Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR CONVERTING UO3 AND/OR U3O8 INTO HYDRATED UO4
Document Type and Number:
WIPO Patent Application WO/2012/084740
Kind Code:
A1
Abstract:
The invention relates to a method for converting UO3 and/or U3O8 into hydrated UO4 having the formula UO4, nH2O, where n is 2 or 4, including the following consecutive steps: a) preparing an aqueous suspension of a UO3 powder and/or a U3O8 powder; b) adding hydrogen peroxide H2O2 to the aqueous suspension of UO3 and/or U3O8 powder, converting the UO3 and/or U3O8 into hydrated UO4, and precipitating and crystallizing the hydrated UO4 in the suspension; c) recovering the hydrated UO4 precipitate; d) optionally washing the hydrated UO4 precipitate; e) optionally repeating step d); and f) optionally drying the precipitate, wherein the addition of H2O2 to the aqueous suspension is carried out such that the suspension contains a stoichiometric excess of H2O2 with respect to the stoichiometry of the reaction from UO3: UO3 + nH2O + H2O2 → UO4,nH2O+ H2O (1) or of the reaction from U3O8: UO2.67 + 1.33 H2O2 + nH2O → UO4,nH2O+ H2O (2), and the pH of the suspension is maintained in steps a) and b) at a value between 2 and 4.

Inventors:
MOREL BERTRAND (FR)
AMARAGGI DAVID (FR)
ARAB MEHDI (FR)
THOMAS RUDY (FR)
RIVENET MURIELLE (FR)
ABRAHAM FRANCIS (FR)
Application Number:
PCT/EP2011/073132
Publication Date:
June 28, 2012
Filing Date:
December 16, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COMURHEX SOC POUR LA CONVERSION DE L URANIUM EN METAL ET HEXAFLUORURE (FR)
MOREL BERTRAND (FR)
AMARAGGI DAVID (FR)
ARAB MEHDI (FR)
THOMAS RUDY (FR)
RIVENET MURIELLE (FR)
ABRAHAM FRANCIS (FR)
International Classes:
C01B15/047; C22B60/02
Domestic Patent References:
WO2009013759A12009-01-29
WO2009013759A12009-01-29
WO2010051855A12010-05-14
Foreign References:
EP0054014A11982-06-16
FR2438623A11980-05-09
FR2429747A11980-01-25
Attorney, Agent or Firm:
AUGARDE, Eric et al. (FR)
Download PDF:
Claims:
SP39047 Ρ¾

WO 2012/084740 PCT/EP2011/073132

41

REVENDICATIONS

1. Procédé de conversion d'U03 et/ou de U308 5 en UO hydraté de formule UO4, nH20 où n est 2 ou 4, comprenant les étapes successives suivantes :

a) préparation d'une suspension aqueuse d'une poudre de U03 et/ou d'une poudre de U308 ;

b) addition de peroxyde d'hydrogène H2O2 à la 10 suspension aqueuse d'une poudre de U03 et/ou de U308, conversion de l'U03 et/ou du U308 en UO4 hydraté et précipitation, cristallisation du UO4 hydraté dans la suspension ;

c) récupération du précipité, des cristaux 15 d'U04 hydraté ;

d) éventuellement, lavage du précipité, des cristaux de UO4 hydraté récupéré (s) ;

e) éventuellement, répétition de l'étape d) ; f) éventuellement, séchage du précipité, des 20 cristaux ;

dans lequel l'addition du H2O2 à la suspension aqueuse est effectuée de façon à ce que la suspension contienne un excès stœchiométrique de H2O2 par rapport à la stœchiométrie de la réaction à partir d'U03 :

25 U03 + n¾0+ H202 " U04,nH20+ H20 (1) ou de la réaction à partir d'U308

U02, 67 + 1, 33 H202 + n¾0- U04,nH20+ H20 (2), et le pH de la suspension est maintenu dans les étapes a), et b) à une valeur comprise entre 2 et 3.

30

2. Procédé selon la revendication 1, dans lequel le pH de la suspension est ajusté lors de SP39047 Ρ¾

WO 2012/084740 PCT/EP2011/073132

42 l'étape a) à une valeur comprise entre 2 et 3 en ajoutant un acide à la suspension.

3. Procédé selon la revendication 1, dans 5 lequel l'acide est choisi parmi l'acide oxalique, l'acide sulfurique, et leurs mélanges.

4. Procédé selon la revendication 1, dans lequel l'excès stœchiométrique de H2O2 est de plus de 1

10 à 10, de préférence de 1,5 à 3, par rapport à la stœchiométrie de la réaction (1), et de plus de 1,33 à 10 par rapport à la stœchiométrie de la réaction (2) .

5. Procédé selon l'une quelconque des 15 revendications précédentes, dans lequel le peroxyde d'hydrogène est ajouté sous la forme d'une solution aqueuse à une concentration de 30% à 70% en poids.

6. Procédé selon l'une quelconque des 20 revendications précédentes, dans lequel la suspension aqueuse d'U03 et/ou de U308 a une concentration en uranium de 10 à 500 g/L (gU/L) , de préférence de 100 à 200 g/L pour l'U03, et de 10 à 500 g/L, de préférence de 100 à 200 g/L, par exemple de 250 g/L pour l'UsOs-

25

7. Procédé selon l'une quelconque des revendications précédentes, dans lequel les étapes a) et b) sont réalisées sous agitation.

30 8. Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de l'étape SP39047 Ρ¾

WO 2012/084740 PCT/EP2011/073132

43 a) et/ou de l'étape b) des anions complexants sont ajoutés à la suspension.

9. Procédé selon la revendication 8, dans 5 lequel les anions complexants sont choisis parmi les anions sulfates, les anions oxalates, et les mélanges de ceux-ci.

10. Procédé selon l'une quelconque des 10 revendications précédentes, dans lequel la durée de l'étape b) est choisie de façon à ce que la conversion de l'U03 et/ou de U308 en UO hydraté soit totale ou substantiellement totale, par exemple supérieure à 99%, voire 99,9%.

15

11. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape b) comprend les étapes successives bl) et b2) suivantes :

bl) addition de peroxyde d'hydrogène H2O2 à la 20 suspension aqueuse d'une poudre de U03 et/ou de U308, de préférence sous agitation, puis arrêt de 1 ' addition ;

b2) mûrissement de la suspension, de préférence sous agitation.

25

12. Procédé selon la revendication 11, dans lequel la durée de l'étape bl) est de 1 à 8 heures, de préférence de 1 à 3 heures, et le durée de l'étape b2) est de 1 à 24 heures, de préférence de 1 à 3 heures.

30 SP39047 Ρ¾

WO 2012/084740 PCT/EP2011/073132

44

13. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'addition de peroxyde d'hydrogène H2O2 est réalisée pendant toute la durée de l'étape b) .

5

14. Procédé selon la revendication 13, dans lequel la durée de l'étape b) est de 1 à 8 heures, de préférence de 1 à 5 heures.

15. Procédé selon l'une quelconque des revendications précédentes, dans lequel, lors des étapes a) et/ou b) la suspension est soumise à l'action d' ultrasons .

15 16. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'eau de la suspension est éliminée par évaporation et le précipité, les cristaux de UO4 hydraté, sont récupérés sous la forme d'un solide sec, par exemple d'une

20 humidité inférieure à 7% en masse, généralement constitué de UO4, 2H20.

17. Procédé selon l'une quelconque des 25 revendications 1 à 15, dans lequel lors de l'étape c) , le précipité, les cristaux de UO4 hydraté sont séparés de la suspension par une opération de séparation solide/liquide, par exemple une opération de filtration ou de centrifugation, sous la forme d'un solide humide, 30 par exemple d'une humidité de 30 à 80% en masse, généralement constitué de UO4, 4¾0. SP39047 Ρ¾

WO 2012/084740 PCT/EP2011/073132

45

18. Procédé selon la revendication 17, dans lequel le solide humide est lavé au moins une fois avec un liquide de lavage.

5 19. Procédé selon la revendication 18, dans lequel le liquide de lavage est choisi parmi l'eau déminéralisée ; les solutions aqueuses acidifiées, de préférence à un pH de 2 à 3, par exemple avec de l'acide sulfurique ; les solutions contenant un agent 10 complexant des impuretés contenues dans le solide humide .

20. Procédé selon la revendication 19, dans lequel le rapport de lavage défini par le rapport de la

15 masse du liquide de lavage sur la masse du solide humide est de 1 à 30, de préférence de 1 à 10.

21. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'oxyde UO3

20 et/ou l'oxyde U308 se présentent sous la forme d'un concentré uranifère appelé « Yellow Cake », ou l'oxyde U03 et/ou l'oxyde U308 proviennent du séchage, puis de la calcination d'un concentré d'uranium à base par exemple d'UC hydraté, de diuranate d'ammonium, ou de

25 tricarbonate d'uranium obtenu par précipitation dans un réacteur, notamment dans un réacteur à lit fluidisé, à partir d'une solution uranifère.

Description:
PROCÉDÉ DE CONVERSION D'UOg ET/OU DE U 3 O g EN U0 4 HYDRATÉ

DESCRIPTION

DOMAINE TECHNIQUE

L' invention concerne un procédé de conversion d'U0 3 ou de U 3 0 8 en UO 4 hydraté.

É TAT DE LA TECHNIQUE ANTÉRIEURE

Le traitement des minerais d'uranium a pour but d'extraire l'uranium des minerais, de le purifier et de le combiner de façon à obtenir un produit appelé concentré, ou uranate ou encore « Yellow Cake » riche en uranium, par exemple comprenant plus de 70% en poids d'uranium.

Les minerais d'uranium sont tout d'abord concassés, puis broyés, et ils sont ensuite soumis à une opération de mise en solution de l'uranium à l'aide d'une base ou d'un acide, comme par exemple du carbonate de sodium ou de l'acide sulfurique, appelée attaque ou lixiviation.

Après purification et concentration des solutions provenant de la lixiviation du minerai, l'uranium est récupéré sous la forme de liqueurs, solutions, uranifères, uraniées, généralement acides, en milieu sulfates par exemple.

Ces solutions peuvent aussi être en milieu chlorure, ammoniacal, nitrate ou carbonate selon l'étape préalable de purification-concentration. Le concentré d'uranium ou « yellow cake », est obtenu à partir de ces solutions liqueurs, uranifères par précipitation à l'aide de réactifs de précipitation tels que la soude, la magnésie, l'ammoniac, l'uranyl tricarbonate d'ammonium, et le peroxyde d'hydrogène H 2 O 2 , filtration et séchage.

Selon le réactif de précipitation utilisé, le concentré d'uranium ou « yellow cake » sera ainsi respectivement à base d'uranate de sodium, d'uranate de magnésium, de diuranate d'ammonium, d'uranyl tricarbonate d'ammonium, ou de peroxyde d'uranium.

Le concentré d'uranium ou « yellow cake » ainsi préparé est ensuite transformé notamment en UF 4 puis en UF 6 .

Les concentrés uranifères tels que le « yellow cake » dont on a décrit la préparation plus haut, mais aussi d'autres concentrés uranifères contenant du trioxyde d'uranium ou de l'octa-oxyde d'uranium uranifères ne sont pas aptes à une conversion directe notamment en UF6.

En effet, d'une part ils contiennent trop d'impuretés pour l'étape ultérieure de séparation isotopique (également dénommée enrichissement) par rapport aux normes ASTM sur l'enrichissement, d'autre part la présence de certains composés peut être rédhibitoire pour le procédé de fluoration.

Par ailleurs, certains oxydes présentent une réactivité insuffisante pour l'étape de réduction/hydrofluoration conduisant à l'UF

Pour remédier à tous ces problèmes, on purifie les concentrés avant de les convertir. On connaît ainsi un procédé de purification dans lequel le « yellow cake » est tout d'abord dissout dans de l'acide nitrique puis la solution est envoyée dans un appareil d'extraction liquide-liquide à contre- courant dans lequel le nitrate d'uranyle de la solution est extrait en utilisant un mélange de TBP et de kérosène .

Ce procédé est complexe et utilise des nitrates et des composés organiques volatils qu'il faut gérer.

II faut notamment réaliser un traitement du solvant usé et des effluents nitratés.

Le procédé de précipitation de l'uranium par H 2 O 2 est connu pour être décontaminant vis-à-vis de nombreuses impuretés.

Cependant, tous les procédés connus de précipitation de l'uranium par H 2 O 2 mettent en œuvre une dissolution préalable de l'uranium, avant reprécipitation de l'υθ ,4¾0 par addition d'eau oxygénée.

Or, cette technique présente les deux inconvénients majeurs suivants :

l'addition d'un acide et donc des anions associés comme les sulfates, chlorures, nitrates, etc. lors de l'étape de dissolution. Ces anions constituent des impuretés qui vont se révéler gênantes dans les étapes de conversion ultérieures,

l'addition d'une base et donc des cations associés comme les cations sodium, potassium, ammonium, lors de la précipitation de l'U0 hydraté pour maintenir le pH constant. Ces cations constituent des impuretés également très gênantes pour la formation de l'UF (Na, K...) , ou bien génèrent des effluents gazeux.

Certaines impuretés ajoutées peuvent suivre partiellement l'uranium, malgré les lavages répétés, et sont gênantes pour le procédé de conversion en UF .

En particulier, le sodium et le potassium forment des eutectiques tandis que les sulfates libèrent du ¾S corrosif.

Parmi les documents qui décrivent la précipitation par H 2 O 2 à partir de concentrés, à des fins de purification, on peut mentionner le document WO-A1-2009/013759, qui décrit un procédé de raffinage du « yellow cake » pour préparer de l'uranium de qualité nucléaire dans lequel on réalise une précipitation en une seule étape pour éliminer simultanément les métaux lourds, le bore et les autres terres rares. Dans ce procédé, on commence par dissoudre le « yellow cake » dans de l'acide nitrique sous agitation modérée pour produire une solution de nitrate d'uranyle, et on ajoute du peroxyde d'hydrogène à une température et un pH prédéfinis pour précipiter sélectivement du peroxyde d'uranium hydraté.

Le procédé de ce document comporte une étape préalable de dissolution du concentré par de l'acide nitrique avec tous les inconvénients d'une telle étape énumérés plus haut.

Le document FR-A-2 438 623 concerne un procédé de purification du peroxyde hydraté d'uranium VI dans lequel on fait digérer un concentré d'uranium dans une solution aqueuse acide, notamment une solution d'acide nitrique, en présence d'un agent complexant les fluorures de façon à obtenir une solution aqueuse d'uranium, et on fait réagir cette solution aqueuse d'uranium avec un peroxyde pour précipiter le peroxyde hydraté d'uranium VI.

De nouveau, le procédé de ce document comporte une étape préalable de dissolution du concentré par un acide tel que de l'acide nitrique avec tous les inconvénients d'une telle étape énumérés plus haut.

Le document FR-A-2 429 747 a trait à un procédé de préparation de peroxyde hydraté d'uranium VI à partir de tétrafluorure hydraté d'uranium, dans lequel on fait digérer le tétrafluorure hydraté d'uranium dans une solution acide notamment une solution d' acide nitrique, en présence d'un agent de précipitation des fluorures, pour précipiter les ions fluorures et obtenir une solution aqueuse d'uranium, on filtre et on ajuste le pH de la solution aqueuse d'uranium et on fait réagir la solution aqueuse d'uranium avec un peroxyde pour précipiter le peroxyde hydraté d'uranium VI .

Là-encore, le procédé de ce document comporte une étape préalable de dissolution du concentré par un acide, notamment de l'acide nitrique, avec tous les inconvénients d'une telle étape énumérés plus haut.

II existe donc, au regard de ce qui précède, un besoin pour un procédé de conversion d'UC>3 ou de U 3 O 8 en UO 4 hydraté qui permette de préparer du peroxyde d'uranium hydraté qui présente une teneur en impuretés faible, en particulier une teneur en impuretés suffisamment faible pour que ce peroxyde d'uranium hydraté puisse être converti directement en UF 4 puis en UF 6 .

Il existe plus précisément un besoin pour un tel procédé qui permette de préparer de I'UC hydraté qui satisfait totalement ou en grande partie à la norme ASTM C-787 relative à la pureté de I'UC hydraté pour la conversion en UF 6 .

Ce procédé doit aussi permettre de préparer un peroxyde d'uranium hydraté présentant une surface spécifique élevée et une grande réactivité en vue de sa conversion en UF .

Il existe encore un besoin pour un tel procédé qui soit simple, fiable, sûr et qui comporte un nombre limité d'étapes.

II existe aussi un besoin pour un procédé qui mette en œuvre des réactifs non toxiques, ne causant pas de préjudice à l'environnement et d'un faible coût.

Le but de la présente invention est de fournir un procédé de conversion d'U0 3 ou de U 3 0 8 en UO 4 hydraté qui réponde à l'ensemble des besoins et exigences, énumérés plus haut.

Le but de la présente invention est encore de fournir un tel procédé qui ne présente pas les inconvénients, défauts, limitations et désavantages des procédés de l'art antérieur, tel que représenté notamment par les documents mentionnés plus haut, et qui résolve les problèmes des procédés de l'art antérieur .

EXPOSÉ DE L' INVENTION

Ce but, et d'autres encore, sont atteints conformément à l'invention par un procédé de conversion d'U0 3 et/ou de U 3 0 8 en UO 4 hydraté de formule UO 4 , η¾0 où n est 2 ou 4, comprenant les étapes successives suivantes :

a) préparation d'une suspension aqueuse d'une poudre de U0 3 et/ou d'une poudre de U 3 0 8 ;

b) addition de peroxyde d'hydrogène H 2 O 2 à la suspension aqueuse d'une poudre de U0 3 et/ou de U 3 0 8 , conversion de l'U0 3 et/ou du U 3 0 8 en UO 4 hydraté et précipitation, cristallisation du UO 4 hydraté dans la suspension ;

c) récupération du précipité, des cristaux d'UC>4 hydraté ;

d) éventuellement, lavage du précipité, des cristaux de UO 4 hydraté récupéré (s) ;

e) éventuellement, répétition de l'étape d) ; f) éventuellement, séchage du précipité, des cristaux ;

dans lequel l'addition de H 2 O 2 à la suspension aqueuse est effectuée de façon à ce que la suspension contienne un excès stœchiométrique de H 2 O 2 par rapport à la stœchiométrie de la réaction à partir d'U0 3 :

U0 3 + H 2 0 2 + n¾0 - U0 4 ,nH 2 0 + H 2 0 (1) ou de la réaction à partir d'U 3 0 8 :

U0 2 , 67 + 1, 33 H 2 0 2 + n¾0 - U0 4 ,nH 2 0 + H 2 0 (2), et le pH de la suspension est maintenu dans les étapes a) et b) à une valeur comprise entre 2 et 3 (2 et 3 inclus) .

Avantageusement, le pH de la suspension est ajusté lors de l'étape a) à une valeur comprise entre 2 et 3 en ajoutant un acide à la suspension. Avantageusement, ledit acide est choisi parmi l'acide oxalique, l'acide sulfurique et leurs mélanges.

Avantageusement, l'excès stœchiométrique de H 2 O 2 est de plus de 1 à 10, de préférence de 1,5 à 3, par rapport à la stœchiométrie de la réaction (1), et de plus de 1,33 à 10 par rapport à la stœchiométrie de la réaction ( 2 ) .

Avantageusement, le peroxyde d'hydrogène est ajouté sous la forme d'une solution aqueuse à une concentration de 30% à 70% en poids.

Avantageusement, la suspension aqueuse d'UC>3 et/ou de U 3 O 8 a une concentration en uranium de 10 à 500 g/L (gU/L) , de préférence de 100 à 200 g/L pour l'U03, et de 10 à 500 g/L, de préférence de 100 à 200 g/L par exemple de 250 g/L pour l'UsOs-

Avantageusement, les étapes a) et b) peuvent être réalisées sous agitation.

Avantageusement, lors de l'étape a) et/ou de l'étape b) , des anions complexants sont ajoutés à la suspension.

Avantageusement, lesdits anions complexants sont choisis parmi les anions sulfates, les anions oxalates, et les mélanges de ceux-ci.

Avantageusement, la durée de l'étape b) est choisie de façon ce que la conversion de l'U03 et/ou de U 3 0 8 en UO 4 hydraté soit totale ou substantiellement totale, par exemple supérieure à 99%, voire 99,9%.

Dans une forme de réalisation, l'étape b) peut comprendre les étapes successives bl) et b2) suivantes : bl) addition de peroxyde d'hydrogène H 2 O 2 à la suspension aqueuse d'une poudre de U0 3 et/ou de U 3 0 8 , de préférence sous agitation, puis arrêt de l'addition ;

b2) mûrissement de la suspension, de préférence sous agitation.

Avantageusement, la durée de ladite étape bl) peut être de 1 à 8 heures, de préférence de 1 à 3 heures, et la durée de l'étape b2) peut être de 1 à 24 heures, de préférence de 1 à 3 heures.

Dans une autre forme de réalisation, l'addition de peroxyde d'hydrogène H 2 O 2 est réalisée pendant toute la durée de l'étape b) , c'est-à-dire que l'étape b2) est omise.

Dans cette forme de réalisation, la durée de l'étape b) est généralement de 1 à 8 heures, de préférence de 1 à 5 heures.

Avantageusement, lors des étapes a) et/ou b) la suspension est soumise à l'action d'ultrasons.

Dans ce cas notamment, l'eau de la suspension peut être éliminée par évaporation, et le précipité, les cristaux de UO 4 hydraté, sont alors récupérés sous la forme d'un solide sec, par exemple d'une humidité inférieure à 7% en masse, généralement constitué de U0 4 ,2H 2 0, ou bien, lors de l'étape c) , le précipité, les cristaux de UO 4 hydraté sont séparés de la suspension par une opération de séparation solide/liquide, par exemple une opération de filtration ou de centrifugation, sous la forme d'un solide humide, par exemple d'une humidité de 30% à 80% en masse, généralement constitué de UO 4 , 4¾0. Par contre, 1 ' évaporation ne permettra pas généralement d'éliminer les impuretés.

Avantageusement, ledit solide humide est lavé au moins une fois avec un liquide de lavage.

Avantageusement, ledit liquide de lavage est choisi parmi l'eau déminéralisée ; les solutions aqueuses acidifiées, de préférence à un pH de 2 à 3, par exemple avec de l'acide sulfurique ; les solutions contenant un agent complexant des impuretés contenues dans le solide humide.

Avantageusement, le rapport de lavage défini par le rapport de la masse du liquide de lavage sur la masse du solide humide est de 1 à 30, de préférence de 1 à 10.

Avantageusement, l'oxyde U0 3 et/ou l'oxyde U 3 0 8 se présente (nt) sous la forme d'un concentré uranifère appelé « Yellow Cake », ou l'oxyde U0 3 et/ou l'oxyde U 3 O 8 proviennent du séchage, puis de la calcination d'un concentré d'uranium à base par exemple d'UC hydraté, de diuranate d'ammonium, ou de tricarbonate d'uranium obtenu par précipitation dans un réacteur, notamment dans un réacteur à lit fluidisé, à partir d'une solution uranifère.

Le procédé selon l'invention peut être défini comme un procédé de conversion directe sans dissolution préalable de l'U 3 0 8 et/ou du U0 3 par addition de H 2 O 2 à une suspension aqueuse d'une poudre de U 3 0 8 et/ou d'une poudre de U0 3 .

Le procédé selon l'invention comporte une suite d'étapes spécifiques qui n'a jamais été décrite dans l'art antérieur. Le procédé selon l'invention se distingue fondamentalement des procédés de l'art antérieur, en ce que l'on ne réalise aucune dissolution préalable de l'U 3 0 8 et/ou du U0 3 avant d'effectuer leur conversion par addition de peroxyde d'hydrogène.

La conversion de l'U 3 0 8 et/ou du U0 3 en UO 4 hydraté est ainsi, dans le procédé selon l'invention, réalisée en dispersion et non en solution.

Le procédé selon l'invention, qui ne comporte pas d'étape de dissolution préalable de l'uranium ne présente pas tous les inconvénients dus à cette étape de dissolution préalable. En particulier, le procédé selon l'invention évite ainsi la formation de nombreuses impuretés qui peuvent s'avérer extrêmement gênantes dans les étapes ultérieures de conversion de l'UC hydraté, par exemple en UF .

Tous les procédés comparables de l'art antérieur comportent une telle étape de dissolution, et il n'existe aucune indication dans l'art antérieur qui aurait pu conduire l'homme du métier à supprimer cette étape de dissolution.

Le procédé selon l'invention est en outre défini par le fait que la suspension contient un excès stœchiométrique de H 2 O 2 par rapport aux réactions (1) et (2), ce qui permet d'obtenir une conversion totale ou quasi-totale.

Le procédé selon l'invention est en outre caractérisé en ce que le pH de la suspension est maintenu dans les étapes a) et b) à une valeur spécifique comprise entre 2 et 3. La sélection de cette plage de pH très réduite permet d'une part d'éviter les risques de redissolution de l'UC hydraté aux pH trop acides, généralement inférieurs à 2, et d'autre part d'éviter les risques de formation de composés autres que l'UC hydraté aux pH plus basiques, généralement supérieurs à 3, ainsi que la précipitation d'impuretés suivant l'uranium.

Le procédé selon l'invention ne présente pas les inconvénients des procédés de l'art antérieur et apporte une solution aux problèmes des procédés de l'art antérieur.

Ainsi, le procédé selon l'invention permet de préparer du peroxyde d'uranium ou du peroxyde d'uranium hydraté qui présente une teneur en impuretés faibles, en particulier une teneur en impuretés suffisamment faible pour que ce peroxyde d'uranium ou ce peroxyde d'uranium hydraté puisse être converti directement en UF 4 puis en UF 6 .

Le procédé selon l'invention permet notamment de préparer de l'UC hydraté qui satisfait totalement ou en grande partie à la norme ASTM C-787 relative à la pureté de l'UC hydraté pour la conversion en UF6.

Le procédé selon l'invention permet, en outre, de préparer un peroxyde d'uranium qui présente une réactivité élevée pour une conversion rapide en UF 4 .

En effet, le procédé selon l'invention permet d'obtenir un UO 4 hydraté ayant une surface spécifique élevée, pouvant aller jusqu'à 30 m 2 /g.

L' invention va maintenant être décrite de manière détaillée dans la description détaillée qui suit en liaison notamment avec des modes de réalisation préférés. Cette description est donnée à titre illustratif et non limitatif, en référence aux dessins j oints .

BRÈVE DESCRIPTION DES DESSINS

La Figure 1 représente le spectre DRX de la poudre d'uranium purifiée sous forme d'U0 .2H 2 0 obtenue dans l'exemple 1.

- La Figure 2 représente le spectre DRX de la poudre d'uranium purifiée sous forme d'U0 .2H 2 0 obtenue dans l'exemple 2.

La Figure 3 représente le spectre DRX de la poudre d'uranium purifiée sous forme d'U0 .2H 2 0 obtenue dans l'exemple 4.

La Figure 4 est une photographie prise au microscope électronique à balayage (MEB) des aiguilles nanométriques d'U0 .2H 2 0 d'une taille de 200 nm obtenues dans l'exemple 1.

L'échelle indiquée sur la Figure 4 représente

200 nm.

La Figure 5 est une photographie prise au microscope électronique à balayage des aiguilles d'U0 4 .2H 2 0 d'une taille de 1 μπι à 2 μπι, obtenues dans 1 ' exemple 2.

L'échelle indiquée sur la Figure 5 représente

200 nm.

La Figure 6 est une photographie prise au microscope électronique à balayage des agglomérats d'U0 4 .2H 2 0 d'une taille de 100 nm à 200 nm, obtenus dans 1 ' exemple 6.

L'échelle indiquée sur la Figure 6 représente

200 nm. EXPOSÉ DÉ TAILLÉ DE MODES DE RÉALISATION PARTICULIERS

Dans la première étape du procédé selon l'invention, on prépare une suspension aqueuse d'une poudre de trioxyde d'uranium UO3 et/ou d'une poudre d' octa-oxyde d'uranium U 3 0 8 .

Le procédé selon l'invention peut être mis en œuvre avec toutes sortes de trioxyde d'uranium UO3 et/ou d' octa-oxyde d'uranium U 3 0 8 , quelle que soit leur origine et la forme sous laquelle ils se présentent.

Ces oxydes peuvent, par exemple, se présenter sous la forme de concentrés appelés « Yellow Cake ».

Ces oxydes peuvent aussi provenir du séchage, puis de la calcination d'un concentré d'uranium à base par exemple d'UC hydraté, de diuranate d'ammonium, ou de tricarbonate d'uranium par précipitation dans un réacteur, notamment dans un réacteur à lit fluidisé, à partir d'une solution uranifère.

Un procédé de préparation d'une poudre de UO 3 ou d'une poudre de U 3 O 8 par séchage puis calcination d'un concentré d'uranium à base d'UC hydraté, de diuranate d'ammonium ou de tricarbonate d'uranium préalablement obtenu par précipitation en lit fluidisé est décrit dans le document WO-A1-2010/051855 à la description duquel on pourra se référer.

Les poudres de U0 3 ou de U 3 0 8 obtenues dans ce document présentent du fait de la préparation du concentré d'uranium dans un lit fluidisé, des propriétés particulièrement avantageuses.

Les oxydes sous la forme de concentrés appelés

« Yellow Cake » ou les oxydes provenant du séchage et de la calcination d'un concentré d'uranium obtenu de préférence par précipitation en lit fluidisé se présentent généralement sous la forme de poudres et peuvent être utilisés directement dans le procédé selon l'invention, et être mis en suspension dans de l'eau.

Toutefois, il peut être avantageux de réaliser un broyage préalable des poudres d'oxyde afin d'obtenir une granulométrie particulièrement fine, par exemple de l'ordre du micromètre.

Les poudres mises en suspension contiennent généralement des impuretés et le procédé selon l'invention a notamment pour but de réduire la teneur en ces impuretés dans le peroxyde d'uranium hydraté obtenu .

De préférence, on cherche à obtenir par le procédé selon l'invention un peroxyde d'uranium hydraté dont les teneurs en impuretés soient compatibles avec sa transformation en UF6 et dont les teneurs en impuretés satisfont la norme ASTM C-787.

La poudre de U 3 O 8 peut contenir une ou plusieurs parmi les impuretés suivantes, par exemple dans les teneurs suivantes, exprimées en ppm/U :

As : 102

Ca : 1383

Si : 2312

Zr : 316

S0 4 : 29205

Mo : 1109

Na : 20 La poudre de UO3 peut contenir une ou plusieurs parmi les impuretés suivantes, par exemple dans les teneurs suivantes exprimées en ppm/U :

Na : 404

Ca : 407

Mo : 9

V : 5

W : 2

Cr : 30

Le réacteur utilisé pour mettre en œuvre le procédé selon l'invention et réaliser notamment les étapes a) et b) est généralement un réacteur parfaitement agité muni généralement d'un agitateur à hélice, par exemple d'une hélice tripale.

Le réacteur peut être pourvu en outre de contre-pales ou déflecteurs.

Le volume du réacteur peut être facilement choisi par l'homme du métier en fonction du volume de suspension que l'on souhaite préparer.

Le réacteur peut, en outre, être pourvu de capteurs et de dispositifs pour mesurer les valeurs de paramètres tels que le pH et la température de la suspension .

La suspension est généralement préparée en introduisant une quantité connue de poudre d'oxyde (s) dans le réacteur.

On ajoute ensuite à cette quantité connue d'oxyde, la quantité d'eau déminéralisée voulue pour obtenir une suspension ayant la concentration souhaitée . Il est bien évident que l'on peut aussi commencer par introduire l'eau déminéralisée dans le réacteur, puis ajouter la poudre d'oxyde à l'eau déminéralisée .

La concentration en oxyde (s) de la suspension est généralement de 10 à 500 gU/L, de préférence de 100 à 200 gU/L.

Le pH de l'eau déminéralisée est ajusté à une valeur de 2 à 3 par addition d'un acide ou d'un mélange d'acides.

Ce (s) acide (s) peut (peuvent) être tout acide minéral ou organique.

Comme on le verra plus loin, on préfère un acide dont l'anion a en outre une action complexante qui améliore la cinétique de la réaction.

Les acides préférés sont l'acide sulfurique, l'acide oxalique, et leurs mélanges.

D'autres acides sont par ailleurs utilisables pour ajuster le pH mais l'acide sulfurique présente l'avantage de ne pas introduire d'éléments gênants vis- à-vis de la pureté nucléaire de l'UFe car il n'existe pas de spécifications ASTM portant sur le soufre.

Par ailleurs, la vitesse de conversion en UO hydraté est limitée par la formation d'un intermédiaire réactionnel (ion uranyle UO 2 2+ ) mais peut être accélérée par l'utilisation d'au moins un anion complexant comme l'anion sulfate ou l'anion oxalate ou encore l'anion citrate, et/ou, on le verra plus loin, par l'application d'ultrasons.

On peut donc ajouter un composé fournissant cet anion complexant lors de l'étape a) et/ou de l'étape b) du procédé selon l'invention. Dans le cas du soufre, le rapport optimal S/U est de 0,125.

On utilisera de préférence l'acide sulfurique en tant que composé fournissant l'anion complexant pour la mise en suspension de l'oxyde d'uranium afin d'obtenir des cinétiques de conversion rapide.

La poudre et l'eau déminéralisée ayant été introduites dans le réacteur, on débute l'agitation pour mettre en suspension la ou les poudre (s) dans l'eau déminéralisée.

La vitesse de l'agitation est réglée pour permettre une mise en suspension efficace de la poudre.

L'agitation est poursuivie pendant toute la durée de la conversion en UO hydraté pour permettre une cristallisation complète de l'uranium de départ.

On peut alors commencer à ajouter de l'eau oxygénée dans la suspension.

L'addition d'eau oxygénée peut se faire à l'aide de tout dispositif adéquat permettant de contrôler le débit d'eau oxygénée introduit dans le réacteur .

L'addition d'eau oxygénée est également réalisée de préférence sous agitation.

Le peroxyde d'hydrogène est généralement ajouté sous la forme d'une solution aqueuse à une concentration de 30% à 70% en poids.

La quantité totale d'eau oxygénée ajoutée est telle, conformément à l'invention, que l'excès stœchiométrique de H 2 O 2 par rapport à l'uranium initial soit de plus de 1 à 10, de préférence de 1,5 à 3, par rapport à la stœchiométrie de la réaction (1) suivante, et de plus de 1,33 à 10 par rapport à la stœchiométrie de la réaction (2) suivante :

U0 3 + H 2 0 2 + n¾0 - U0 4 ,nH 2 0+ H 2 0 (1) U0 2 , 67 + 1, 33 H 2 0 2 + n¾0 - U0 4 ,nH 2 0 + H 2 0 (2)

La réaction entre les oxydes et l'eau oxygénée est exothermique et on constate par exemple une augmentation de la température du bain d'environ 10°C.

Dans une forme de réalisation, on réalise les étapes successives bl) et b2) suivantes :

bl) addition, comme décrit plus haut, de peroxyde d'hydrogène H 2 0 2 à la suspension aqueuse d'une poudre de U0 3 et/ou de U 3 0 8 , de préférence sous agitation, puis arrêt de l'addition ;

b2) mûrissement de la suspension, de préférence sous agitation.

Au cours de l'étape bl), on peut estimer qu'une certaine conversion en peroxyde d'uranium hydraté se produit, mais que cette conversion n'est pas totale.

L'étape bl) peut être qualifiée d'étape de nucléation, cristallisation, formation des cristallites de peroxyde d'uranium hydraté.

Au cours de l'étape b2), la conversion est poursuivie jusqu'à ce que la conversion de l'UC>3 et/ou de U 3 0 8 en UO 4 hydraté soit totale ou substantiellement totale, par exemple supérieure à 90%, voire 99,9%.

L'étape b2) peut être qualifiée d'étape de mûrissement, croissance des cristallites obtenus lors de 1 ' étape bl ) .

La durée de ladite étape bl) peut être de 1 à

8 heures, de préférence de 1 à 3 heures, et la durée de l'étape b2) peut être de 1 à 24 heures, de préférence de 1 à 3 heures.

La durée totale des étapes bl) et b2) est telle que la conversion en peroxyde d'uranium hydraté soit totale ou substantiellement totale.

Dans une autre forme de réalisation, on ne réalise pas d'étape de mûrissement à l'issue de l'étape bl) et l'étape b2) est omise.

Il est à noter que lors de la réaction de l'eau oxygénée avec les oxydes, le pH varie mais demeure globalement stable, constant, à la valeur à laquelle il avait été ajusté avant l'addition de l'eau oxygénée par addition d'acide, ce qui signifie qu'il n'est généralement pas nécessaire d'ajouter encore de l'acide lors de l'étape b) afin de contrôler le pH à la valeur voulue .

En fait, on peut estimer qu'une certaine régulation du pH est induite par l'addition d'H202 à l'U0 3 et à l'U 3 0 8 .

A la fin de la réaction, la conversion étant totale ou substantiellement totale, le pH se stabilise généralement à une valeur par exemple de 1,6 à 2.

A l'issue de l'étape b) , la conversion en peroxyde d'uranium hydraté étant totale ou substantiellement totale, on récupère le précipité, les cristaux d'UC hydraté, généralement sous la forme tétrahydraté UO 4 , 4¾0 ou éventuellement sous la forme dihydraté UO 4 , 2¾0, notamment dans le cas où la suspension a été soumise à l'action d'ultrasons.

On peut dans une première variante de cette étape c) de récupération, récupérer, recueillir, le précipité, les cristaux d'UC hydraté en éliminant l'eau de la suspension par évaporation de celle-ci, et le précipité, les cristaux de UO 4 hydraté, sont alors récupérés sous la forme d'un solide sec, généralement d'une humidité inférieure à 7% en masse, généralement directement dans le réacteur sans qu' il soit nécessaire de mettre en œuvre d'opération de séparation liquide/solide telle qu'une filtration. Les cristaux de UO 4 hydraté récupérés sont dans cette variante généralement des cristaux de UO 4 , 2¾0.

Cette première variante est en particulier mise en œuvre, comme on le décrit en détail plus bas, dans le cas où la suspension est soumise à l'action des ultrasons .

On peut dans une seconde variante de cette étape c) de récupération, récupérer, recueillir, le précipité, les cristaux de UO 4 hydraté en les séparant de la suspension par une opération de séparation liquide-solide sous la forme d'un solide humide, par exemple d'une humidité de 30% à 80% en masse, aussi appelé gâteau.

Les cristaux de UO 4 hydraté récupérés sont dans cette seconde variante généralement des cristaux de U0 4 , 4H 2 0.

Cette opération de séparation liquide-solide peut être une opération de filtration de la suspension.

Cette opération de filtration peut être réalisée sous vide ou par action d'une force centrifuge .

Le solide humide recueilli peut être ensuite lavé avec un liquide de lavage. Ledit liquide de lavage peut être de l'eau déminéralisée, ou une solution aqueuse acidifiée, de préférence à un pH de 2 à 3, par exemple avec de l'acide sulfurique.

On peut aussi utiliser en tant que liquide de lavage une solution aqueuse, de préférence à un pH de 2 à 3, d'un anion complexant vis-à-vis des impuretés contenues dans le solide humide tel que ceux déjà mentionnés plus haut.

L'acide sulfurique présente l'avantage de jouer à la fois un rôle acidifiant et complexant grâce aux anions sulfate.

L'opération de lavage peut être répétée de 1 à 10 fois selon la teneur en impuretés souhaitée du peroxyde d'uranium.

Avantageusement, le rapport de lavage défini par le rapport de la masse du liquide de lavage (sur la totalité des lavages) sur la masse du solide humide est de 1 à 30, de préférence de 1 à 10 pour limiter les volumes d'eau nécessaires au lavage.

La suspension peut en outre être soumise à l'action d'ultrasons.

Les ultrasons mis en œuvre peuvent avoir une fréquence unique, mais on pourrait utiliser une combinaison d'ultrasons de fréquences différentes, par exemple une combinaison d'ultrasons à haute fréquence avec une fréquence par exemple de 2,4 MHz, et d'ultrasons à basse fréquence avec une fréquence par exemple de 35 kHz.

On peut par exemple placer le réacteur contenant la suspension dans une cuve à ultrasons ou bien disposer une ou plusieurs sondes à ultrasons dans le réacteur.

On soumet généralement la suspension à l'action des ultrasons tout en ajoutant l'eau oxygénée à la suspension. Mais on peut également mettre en œuvre des ultrasons lors de l'étape de préparation de la solution .

La conversion est alors beaucoup plus rapide que dans le cas où la réaction est effectuée sans soumettre la suspension à l'action des ultrasons, et la durée de l'étape b) n'est plus alors que de 1 à 2 heures, au lieu par exemple de 24 heures, pour obtenir une conversion totale ou substantiellement totale.

Il ne faut pas confondre l'action des ultrasons avec l'agitation mécanique.

Généralement, lorsqu'on utilise des ultrasons, on n'agite pas autrement la suspension.

Il est à noter que l'action des ultrasons cause une augmentation de la température de la suspension, ce qui occasionne une surconsommation de H 2 O 2 .

Lorsque l'on utilise des ultrasons, il peut donc être nécessaire de refroidir la suspension pour éviter la dégradation de l'eau oxygénée qui se produit généralement à une température supérieure à 50°C.

Du fait de l' échauffement de la suspension causée par les ultrasons, l'eau de la suspension peut être éliminée par évaporation, et le précipité (les cristaux d'UC hydraté), est alors récupéré directement dans le réacteur sous la forme d'un solide quasiment sec, par exemple d'une humidité inférieure à 7% en masse et sans lavage. L'utilisation des ultrasons permet donc d'accélérer significativement les cinétiques de conversion et réduit notamment les quantités d'eau dans le peroxyde d'uranium hydraté obtenu. De ce fait, le peroxyde d'uranium hydraté peut être récupéré sans qu' il soit nécessaire de passer par une étape de séparation liquide-solide, telle qu'une étape de filtration de la suspension.

Cette étape de séparation étant supprimée, le procédé se trouve donc simplifié et raccourci.

Le procédé selon l'invention peut éventuellement comprendre une étape de séchage des cristaux de UO hydraté récupérés.

Cette étape de séchage est généralement réalisée à une température de 60°C à 100°C pendant une durée de 1 à 24 heures.

Au cours de cette étape, le peroxyde d'uranium hydraté récupéré est transformé en UO 4 , 2¾0 s'il s'agit de U0 4 , 4H 2 0.

Le peroxyde d'uranium hydraté obtenu présente une réactivité élevée pour une conversion rapide en UF 4 .

Par exemple, on obtient une conversion d'au moins 90% de l'uranium en UF 4 en 800 secondes.

En effet, le procédé selon l'invention permet d'obtenir un UO 4 hydraté ayant une surface spécifique élevée, pouvant aller jusqu'à 30 m 2 /g.

Il est à noter que la vitesse de conversion influe sur la morphologie du peroxyde d'uranium hydraté obtenu par le procédé selon l'invention qui se présente généralement sous la forme d'aiguilles nanométriques avec une longueur de 300 à 500 nm et un diamètre de 50 à 100 nm .

En effet, plus la conversion est lente, et plus les aiguilles sont longues et fines et plus le peroxyde d'uranium ou le peroxyde d'uranium hydraté présente une forte surface spécifique.

Les aiguilles préparées par le procédé selon l'invention ont une acicularité exprimée par le rapport longueur/diamètre, généralement de 3 à 10.

Les teneurs en impuretés dans le peroxyde d'uranium obtenu par le procédé selon l'invention, sont, notamment du fait que le procédé selon l'invention ne comprend pas d'étape préalable de dissolution susceptible d'amener des impuretés supplémentaires très faibles.

On donne dans le Tableau 1 qui suit les teneurs en impuretés initiales dans l'oxyde et finales dans le peroxyde d'uranium purifié obtenu à l'issue du procédé selon l'invention.

TABLEAU 1

Les teneurs en impuretés du peroxyde final sont inférieures à celles de peroxydes obtenus par les procédés de l'art antérieur et sont pour la plupart conformes à la norme ASTM C-787.

EXEMPLES :

Les exemples suivants décrivent les résultats obtenus en mettant en œuvre le procédé selon l'invention sur plusieurs types de concentrés uranifères dont l'origine minière, la composition chimique et la température de calcination sont différentes.

Ces composés seront donc notés dans la suite du texte sous la forme « concentré 1 », « concentré 2 » etc .

Dans les exemples 1 à 5 qui suivent, on s'intéresse à la conversion de l'UsOs-

Exemple 1 : Essais sur le Concentré 1.

Dans cet exemple, on réalise la précipitation de peroxyde d'uranium avec du peroxyde d'hydrogène 30% à partir du concentré 1.

La concentration visée dans le réacteur est de

100 g/L.

La teneur initiale en sulfates dans l'oxyde minier est de 24824 ppm/U.

Le réacteur utilisé pour cette précipitation est un réacteur parfaitement agité « MSU 700 » d'un volume utile de 700 mL muni de 4 contre-pales et d'un agitateur à hélice tripale, le diamètre de ces pales étant de 50 mm.

La vitesse de rotation de l'hélice tripale est réglée à 600 tr/min afin de permettre la mise en suspension efficace de la poudre d'uranium. La précipitation de l'uranium est réalisée à température ambiante .

Les caractéristiques de la cuve du réacteur ainsi que du dispositif d'agitation sont indiquées dans le Tableau 2 ci-dessous :

TABLEAU 2

Divers capteurs et dispositifs de mesure notamment du pH et de la température permettent de suivre la réaction de précipitation.

Après ajout d'une quantité connue de la poudre d'oxyde broyée dans le réacteur, l'uranium est mis en suspension par agitation dans de l'eau déminéralisée dont le pH est ajusté à pH 3 par de l'acide sulfurique.

On démarre ensuite l'alimentation en eau oxygénée à l'aide d'un pousse-seringue doseur permettant de contrôler le débit de réactif introduit dans le réacteur.

La réaction est exothermique comme le montre une augmentation de 10°C de la température du bain, et le pH se stabilise à 1,6 en fin de réaction.

Après avoir réalisé l'introduction d'eau oxygénée dans le réacteur pendant une durée de 3h30 correspondant à un rapport molaire ¾0 2 /υ=3, l'alimentation en eau oxygénée est arrêtée et on laisse la suspension homogène d'U0 hydraté aune obtenue sous agitation pour mûrissement pendant 3h30.

Après arrêt de l'agitation, la suspension d'uranium est filtrée sur Buchner (filtre : 0=142mm ; porosité = 0,45 μπι) puis lavée avec de l'eau acidifiée à pH 3 avec de l'acide sulfurique. Le rapport de lavage ou « Wash ratio » est de 1,6.

Après filtration de la suspension d'uranium, un gâteau humide est obtenu. Le taux d'humidité de ce gâteau est de 63%.

L'analyse de la composition chimique des eaux- mères de filtration montrent que la teneur en uranium résiduelle dans le filtrat est très faible, à savoir de l'ordre de 1 mg/L.

Le gâteau obtenu est alors séché à l'étuve à 90°C pendant 24h et on analyse le résidu sec. Des analyses du solide obtenu ont été réalisées par Diffraction des Rayons X (DRX) (voir Figure 1) et par Microscopie Electronique à Balayage (MEB) (voir Figure 4 ) .

Les analyses DRX (Figure 1) montrent que le résidu sec est bien constitué par de l'UC hydraté sous la forme di-hydraté UO 4 .2H 2 O (reconnaissance des pics caractéristiques du composé défini) .

Les photos MEB (Figure 4) montrent que l'U0 .2H 2 0 est sous la forme d'aiguilles nanométriques d'une longueur par exemple de 200 nm.

Les teneurs en impuretés mesurées dans l'UC hydraté purifié sont données dans le Tableau 3 suivant :

TABLEAU 3 Au vu de l'ensemble de ces résultats, on peut considérer que la conversion du concentré 1 en UO 4 hydraté est totale, et que le rendement de précipitation est proche de 100%.

Les concentrations en impuretés dans le produit final montrent que le procédé selon l'invention a permis de purifier de manière significative le concentré de départ. En d'autres termes, le procédé selon l'invention a permis d'éliminer l'essentiel des éléments chimiques présents en tant qu' impuretés dans le concentré de départ.

Exemple 2 : Essais sur le Concentré 2.

Dans cet exemple, on réalise la précipitation de peroxyde d'uranium dans les mêmes conditions que dans l'exemple 1 mais sur le concentré 2.

On observe le même comportement du milieu réactionnel que dans l'exemple 1, c'est-à-dire : réaction exothermique, stabilisation du pH vers 1,6 en fin de réaction) mais les cinétiques sont beaucoup plus lentes. La durée du procédé jusqu'à l'arrêt de l'agitation qui était de 7 heures (3h30 + 3h30) dans l'exemple 1 est de 24 h dans l'exemple 2.

Le taux d'humidité du gâteau d'UC hydraté est plus important que dans l'exemple 1. Ce taux d'humidité est en effet de 78% au lieu de 63%. Cette différence est peut être liée à la taille des aiguilles d'U0 hydraté qui sont beaucoup plus grosses que dans le cas du concentré 1 (voir Figure 5) .

La teneur en uranium dans le filtrat est de

9 mg/L.

Des analyses du solide obtenu ont été réalisées par Diffraction des rayons X (DRX) (voir Figure 2) et par Microscopie Electronique à Balayage (MEB) (voir Figure 5) .

Sur la Figure 5, on observe des aiguilles de 1 à 2 d'U0 4 .2H 2 0. Les teneurs en impuretés mesurées dans I ' UC hydraté purifié sont données dans le Tableau 4 suivant :

TABLEAU 4

La teneur en molybdène est encore élevée par rapport à la spécification ASTM et il ne semble pas possible de la réduire même dans le cas où l'on utilise des complexants favorisant les cinétiques de dissolution locale de l'uranium (voir exemples 3 et 4) .

Cependant, il est sans doute possible d'améliorer la décontamination du Mo par des lavages poussés du gâteau d'UC>4 hydraté.

Un lavage avec un Rapport de lavage « Wash Ratio » de 10 pourrait permettre d'atteindre des teneurs en Mo proche de 10 ppm/U, ce qui pourrait être acceptable dans le cas d'une purification complémentaire en aval du procédé (absorption des impuretés dans l'UF 6 ) .

Au vu de l'ensemble de ces résultats, on peut considérer que la conversion du concentré 2 est aussi satisfaisante que celle du concentré 1 mais qu'elle est plus lente et nécessite une étape de lavage poussée pour obtenir une décontamination suffisante. Exemple 3 : Essais sur le concentré 3 avec addition de sul ates .

La conversion du concentré 3 a été testée selon le mode opératoire de l'exemple 1 mais les résultats expérimentaux montrent que dans ce cas, la conversion n'est pas possible.

Le mode opératoire a donc été modifié en ajoutant des sulfates au concentré pour complexer l'uranium et permettre sa conversion en UO hydraté.

Les rapports molaires testés sont :

S/U = [0.125 - 1] .

Ces essais ont été réalisés sur de plus petites quantités d'U, à savoir quelques grammes dans un bêcher agité avec de petits volumes de solution (10 mL) .

La concentration visée dans le bêcher est de

250 gU/L.

L'eau oxygénée à 30% est ajoutée progressivement à la poudre préalablement mise en suspension dans de l'eau déminéralisée, avec un rapport molaire H 2 0 2 /U=2.

Les sulfates sont ajoutés sous forme d'acide sulfurique, de telle sorte que le rapport molaire S/U soit égal à 0,125 qui est la valeur optimale de ce rapport, ce qui correspond à une concentration en sulfates en solution de 13 g/L.

Au bout de 8h, le concentré de départ est complètement converti en UO 4 hydraté.

Le pH varie au cours de la réaction mais est globalement stable et égal à 2.

L'UC hydraté formé est filtré sur papier filtre par gravité mais n'est pas lavé ensuite. La teneur en uranium dans le filtrat est de

28 mg/L.

L'analyse de l'uranium purifié donnée dans le Tableau 5 ci-dessous montre que certaines impuretés comme le Mo ou le W sont éliminées, décontaminées mais qu'en revanche le soufre n'est pas éliminé, purifié.

TABLEAU 5

Les résultats sont donc satisfaisants, en particulier en ce qui concerne la cinétique, qui est plus proche de celle observée dans le cas de l'exemple 1.

Mais comme dans le cas de l'exemple 2, un lavage poussé semble nécessaire pour parfaire la décontamination de l'uranium en impuretés. Exemple 4 : Essais sur le concentré 4 avec addition d' oxalates .

Comme dans le cas de l'exemple précédent, des essais ont été réalisés en utilisant l'acide oxalique pour accélérer la conversion du concentré 4.

Les rapports molaires testés sont

C 2 0 4 /U = [0,05 - 1] .

La concentration visée dans le bêcher est de

50 gU/L. L'eau oxygénée à 30% est ajoutée progressivement à la poudre préalablement mise en suspension dans de l'eau déminéralisée, avec un rapport molaire

L'acide oxalique est ajouté au milieu de sorte que le rapport molaire C2O4/U soit égal à 0,025, ce qui correspond à une concentration en oxalates en solution de 2,6 g/L .

Au bout de llh, l'U 3 0 8 de départ est complètement converti en UO 4 hydraté.

Le pH ne descend pas en-dessous de 2.

L'UC hydraté formé est filtré sur papier filtre par gravité, mais n'est pas lavé ensuite.

La teneur en uranium dans le filtrat est très élevée, à savoir 520 mg/L, et peut s'expliquer par le caractère très complexant des ions oxalates.

Des essais complémentaires ont donc été réalisés avec un mélange oxalates/sulfates pour essayer de réduire la fuite en uranium, car les sulfates sont moins complexants que les oxalates.

Dans le cas d'un mélange 1/3 acide oxalique - 2/3 acide sulfurique, le taux de conversion est de 95% au bout de 8h30.

Les fuites sont réduites à 330 mg/L et restent donc près de dix fois plus élevées par rapport aux essais réalisés sans addition d'acide oxalique.

L'analyse de l'uranium purifié (voir spectre DRX : Figure 3) lorsque l'on utilise un mélange 1/3 acide oxalique - 2/3 acide sulfurique est donnée dans le Tableau 6 ci-dessous : Mélange 1/3 U0 4

Facteur de oxalique - U 3 0 8 hydraté

décontamination

2/3 (ppm/U) purifié

[ ]init / [ ] finale sulfurique (ppm/U)

Mo 1011 132 7,7

W 18 6 3

S 406 562 -

V 42 44 -

Zr 1019 953 1,1

TABLEAU 6 Les facteurs de décontamination observés pour le W et le Mo sont comparables à ceux observés dans les essais réalisés avec l'acide sulfurique seul.

Par ailleurs, ce traitement ne permet pas de décontaminer, d'éliminer, les éléments suivants : S, V, Zr .

Le mode opératoire mis en œuvre dans cet exemple, semble donc moins adapté que celui utilisé dans l'exemple 3 dans le cas des oxydes très impurs. Exemple 5 : Essais sur le Concentré 2 avec des ultrasons

Des essais ont été réalisés en plaçant le bêcher dans un bain à ultrasons (35kHz) pour accélérer la conversion du concentré 2 selon le mode opératoire de l'exemple 3.

La conversion en UO 4 hydraté est effectuée beaucoup plus rapidement que dans l'exemple 2, à savoir en 2 heures au lieu de 24h, mais l'augmentation de température observée induit une surconsommation de H 2 O 2 , ce qui exclut toute optimisation de ce rapport molaire (H 2 O 2 /U) sous peine de réduire le taux de conversion. Par ailleurs, on observe que le produit final est pratiquement sec (pas de filtrat) .

L'utilisation des ultrasons permet donc d'accélérer significativement les cinétiques de conversion et réduit notablement les quantités d'eau dans l'UC hydraté purifié, ce qui peut présenter un avantage en simplifiant le procédé, avec la suppression potentielle d'une étape de filtration.

Ce mode opératoire pourrait être optimisé (broyage préalable, injection d'un gaz inerte, combinaisons ultrasons haute/basse fréquences, contrôle de la température par refroidissement du milieu réactionnel, augmentation du rapport L/S) .

Dans l'exemple 6 qui suit, on s'intéresse à la conversion de l'U0 3 .

Exemple 6 : Essais sur le Concentré 5.

Des essais de précipitation de peroxyde d'uranium ont été réalisés dans les mêmes conditions que dans l'exemple 1 mais avec le concentré 5 en ajoutant des étapes supplémentaires de calcination et de lavage selon le schéma 1 suivant :

Calcination Précipitation H 2 0 2 + Lavages

Schéma 1 L'étape de calcination de l'UC hydraté impur en UO3 à 200°C pendant 3h permet de modifier la structure de l'uranium pour pouvoir ensuite le purifier plus facilement de ses impuretés lors des étapes suivantes.

La température de la calcination est un paramètre sensible.

En effet, un essai réalisé à une température inférieure à 200°C (150°C) a démontré une dégradation des résultats obtenus par le procédé selon l'invention en ce qui concerne le taux de purification de l'uranium vis-à-vis de certaines impuretés comme le sodium (calcination imparfaite de l'UC hydraté impur en UO3, fraction résiduelle en UO 4 hydraté impur plus difficile à décontaminer en sodium) .

La deuxième étape consiste à recristalliser l'U03 en UO 4 hydraté selon le mode opératoire initial de l'exemple 1 puis à laver le gâteau obtenu avec des rapports de lavage (« Wash Ratios » ou « WR ») plus élevés que précédemment.

Ainsi, un rapport de lavage WR maximal de 25 a été mis en œuvre mais un rapport de lavage optimal pourrait se situer entre 1 et 10.

Le lavage est effectué à l'aide d'eau déminéralisée dont le pH est ajusté à 2,5 avec de l'acide sulfurique.

Le choix de l'acidité du pH est guidé par l'efficacité de la purification à l'étape de lavage.

En effet, on observe une diminution du taux de purification de l'uranium vis-à-vis du sodium si le lavage est effectué avec de l'eau distillée sans acide sulfurique .

Cela s'explique par le caractère complexant des sulfates vis-à-vis des impuretés comme le sodium.

Les lavages sont réalisés par la méthode des repulpages successifs, avec une durée de repulpage de 600 secondes, et les suspensions d'UC hydraté sont filtrées entre deux repulpages sur Buchner (filtre : 0=142mm ; porosité = 0,45μπι) .

Avec ce procédé, les cinétiques de précipitation sont rapides, à savoir inférieures à 5 heures (une estimation du temps minimal de conversion se situe autour de lh) , et les analyses du solide obtenu montrent que la conversion est bien totale.

La réaction est exothermique et le pH augmente en début de réaction pour ensuite revenir à sa valeur initiale, ce qui confirme les hypothèses de précipitation de I ' UC hydraté catalysé par l'acide selon le schéma réactionnel suivant :

Formation de l'ion uranyle

(Intermédiaire réactionnel) :

U0 3 + 2H + → U0 2 2+ + H 2 0

Précipitation de I ' UC hydraté:

U0 2 2+ + n¾0 + H 2 0 2 → U0 4 n¾0 + 2H +

Equation bilan :

U0 3 + n¾0 + H 2 0 2 → U0 4 ,nH 2 0+ H 2 0

La concentration visée dans le réacteur était de 100 gU/L dans cet exemple, mais d'autres essais ont montré que la concentration optimum doit se trouver dans l'intervalle 100 - 200 gU/L.

En effet, on observe une régression du taux de purification en sodium si [U] visée est supérieure à 200 gU/L.

Cette régression est l'effet de la diminution de la surface spécifique de I ' UC hydraté avec la concentration .

L'excès en eau oxygénée utilisé dans cet exemple est le même que dans l'exemple 1 mais le rapport molaire H2 O2/U optimal se trouve entre 1 et 3.

Le taux d'humidité du gâteau d'UC hydraté est de 46%.

La morphologie et la taille des grains d'UC hydraté sont différentes des autres UO 4 hydratés produits dans les exemples précédents : la poudre est composée de petits agglomérats nanométriques , par exemple de 100 nm à 200 nm (voir Figure 6) .

La teneur en uranium dans le filtrat est de 5,5 mg/L .

Comme le montre le Tableau 7 suivant, la pureté de I ' UC hydraté obtenu est très satisfaisante par rapport aux contraintes du procédé liées aux normes ASTM, et au procédé de fluoration Comurhex ® (procédé CX) . U0 4 hydraté U0 4 Norme Limite impur hydraté ASTM procédé (ppm/U) purifié CX

(ppm/U)

Na 404 4 40

Ca 407 58

Mo 9 1 1,4

V 5 4 1,4

W 2 1 1,4

Cr 30 3,9 10

TABLEAU 7