) sowie eine Steuerung (9) enthält, und wobei die Datenschnittstellen (19, 29) über eine erste und zweite Kommunikationsleitung (31 , 32) für eine differentielle Kommunikation zwischen dem Akkumulator (3) und der Werkzeugmaschine (2) miteinander verbunden sind

gekennzeichnet durch die Verfahrensschritte

- Einstellen der Steuerungselektronik (24) des Akkumulators (3) in einen Deaktivierungsmodus, sodass kein Strom von dem Akkumulator (3) in die Steuerungselektronik (24) und zu der Werkzeugmaschine (2) fließt;

- Senden wenigstens eines Signals von der Werkzeugmaschine (2) zu dem Akkumulator (3) über die erste und zweite Kommunikationsleitung (31 , 32);

- Aktivieren des Aufweckschaltkreises (26) zum Aktivieren einer Steuerungselektronik (24) durch Detektieren eines Spannungswertes von der ersten oder zweiten Kommunikationsleitung (31 , 32), wobei der Spannungswert entweder dem dominanten oder rezessiven Zustand der ersten oder zweiten Kommunikationsleitung (31 , 32) entspricht;

- Einstellen der Steuerungselektronik (24) des Akkumulators (3) in einen Aktivierungsmodus durch den Aufweckschaltkreis (26); und

- Freigabe einer Stromentnahme von dem Akkumulator (3) durch die Werkzeugmaschine (2).

System enthaltend einen Akkumulator (3) und eine Werkzeugmaschine (2) zur Durchführung des Verfahrens nach Anspruch 1 ,

wobei der Akkumulator (3) eine erste Datenschnittstelle (29) sowie einen Aufweckschaltkreis (26) enthält zum Aktivieren einer Steuerungselektronik (24) des Akkumulators (3) und die Werkzeugmaschine (2) eine zweite Datenschnittstelle (19) sowie eine Steuerung (9) enthält, und wobei die Datenschnittstellen (19, 29) über eine erste und zweite Kommunikationsleitung (31 , 32) für eine differentielle Kommunikation zwischen dem Akkumulator (3) und der Werkzeugmaschine (2) miteinander verbunden sind. Akkumulator (3) zur Durchführung des Verfahrens nach Anspruch 1 ,

wobei der Akkumulator (3) eine erste Datenschnittstelle (29) sowie einen Aufweckschaltkreis (26) enthält zum Aktivieren einer Steuerungselektronik (24) des Akkumulators (3).

Werkzeugmaschine (2) zur Durchführung des Verfahrens nach Anspruch 1 ,

wobei die Werkzeugmaschine (2) eine zweite Datenschnittstelle (19) sowie eine Steuerung (9) enthält.

Description:
Verfahren zum Steuern eines Akkumulators an einer Werkzeugmaschine

Die vorliegende Erfindung betrifft ein Verfahren zum Steuerung eines Akkumulators an einer Werkzeugmaschine, wobei der Akkumulator eine erste Datenschnittstelle sowie einen Aufweckschaltkreis enthält zum Aktivieren einer Steuerungselektronik des Akkumulators und die Werkzeugmaschine eine zweite Datenschnittstelle sowie eine Steuerung enthält, und wobei die Datenschnittstellen über eine erste und zweite Kommunikationsleitung für eine differentielle Kommunikation zwischen dem Akkumulator und der Werkzeugmaschine miteinander verbunden sind.

Die vorliegende Erfindung betrifft des Weiteren ein System enthaltend einen Akkumulator und eine Werkzeugmaschine zur Durchführung des Verfahrens, wobei der Akkumulator eine erste Datenschnittstelle sowie einen Aufweckschaltkreis enthält zum Aktivieren einer Steuerungselektronik des Akkumulators und die Werkzeugmaschine eine zweite Datenschnittstelle sowie eine Steuerung enthält, und wobei die Datenschnittstellen über eine erste und zweite Kommunikationsleitung für eine differentielle Kommunikation zwischen dem Akkumulator und der Werkzeugmaschine miteinander verbunden sind.

Darüber betrifft die Erfindung einen Akkumulator zur Durchführung des Verfahrens, wobei der Akkumulator eine erste Datenschnittstelle sowie einen Aufweckschaltkreis enthält zum Aktivieren einer Steuerungselektronik des Akkumulators.

Ferner betrifft die Erfindung eine Werkzeugmaschine zur Durchführung des Verfahrens, wobei die Werkzeugmaschine eine zweite Datenschnittstelle sowie eine Steuerung enthält.

Kabellose Werkzeugmaschine können zur Strom- bzw. Energieversorgung mit einem Akkumulator, auch Akku genannt, betrieben werden. Hierzu wird der Akkumulator über eine entsprechende Schnittstelle mit der Werkzeugmaschine so verbunden, dass elektrischer Strom von dem Akkumulator zur Werkzeugmaschine fließen kann. Bei der kabellosen Werkzeugmaschine kann es sich beispielsweise um einen Akku-Schrauber, einen Bohrhammer oder dergleichen handeln.

Auf dem Markt befindliche Akkumulatoren enthalten für gewöhnlich eine Anzahl an Speicherzellen bzw. Energiespeicherzellen für elektrische Energie bzw. für eine elektrische Spannung. Zur Kontrolle eines Lade- bzw. Entladevorgangs der Energiespeicherzellen, bei dem die Energiespeicherzellen entweder mit einer elektrischen Energie geladen oder die elektrische Energie aus den Speicherzellen genommen (entladen) wird, verfügt ein moderner Akkumulator über eine Steuerungselektronik zur Regelung und Steuerung verschiedener Vorgänge in dem Akkumulator. Die Speicherzellen werden auch als Akku-Zellen oder Sekundärzellen bezeichnet. Um elektrische Energie eines Akkumulators zu sparen wird die Steuerungselektronik des Akkumulators in einen Deaktivierungsmodus (auch als Schlafmodus bzw. Schlafzustand bezeichnet) versetzt, wenn die akkubetriebene Werkzeugmaschine für eine gewisse Zeitdauer nicht betrieben wird. In diesem Deaktivierungsmodus fließt kein elektrischer Strom von dem Akkumulator in die Steuerelektronik und/oder zu der Werkzeugmaschine.

Wenn jedoch die akkubetriebene Werkzeugmaschine wieder in Betrieb genommen werden soll, damit erneut elektrischer Strom von dem Akkumulator zu den elektrischen Verbrauchern der Werkzeugmaschine fließen kann, muss der Akkumulator zunächst reaktiviert, d.h. von dem Deaktivierungsmodus in einen Aktivierungsmodus (d.h. aufgeweckt) versetzt werden. Der Akkumulator muss sich im Aktivierungsmodus befinden, um beispielsweise die Strommenge bzw. die Stromstärke zu steuern, die zu der Werkzeugmaschine fließt, oder die Temperatur des Akkumulators zu überwachen.

Eine derartige Reaktivierung des Akkumulators stellt jedoch einen gewissen Aufwand dar, da mit Hilfe eines gesonderten Signals in Form eines Spannungsimpulses zunächst ein Aufweckschaltkreis des Akkumulators aktiviert werden muss. Der Aufweckschaltkreis (re-)aktiviert anschließend die Steuerungselektronik des Akkumulators, damit die Versorgung der Werkzeugmaschine mit elektrischem Strom fortgesetzt werden kann.

Akkumulatoren gemäß dem Stand der Technik bieten zur Lösung dieses Problems eine separate Leitung von der Steuerung der Werkzeugmaschine zum Aufweckschaltkreis des Akkumulators an. Die Bereitstellung einer derartigen Leitung ist jedoch aufwendig und erzeugt zusätzliche Kosten sowie Platzprobleme.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zum Steuerung eines Akkumulators an einer Werkzeugmaschine bereitzustellen, mit dem das vorstehend genannte Problem gelöst werden kann. Des Weiteren ist es Aufgabe der vorliegenden Erfindung ein System enthaltend einen Akkumulator und eine Werkzeugmaschine zur Durchführung des Verfahrens zur Verfügung zu stellen, mit dem das vorstehend genannte Problem gelöst werden kann. Darüber hinaus ist es Aufgabe der vorliegenden Erfindung einen Akkumulator und eine Werkzeugmaschine zur Verfügung zu stellen, um das vorstehend genannte Problem zu lösen. Die Aufgabe wird gelöst durch den Gegenstand des unabhängigen Anspruchs 1 , 2, 3 und 4.

Die Aufgabe wird insbesondere gelöst durch ein Verfahren zum Steuerung eines Akkumulators an einer Werkzeugmaschine, wobei der Akkumulator eine erste Datenschnittstelle sowie einen Aufweckschaltkreis enthält zum Aktivieren einer Steuerungselektronik des Akkumulators und die Werkzeugmaschine eine zweite Datenschnittstelle sowie eine Steuerung enthält, und wobei die Datenschnittstellen über eine erste und zweite Kommunikationsleitung für eine differentielle Kommunikation zwischen dem Akkumulator und der Werkzeugmaschine miteinander verbunden sind.

Erfindungsgemäß enthält das Verfahren die folgenden Verfahrensschritte:

- Einstellen der Steuerungselektronik des Akkumulators in einen Deaktivierungsmodus, sodass kein Strom von dem Akkumulator in die Steuerungselektronik und zu der Werkzeugmaschine fließt;

- Senden wenigstens eines Signals von der Werkzeugmaschine zu dem Akkumulator über die erste und zweite Kommunikationsleitung;

- Aktivieren des Aufweckschaltkreises zum Aktivieren einer Steuerungselektronik durch Detektieren eines Spannungswertes von der ersten oder zweiten Kommunikationsleitung, wobei der Spannungswert entweder dem dominanten oder rezessiven Zustand der ersten oder zweiten Kommunikationsleitung entspricht;

- Einstellen der Steuerungselektronik des Akkumulators in einen Aktivierungsmodus durch den Aufweckschaltkreis; und

- Freigabe einer Stromentnahme von dem Akkumulator durch die Werkzeugmaschine.

Hierdurch kann auf einfache Art und Weise erreicht werden, dass der Aufweckschaltkreis des Akkumulators mit Hilfe der differentiellen Kommunikation ein entsprechendes Signal in Form eines Stromimpulses detektiert, um die Steuerungselektronik des Akkumulators zu reaktivieren. Die dargestellte Lösung ist sowohl platz- als auch kostensparend, da ein bereits vorhandenes Kommunikationssystem verwendet werden kann.

Die erste und zweite Kommunikationsleitung für eine differentielle Kommunikation zwischen dem Akkumulator und der Werkzeugmaschine sind Bestandteile eines Kommunikationssystems. Das Kommunikationssystem kann dabei als CAN-Datenbus ausgestaltet sein. Es ist jedoch auch möglich, dass ein anderes geeignetes Kommunikationssystem für eine differentielle Kommunikation zwischen dem Akkumulator und der Werkzeugmaschine verwendet wird.

Die Freigabe einer Stromentnahme von dem Akkumulator durch die Werkzeugmaschine bedeutet, dass die Werkzeugmaschine mit Hilfe einer Strommesseinrichtung in der Lage ist, den Strom, der von dem Akkumulator zur Versorgung der Werkzeugmaschine bereitgestellt wird, zu messen und eine maximal mögliche Strommenge bzw. ein Versorgungsstrom mit einer maximal möglichen Stromstärke von dem Akkumulator zu der Werkzeugmaschine fließen zu lassen. Hierzu wird der Akkumulator durch die Werkzeugmaschine so eingestellt, dass nur ein maximal möglicher Versorgungsstrom zu der Werkzeugmaschine gelangen kann.

Die Aufgabe wird des Weiteren gelöst durch ein System enthaltend einen Akkumulator und eine Werkzeugmaschine zur Durchführung des Verfahrens, wobei der Akkumulator eine erste Datenschnittstelle sowie einen Aufweckschaltkreis enthält zum Aktivieren einer Steuerungselektronik des Akkumulators und die Werkzeugmaschine eine zweite Datenschnittstelle sowie eine Steuerung enthält, und wobei die Datenschnittstellen über eine erste und zweite Kommunikationsleitung für eine differentielle Kommunikation zwischen dem Akkumulator und der Werkzeugmaschine miteinander verbunden sind.

Darüber hinaus wird die Aufgabe gelöst durch einen Akkumulator zur Durchführung des Verfahrens, wobei der Akkumulator eine erste Datenschnittstelle sowie einen Aufweckschaltkreis enthält zum Aktivieren einer Steuerungselektronik des Akkumulators.

Ferner wird die Aufgabe gelöst durch eine Werkzeugmaschine zur Durchführung des Verfahrens, wobei die Werkzeugmaschine eine zweite Datenschnittstelle sowie eine Steuerung enthält.

Weitere Vorteile ergeben sich aus der folgenden Figurenbeschreibung. In den Figuren sind verschiedene Ausführungsbeispiele der vorliegenden Erfindung dargestellt. Die Figuren, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmässigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.

Es zeigen:

Fig. 1 einen Querschnitt durch eine Werkzeugmaschine mit einem angeschlossenen

Akkumulator; und

Fig. 2 einen Querschnitt durch ein Fussteil der Werkzeugmaschine mit einem angeschlossenen Akkumulator.

Ausführungsbeispiele:

In Figur 1 ist ein erfindungsgemäßes System 1 mit einer Werkzeugmaschine 2 und einem Akkumulator 3 dargestellt. Der Akkumulator 3 ist mit der Werkzeugmaschine verbunden und dient zur Versorgung der elektrischen Verbraucher der Werkzeugmaschine 2 mit elektrischer Energie. Bei der Versorgung fließt elektrischer Strom von dem Akkumulator 3 zu der Werkzeugmaschine 2.

Wie in Figur 1 dargestellt, ist die Werkzeugmaschine 2 in Form eines Akku-Schraubers dargestellt. Gemäß anderer alternativer Ausführungsformen kann die Werkzeugmaschine 2 auch in Form einer Bohrmaschine, einer Säge oder dergleichen ausgestaltet sein.

Die als Akku-Schrauber ausgestaltete Werkzeugmaschine 2 enthält im Wesentlichen ein Gehäuse 4, ein Handgriff 5, ein Fussteil 6, eine Werkzeugaufnahme 7, einen elektrischen Antrieb 8 in Form eines Elektromotors, eine Steuerung 9, ein Getriebe 9a, eine Antriebswelle 1 1 , eine Abtriebswelle 12 und einen Aktivierungsschalter 13.

Der als Elektromotor ausgestaltet elektrische Antrieb 8, das Getriebe 10, die Antriebswelle 11 , die Abtriebswelle 12 und die Steuerung 9 sind in dem Gehäuse 4 positioniert. Der Antrieb 8, das Getriebe 10, die Antriebswelle 1 1 und die Abtriebswelle 12 sind so zueinander und in dem Gehäuse 10 positioniert, dass ein von dem Antrieb 8 erzeugtes Drehmoment an die Abtriebswelle 12 übertragen wird. Die Abtriebswelle 12 überträgt das Drehmoment auf das Getriebe 10, welches wiederum ein Drehmoment an die Antriebswelle 1 1 weitergibt. Über die Antriebswelle 1 1 wird durch Übertragung des Drehmoments die Werkzeugaufnahme 7 angetrieben. Wie in Figur 1 dargestellt, ist in der Werkzeugaufnahme 7 ein Werkzeug 14 in Form eines Bits gehalten. Mit Hilfe des Bits kann eine Schraube in einen Werkstoff eingeschraubt werden. Weder die Schraube noch der Werkstoff sind in den Figuren dargestellt.

Wie weiterhin in Figur 1 gezeigt, enthält das Gehäuse 4 eine Oberseite 4a und eine Unterseite 4b. Der Handgriff 5 enthält ein erstes Ende 5a und ein zweites Ende 5b. An der Unterseite 4b des Gehäuses 4 ist das erste Ende 5a des Handgriffs 5 befestigt. Des Weiteren enthält das Fussteil 6 ein oberes Ende 6a und ein unteres Ende 6b. Das obere Ende 6a des Fussteils 6 ist an dem zweiten Ende 5b des Handgriffs 5 befestigt. Das untere Ende 6b des Fussteils 6 enthält eine mechanische, elektrische und elektronische Schnittstelle 15 und dient zum mechanischen, elektrischen und elektronischen Verbinden mit dem Akkumulator 3. Zur Aufnahme von elektrischen Strom enthält die Schnittstelle 15 eine Anzahl an Stromanschlüssen 16. Die Schnittstelle 15 enthält darüber hinaus Datenanschlüsse 17 zum Senden und Empfangen von Signalen zwischen der Werkzeugmaschine 2 und dem Akkumulator 3. Wie den Figuren 1 und 2 zu entnehmen ist, ist die Steuerung 9 der Werkzeugmaschine 2 in dem Fussteil 6 der Werkzeugmaschine 2 positioniert. Die Steuerung 9 der Werkzeugmaschine 2 dient zum Steuern und Regeln verschiedener Vorgänge in Bezug auf die Werkzeugmaschine 2 sowie in Bezug auf den Akkumulator 3. Die Steuerung 9 steuert insbesondere den Strom bzw. die Stromstärke, die von dem Akkumulator 3 zu der Werkzeugmaschine 2 und insbesondere zum Antreiben des als Elektromotor ausgebildeten Antriebs 8 fließt.

Die Steuerung 9 der Werkzeugmaschine 2 enthält dabei einen MikroController 18 (auch als MCU bezeichnet) sowie eine Datenschnittstelle 19 mit einem ersten Transceiver 20 als Bestandteil eines Kommunikationssystems für eine differentielle Kommunikation zwischen dem Akkumulator 3 und der Werkzeugmaschine 2. Die Datenschnittstelle 19 der Werkzeugmaschine 2 ist dabei eine von insgesamt zwei Datenschnittstellen zu dem Kommunikationssystem für die differentielle Kommunikation zwischen dem Akkumulator 3 und der Werkzeugmaschine 2. Wie nachfolgend noch beschreiben ist enthält der Akkumulator 3 die andere der beiden Datenschnittstelle 29.

Der Akkumulator 3 enthält im Wesentlichen ein Gehäuse 21 mit einer Akku-Schnittstelle 22. In dem Gehäuse 21 des Akkumulators 3 sind eine Vielzahl an Energiespeicherzellen 23 sowie eine Steuerungselektronik 24 mit einem MikroController 25 und einem Aufweckschaltkreis 26 (auch als Wake-Up-Circuit bezeichnet) enthalten. Der Aufweckschaltkreis 26 dient zum Einstellen der Steuerungselektronik 24 von einem Deaktivierungsmodus in einen Aktivierungsmodus. Mit anderen Worten: der Aufweckschaltkreis 26 weckt die Steuerungselektronik 24 wieder auf, nachdem diese eingeschlafen ist.

Der Akkumulator 3 enthält des Weiteren eine Datenschnittstelle 29 mit einem zweiten Transceiver 30 als Bestandteil eines Kommunikationssystems für eine differentielle Kommunikation zwischen dem Akkumulator 3 und der Werkzeugmaschine 2.

Die Temperaturüberwachung des Akkumulators 3 erfolgt mittels eines nicht gezeigten Heißleiters (auch NTC-Widerstand oder NTC-Thermistor genannt), der in dem Akkumulator 3 positioniert ist. Die Energiespeicherzellen 23 können auch als Akku-Zellen bezeichnet werden und dienen zum Aufnehmen, Speichern und Bereitstellen einer elektrischen Energie bzw. einer elektrischen Spannung.

Die Akku-Schnittstelle 22 ist an einer Seite des Gehäuses 21 positioniert. Die Akku-Schnittstelle 22 enthält eine Anzahl an Stromsteckern 27 zum Aufnehmen und Abgeben von elektrischem Strom sowie Datensteckern 28 zum Senden und Empfangen von Signalen zwischen der Werkzeugmaschine 2 und dem Akkumulator 3. Über die Stromstecker 27 kann der elektrische Strom von den Energiespeicherzellen 23 abgegeben werden. Wie in Figur 1 und 2 gezeigt, sind die Stromstecker 27 des Akkumulators 3 mit den Stromanschlüssen 16 der Werkzeugmaschine 2 verbunden. Ebenso sind die Datenstecker 28 des Akkumulators 3 mit den Datenanschlüssen 17 der Werkzeugmaschine 2 verbunden.

Durch die Verbindung kann elektrischer Strom von den Energiespeicherzellen 23 des Akkumulators 3 zu der Werkzeugmaschine 2 fließen. Des Weiteren können Signale zur Kommunikation zwischen dem Akkumulator 3 und der Werkzeugmaschine 2 ausgetauscht werden.

Wie der Figur 1 zu entnehmen ist, ist der Aktivierungsschalter 13 an einer 5c Vorderseite des Handgriffs 5 positioniert. Durch ein Bewegen des Aktivierungsschalters 13 in Richtung A kann ein Signal von dem Aktivierungsschalter 13 an die Steuerung 9 gesendet werden, wodurch die Steuerung 9 wiederum ein Signal an die Steuerungselektronik 24 des Akkumulators 3 sendet. Durch das an die Steuerungselektronik 24 gesendete Signal wird elektrische Energie bzw. elektrischer Strom mit einem bestimmten Stromwert von dem Akkumulator 3 für den elektrischen Verbraucher der Werkzeugmaschine 2 und insbesondere den als Elektromotor ausgebildeten Antrieb 8 freigegeben. Die Werkzeugmaschine 2 hat eine (nicht gezeigte) Stromeinrichtung, mit der die Stromstärke des Versorgungstroms gemessen werden kann. Wenn ein Versorgungsstrom mit einer zulässigen Stromstärke gemessen wird, kann der Versorgungsstrom zu den elektrischen Verbrauchern der Werkzeugmaschine 2 fliessen. Alternativ oder zusätzlich kann die Strommesseinrichtung auch in dem Akkumulator 3 positioniert sein.

Um ein Signal entsprechend der Wegstrecke des Aktivierungsschalters 13 in Richtung A an die Steuerung 9 zu senden, enthält der Aktivierungsschalter 13 ein nicht gezeigtes Potentiometer, auch Poti genannt.

Wenn sich der Aktivierungsschalter 13 wieder in Richtung B bewegt, wird ein entsprechendes Signal mit Hilfe des (nicht gezeigten) Potentiometers an die Steuerung 9 gesendet, sodass kein elektrischer Strom mehr vom Akkumulator 3 zu der Werkzeugmaschine 2 fließt.

Die Kommunikation zwischen dem Akkumulator 3 und der Werkzeugmaschine 2 erfolgt über ein Kommunikationssystem in Form eines CAN-Datenbuses. Zur Teilnahme an dem Kommunikationssystem enthält sowohl der Akkumulator 3 als auch die Werkzeugmaschine 2 jeweils eine Datenschnittstelle 19, 29 mit einem Transceiver 20, 30. Die Transceiver 20, 30 sind dabei als CAN-Transceiver ausgestaltet. Wie in Figur 2 angedeutet ist der Transceiver 20 der Werkzeugmaschine über die Datenschnittstelle und einer ersten Kommunikationsleitung 31 (auch als COM-High- oder CAN-High-Leitung bezeichnet) sowie einer zweiten Kommunikationsleitung 32 (auch als COM-Low- oder CAN-Low-Leitung bezeichnet) und der Datenschnittstelle 29 mit dem Transceiver 30 des Akkumulators 3 verbunden. Wie ebenfalls der Figur 2 zu entnehmen ist, ist der Aufweckschaltkreis 26 des Akkumulators 3 mit der ersten Kommunikationsleitung 31 , d.h. COM-High, verbunden. Alternativ kann der Aufweckschaltkreis 26 des Akkumulators 3 mit der zweiten Kommunikationsleitung 32, d.h. COM-Low, verbunden sein.

In dem Fall, dass sich die Werkzeugmaschine 2 und der Akkumulator 3 für eine gewisse Zeitdauer, d.h. mindestens 2 Minuten, nicht in Anwendung befindet, wird der Akkumulator 3 mit Hilfe der Steuerungselektronik 24 von einem Aktivierungsmodus automatisch in einen Deaktivierungsmodus versetzt. Wenn sich der Akkumulator 3 in dem Deaktivierungsmodus befindet, fließt kein elektrischer Strom von den Energiespeicherzellen 23 zur Steuerelektronik 24 und zu der Werkzeugmaschine 2. Darüber hinaus sind alle möglichen elektrischen Verbraucher des Akkumulators 3, wie z.B. die Steuerungselektronik 24, der Temperatursensor zur Überwachung der Akku-Temperatur oder dergleichen, ausgeschaltet. Der Deaktivierungsmodus dient zum Stromsparen, da die elektrische Spannung in den Energiespeicherzellen 23 keiner Last ausgesetzt ist.

Wenn nach einer bestimmten Zeitdauer die Verwendung der Werkzeugmaschine 2 und des Akkumulators 3 wiederaufgenommen werden soll, muss zunächst der Akkumulator 3 als Energiespender der Werkzeugmaschine 2 von dem Deaktivierungsmodus wieder in den Aktivierungsmodus gebracht werden. Zur erneuten Inbetriebnahme der Werkzeugmaschine 2 wird zunächst der Aktivierungsschalter 13 in Richtung A bewegt. Hierdurch wird ein Signal über die Steuerung 9 der Werkzeugmaschine 2 gesendet. Der Transceiver 20 der Werkzeugmaschine 2 sendet ein Signal (z.B. ein Bit) über die Datenschnittstelle 19, die erste und zweite Kommunikationsleitung 31 , 32 an die Datenschnittstelle 29 und den Transceiver 30 des Akkumulators 3.

Zum Senden eines Signals in Form eines Bits über das Kommunikationssystem, wird sowohl die COM-High-Leitung 31 als auch die COM-Low-Ieitung 32 in einen dominanten Zustand versetzt. Der Aufweckschaltkreis 26 des Akkumulators 3 ist mit der COM-High-Leitung 31 verbunden. Um die Steuerungselektronik 24 des Akkumulators 3 von dem Deaktivierungsmodus wieder in einen Aktivierungsmodus einzustellen, benötigt der Aufweckschaltkreis 26 des Akkumulators 3 eine elektrische Spannung von mindestens 0,9 Volt. Zur Versorgung des Aufweckschaltkreises 26 mit einer ausreichenden elektrischen Spannung wird der Spannungswert von der COM-High-Leitung 31 im dominanten Zustand des als CAN-Datenbuses ausgestalteten Kommunikationssystems von dem Aufweckschaltkreis 26 detektiert. Der Spannungswert der COM-High-Leitung 26 in einem dominanten Zustand beträgt dabei 3,5 Volt, sodass eine ausreichend große Spannung zur Aktivierung des Aufweckschaltkreises 26 zur Verfügung steht. Alternativ ist es auch möglich, dass der Spannungswert mit 1 ,5 Volt der COM-Low bzw. zweite Kommunikationsleitung 32 zur Versorgung des Aufweckschaltkreises 26 mit einer ausreichenden elektrischen Spannung (d.h. größer als 0,9 Volt) verwendet wird. Der Aufweckschaltkreis 26 ist dafür mit der COM-Low bzw. zweite Kommunikationsleitung 32 verbunden.

Der Aufweckschaltkreis 26 stellt nach dem Detektieren des Spannungswerts der COM-High- Leitung bzw. der ersten Kommunikationsleitung 31 im dominanten Zustand die Steuerungselektronik 24 des Akkumulators 3 von dem Deaktivierungsmodus wieder in den Aktivierungsmodus. Entsprechendes gilt, wenn in einer alternativen Ausgestaltungsform der Aufweckschaltkreis 26 mit der COM-Low bzw. zweite Kommunikationsleitung 32 verbunden ist.

Im Aktivierungsmodus wird zur Versorgung der elektrischen Verbraucher, insbesondere des Elektromotors, ein bestimmter Stromwert von den Energiespeicherzellen 23 des Akkumulators 3 an die Werkzeugmaschine 2 gesendet. Darüber hinaus werden auch wieder alle Überwachungsfunktionen des Akkumulators 3, wie z.B. die Temperaturüberwachung, wiederaufgenommen. Alternativ kann zur Aktivierung des Aufweckschaltkreises 26 des Akkumulators 3 auch den Spannungswert der COM-High-Leitung bzw. der ersten Kommunikationsleitung 31 im rezessiven Zustand detektiert werden. Hierbei wird eine Spannung mit 2,5 Volt von der COM-High-Leitung bzw. der ersten Kommunikationsleitung 31 an den Aufweckschaltkreis 26 gesendet. Da zum Aktivieren des Aufweckschaltkreises 22 eine Spannung größer als 0,9 Volt nötig ist, ist auch der Spannungswert der COM-High-Leitung bzw. der ersten Kommunikationsleitung 31 im rezessiven Zustand ausreichend.

Gemäß einer weiteren Alternative kann zur Aktivierung des Aufweckschaltkreises 26 des Akkumulators 3 auch den Spannungswert der COM-Low-Leitung bzw. der zweiten Kommunikationsleitung 32 im rezessiven Zustand detektiert werden. Auch in diesem Fall ist der Spannungswert größer als 0,9 Volt, nämlich ebenfalls 2,5 Volt.