Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR DETERMINING LOADS ON A WIND TURBINE TOWER
Document Type and Number:
WIPO Patent Application WO/2018/050596
Kind Code:
A1
Abstract:
The invention relates to a method (100) for determining loads on a wind turbine tower. In a first step (110) of the method (100), bending moments in at least one rotor blade of the wind turbine are determined in order to provide a first variable, which identifies a first force acting on a nacelle of the wind turbine tower. In addition, in a second step (120) of the method (100), a nacelle deflection is determined order to provide a second variable which identifies a second force acting on the nacelle of the wind turbine tower. Furthermore, a third step (130) of the method (100) comprises entering the first variable and the second variable into a calculation model, which displays the behavior of the tower. A fourth step (140) of the method (100) comprises a determination of loads on the tower of the wind turbine by means of the calculation model.

Inventors:
MÜLLER MATHIAS (DE)
SIEVERS CHRISTIAN (DE)
SCHAUSS THOMAS (DE)
Application Number:
PCT/EP2017/072751
Publication Date:
March 22, 2018
Filing Date:
September 11, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FOS4X GMBH (DE)
International Classes:
F03D17/00
Foreign References:
US20090263245A12009-10-22
US20130287567A12013-10-31
US20110268569A12011-11-03
US20110115233A12011-05-19
Other References:
VEDRANA SPUDIC ET AL: "Explicit model predictive control for reduction of wind turbine structural loads", DECISION AND CONTROL (CDC), 2012 IEEE 51ST ANNUAL CONFERENCE ON, IEEE, 10 December 2012 (2012-12-10), pages 1721 - 1726, XP032324249, ISBN: 978-1-4673-2065-8, DOI: 10.1109/CDC.2012.6426490
Attorney, Agent or Firm:
ZIMMERMANN & PARTNER PATENTANWÄLTE MBB (DE)
Download PDF:
Claims:
PATENTANSPRÜCHE

1. Verfahren zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage, umfassend:

- Bestimmen von Biegemomenten in mindestens einem Rotorblatt der Windenergieanlage zum Bereitstellen einer ersten Größe, welche eine erste Kraft angibt, die auf eine Gondel des Turms der Windenergieanlage wirkt;

- Bestimmen einer Gondelauslenkung zum Bereitstellen einer zweiten Größe, welche eine zweite Kraft angibt, die auf die Gondel des Turms der Windenergieanlage wirkt;

- Zuführen der ersten Größe und der zweiten Größe in ein Berechnungsmodell, welches das Turmverhalten abbildet; und

- Ermitteln von Belastungen auf den Turm der Windenergieanlage anhand des Berechnungsmodells.

2. Verfahren gemäß Anspruch 1, wobei beim Bestimmen von den Biegemomenten in dem mindestens einen Rotorblatt eine Dehnung des mindestens einen Rotorblatts mittels mindestens einem Dehnungssensor gemessen wird.

3. Verfahren gemäß Anspruch 2, wobei beim Bestimmen von den Biegemomenten in dem mindestens einen Rotorblatt die Dehnung des mindestens einen Rotorblatts in zwei, insbesondere zueinander orthogonalen, Richtungen gemessen wird.

4. Verfahren gemäß Anspruch 2 oder 3, wobei der mindestens eine Dehnungssensor in dem mindestens einem Rotorblatt angeordnet ist, insbesondere wobei der mindestens eine Dehnungssensor ein faseroptischer Dehnungssensor ist.

5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei beim Bestimmen der Gondelauslenkung eine Positionsbestimmung der Gondel mittels einer Positionssensorvorrichtung, die dazu angepasst ist um mindestens ein Verfahren ausgewählt aus der Gruppe bestehend aus: einem GPS- Positionsermittlungsverfahren, insbesondere per RTK-GPS (Real Time Kinematic-GPS); einem differentiellen GPS-Positionsermittlungsverfahren; einem kamerabasierten Positionsermittlungsverfahren; einem radarbasierten Positionsermittlungsverfahren; und einem laserbasierten Positionsermittlungsverfahren, durchzuführen.

6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei beim Bestimmen der Gondelauslenkung ein stationärer Referenzpunkt verwendet wird.

7. Verfahren gemäß einem der Ansprüche 1 bis 6, ferner umfassend Bestimmen von Windparametern, insbesondere Windgeschwindigkeit und/oder Windrichtung, aus den ermittelten Belastungen auf den Turm.

8. Verfahren gemäß einem der Ansprüche 1 bis 7, wobei beim Ermitteln der Belastungen auf den Turm anhand des Berechnungsmodells ein Kaiman Filter verwendet wird, um die Genauigkeit bei der Ermittlung der Belastungen auf den Turm zu erhöhen.

9 Verfahren gemäß einem der Ansprüche 1 bis 8, wobei beim Ermitteln von den Belastungen auf den Turm anhand des Berechnungsmodells Windenergie- anlagenparameter, insbesondere Turmdicke und/oder Turmmaterial verwendet werden.

10. Vorrichtung angepasst zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage, umfassend: zumindest einen Dehnungssensor angeordnet und angepasst zur Messung einer Dehnung mindestens eines Rotorblatts der Windenergieanlage; zumindest eine Positionssensorvorrichtung angeordnet und angepasst zur Positionsbestimmung einer Gondel des Turms der Windenergieanlage; und eine Auswerteeinheit, die mit dem zumindest einen Dehnungssensor zum Empfang eines ersten Signals von dem zumindest einen Dehnungssensor und die mit der zumindest einen Positionssensorvorrichtung zum Empfang eines zweiten Signals von der zumindest einen Positionssensorvorrichtung verbunden ist, wobei die Auswerteeinheit angepasst ist, aus dem ersten Signal Biegemomente in dem mindestens einen Rotorblatt der Windenergieanlage zu bestimmen, um eine erste Größe bereitzustellen, wobei die Auswerteeinheit angepasst ist, aus dem zweiten Signal eine Gondelauslenkung zu bestimmen, um eine zweite Größe bereitzustellen, und wobei die Auswerteeinheit angepasst ist, aus der ersten Größe und der zweiten

Größe anhand eines Berechnungsmodells, welches das Turmverhalten abbildet, Belastungen auf den Turm der Windenergieanlage zu ermitteln.

Vorrichtung gemäß Anspruch 10, wobei die Positionssensorvorrichtung dazu angepasst ist um mindestens ein Verfahren ausgewählt aus der Gruppe bestehend aus: einem GPS-Positionsermittlungsverfahren, insbesondere per RTK-GPS (Real Time Kinematic-GPS); einem differentiellen GPS-Positionsermittlungsverfahren; einem kamerabasierten Positionsermittlungs-verfahren; einem radarbasierten Positionsermittlungsverfahren; und einem laserbasierten Positionsermittlungsverfahren, durchzuführen.

Description:
VERFAHREN UND VORRICHTUNG ZUR ERMITTLUNG VON BELASTUNGEN AUF EINEN TURM EINER WINDENERGIEANLAGE

TECHNISCHES GEBIET

[0001] Die vorliegende Erfindung betrifft im Allgemein eine Überwachung des Betriebs von Windenergieanlagen, insbesondere die Überwachung des Zustands eines Turms einer Windenergieanlage. Die Erfindung betrifft insbesondere eine Anordnung mit faseroptischen Sensoren zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage.

STAND DER TECHNIK [0002] Zur Überwachung von Windenergieanlagen gewinnen Systeme, die den

Zustand beurteilen an Bedeutung. Der Zustand eines Turms einer Windenergieanlage, also zum Beispiel Verschleiß, Materialermüdung und andere Veränderungen, die durch Alterung oder Nutzung auftreten können, ist Gegenstand der Zustandsüberwachung von Windenergieanlagen. Durch die Kenntnis des Zustands können Wartungsarbeiten geplant, der gegenwärtige Wert der Anlage geschätzt und Sicherheitsauflagen des Gesetzgebers und Kunden erfüllt werden.

[0003] In existierenden Anlagen wird der Turm einer Windenergieanlage hinsichtlich der zu erwartenden Belastungen, z.B. Belastungen durch Gravitationslastzyklen die durch die Anzahl der Rotorrotationen oder Belastungen durch Windböen, die über die Lebensdauer der Windenergieanlag zu erwarten sind, ausgelegt. Nach Installation der Windenergieanlage wird der Zustand des Turms der Windenergieanlage beispielsweise mittels regelmäßiger Inspektion überprüft. Diese Zustandsüberwachung des Turms ist jedoch mit einer gewissen Unsicherheit behaftet, da bei kurzfristigen starken Belastungen, z.B. starken Windböen bei Gewitter, kritische Materialbelastungen auftreten können die ggf. kurz darauf zu einem Materialversagen führen können. [0004] Daher besteht das Bedürfnis eine verbesserte Überwachung des Zustands eines Turms einer Windenergieanlage bereitzustellen.

ZUSAMMENFASSUNG DER OFFENBARUNG

[0005] Ausführungsformen der vorliegenden Offenbarung stellen ein Verfahren zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage gemäß Anspruch 1 bereit. Ferner stellen Ausführungsformen der vorliegenden Offenbarung eine Vorrichtung angepasst zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage gemäß Anspruch 10 bereit.

[0006] Gemäß einer Ausführungsform wird ein Verfahren zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage zur Verfügung gestellt. Das Verfahren umfasst: Bestimmen von Biegemomenten in mindestens einem Rotorblatt der Windenergieanlage zum Bereitstellen einer ersten Größe, welche eine erste Kraft angibt, die auf eine Gondel des Turms der Windenergieanlage wirkt; Bestimmen einer Gondelauslenkung zum Bereitstellen einer zweiten Größe, welche eine zweite Kraft angibt, die auf die Gondel des Turms der Windenergieanlage wirkt; Zuführen der ersten Größe und der zweiten Größe in ein Berechnungsmodell, welches das Turmverhalten abbildet; und Ermitteln von Belastungen auf den Turm der Windenergieanlage anhand des Berechnungsmodells.

[0007] Gemäß einer weiteren Ausführungsform wird eine Vorrichtung angepasst zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage zur Verfügung gestellt. Die Vorrichtung umfasst: zumindest einen Dehnungssensor angeordnet und angepasst zur Messung einer Dehnung mindestens eines Rotorblatts der Windenergieanlage; zumindest eine Positionssensorvorrichtung angeordnet und angepasst zur Positionsbestimmung einer Gondel des Turms der Windenergieanlage; und eine Auswerteeinheit, die mit dem zumindest einen Dehnungssensor zum Empfang eines ersten Signals von dem zumindest einen Dehnungssensor und die mit der zumindest einen Positionssensorvorrichtung zum Empfang eines zweiten Signals von der zumindest einen Positionssensorvorrichtung verbunden ist, wobei die Aus werteeinheit angepasst ist, aus dem ersten Signal Biegemomente in dem mindestens einen Rotorblatt der Windenergieanlage zu bestimmen, um eine erste Größe bereitzustellen, wobei die Auswerteeinheit angepasst ist, aus dem zweiten Signal eine Gondelauslenkung zu bestimmen, um eine zweite Größe bereitzustellen, und wobei die Auswerteeinheit angepasst ist, aus der ersten Größe und der zweiten Größe anhand eines Berechnungsmodells, welches das Turmverhalten abbildet, Belastungen auf den Turm der Windenergieanlage zu ermitteln.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0008] Ausführungsbeispiele sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. In den Zeichnungen zeigen:

Figur 1 ein Ablaufdiagramm eines Verfahrens zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage gemäß hierin beschriebener Ausführungsformen;

Figur 2 ein Ablaufdiagramm eines Verfahrens zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage gemäß weiterer hierin beschriebener Ausführungsformen;

Figur 3 eine vereinfachte schematische Darstellung einer Vorrichtung gemäß hierin beschriebener Ausführungsformen zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage;

Figur 4 eine Windenergieanlage zur Erläuterung von hierin beschriebenen

Ausführungsformen einer Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage; und

Figur 5 einen faseroptischen Sensor zum Bestimmen von Biegemomenten in mindestens einem Rotorblatt der Windenergieanlage hierin beschriebenen Ausführungsformen. BESCHREIBUNG DER AUSFÜHRUNGSFORMEN

[0009] Nachstehend werden Ausführungsformen dieser Offenbarung näher erläutert. Die Zeichnungen dienen der Veranschaulichung eines oder mehrerer Beispiele von Ausführungsformen. In den Zeichnungen bezeichnen gleiche Bezugszeichen die gleichen oder ähnliche Merkmale der jeweiligen Ausführungsformen.

[0010] Figur 1 zeigt ein Ablauf diagramm eines Verfahrens 100 zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage gemäß hierin beschriebener Ausführungsformen. Das Verfahren 100 umfasst in einem ersten Schritt 110 ein Bestimmen von Biegemomenten in mindestens einem Rotorblatt der Windenergieanlage zum Bereitstellen einer ersten Größe. Typischerweise gibt die erste Größe eine erste Kraft an, die auf eine Gondel des Turms der Windenergieanlage wirkt. Ferner umfasst das Verfahren 100 in einem zweiten Schritt 120 ein Bestimmen einer Gondelauslenkung zum Bereitstellen einer zweiten Größe. Typischerweise gibt die zweite Größe eine zweite Kraft an, die auf die Gondel des Turms der Windenergieanlage wirkt. Des Weiteren umfasst das Verfahren 100 in einem dritten Schritt 130 ein Zuführen der ersten Größe und ein Zuführen der zweiten Größe in ein Berechnungsmodell, welches das Turmverhalten abbildet. Ein vierter Schritt 140 des Verfahrens umfasst ein Ermitteln von Belastungen auf den Turm der Windenergieanlage anhand des Berechnungsmodells.

[0011] Somit kann mittels des hierin beschriebenen Verfahrens zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage eine verbesserte Zustandsüberwachung eines Turms einer Windenergieanlage bereitgestellt werden.

[0012] Gemäß Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, ist das Berechnungsmodell ein physikalisches Modell der Windenergieanlage, insbesondere des Turms der Windenergieanlage. Typischerweise beinhaltet ein derartiges physikalisches Berechnungsmodell Modellparameter die beispielsweise die Dimensionierung der Windenergieanlage, insbesondere des Turms der Windenergieanlage, sowie die Materialeigenschaften der Windenergieanlage, insbesondere des Turms der Windenergieanlage, berücksichtigen. Ferner kann das physikalische Berechnungsmodell dynamische Modellparameter beinhalten, welche beispielsweise Materialalterungsprozesse, Belastungsschwankungen, Witterungsbedingungen oder Ähnliches berücksichtigen.

[0013] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, kann in dem ersten Schritt 110 des Verfahrens 100 beim Bestimmen von den Biegemomenten in dem mindestens einen Rotorblatt eine Dehnung des mindestens einen Rotorblatts mittels mindestens einem Dehnungssensor gemessen werden, so dass Biegemomente zumindest in einer Richtung ermittelt werden können. Gemäß weiteren typischen Ausführungsformen können zumindest zwei Dehnungssensoren, insbesondere drei Dehnungssensoren oder zumindest vier Dehnungssensoren verwendet werden, um Biegemomente in einer Schnittebene des mindestens einen Rotorblatts der Windenergieanlage zu ermitteln. Bei geeigneter Anordnung von zwei Dehnungssensoren, zum Beispiel an unterschiedlichen Winkelkoordinaten der Rotorblattwurzel, können die Biegemomente in zwei Richtungen, typischerweise zwei orthogonalen Richtungen, die auf das Rotorblatt wirken auch mit zwei Dehnungssensoren gemessen werden. Hierzu sollten die zwei Dehnungssensoren typsicherweise mit um 90° gedrehten Winkelkoordinaten angebracht sein, bzw. nicht mit um 180° gedrehten Winkelkoordinaten angebracht sein.

[0014] Dementsprechend kann gemäß Ausführungsformen des hierin beschriebenen Verfahrens beispielsweise beim Bestimmen von den Biegemomenten in dem mindestens einen Rotorblatt die Dehnung des mindestens einen Rotorblatts in zwei, insbesondere zwei zueinander orthogonalen, Richtungen gemessen werden.

[0015] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, ist der mindestens eine Dehnungssensor in dem mindestens einen Rotorblatt angeordnet. Beispielsweise kann der mindestens eine Dehnungssensor ein faseroptischer Dehnungssensor sein, wie er beispielhaft mit Bezug auf Figur 5 beschrieben ist. [0016] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, kann beim Bestimmen der Gondelauslenkung eine Positionsbestimmung der Gondel mittels einer Positionssensorvorrichtung durchgeführt werden. Typischerweise ist die Positionssensorvorrichtung dazu angepasst, um mindestens ein Verfahren ausgewählt aus der Gruppe bestehend aus: einem GPS-Positionsermittlungsverfahren, insbesondere per RTK-GPS (Real Time Kinematic-GPS); einem differentiellen GPS- Positionsermittlungsverfahren; einem kamerabasierten Positionsermittlungsverfahren; einem radarbasierten Positionsermittlungsverfahren; und einem laserbasierten Positionsermittlungsverfahren, durchzuführen. Dabei kann die

Positionssensorvorrichtung ausgelegt sein um zur Positionsermittlung einen stationären Referenzpunkt zu verwenden. Demnach kann in dem zweiten Schritt 120 des Verfahrens 100 beim Bestimmen der Gondelauslenkung ein stationärer Referenzpunkt verwendet werden. [0017] In diesem Zusammenhang sei darauf hingewiesen, dass unter einem differentiellen GPS-Positionsermittlungsverfahren, ein Verfahren zu verstehen ist, bei welchem ein GPS-Referenzfunksignal oder eine separate GPS-Referenzstation in der Nähe der Windenergieanlage verwendet.

[0018] Wie beispielhaft in dem in Figur 2 dargestellten Ablaufdiagramm dargestellt ist, kann das Verfahren 100 in einem fünften Schritt 150 ferner ein Bestimmen von

Windparametern, insbesondere Windgeschwindigkeit und/oder Windrichtung, aus den ermittelten Belastungen auf den Turm umfassen. Dabei kann beim Bestimmen der Windparameter beispielsweise das physikalische Berechnungsmodell, welches das Turmverhalten abbildet verwendet werden. Insbesondere können anhand der ermittelten Belastungen auf den Turm der Windenergieanlage, basierend auf dem physikalischen Berechnungsmodell, Rückschlüsse auf Windparameter, wie beispielsweise Windgeschwindigkeit oder Windrichtung, gezogen werden.

[0019] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, können in dem vierten Schritt 140 des Verfahrens 100 beim Ermitteln von den Belastungen auf den Turm anhand des Berechnungsmodells Windenergieanlagenparameter, insbesondere Turmdicke und/oder Turmmaterial, verwendet werden, so dass eine genaue, an die Windenergieanlage angepasste, Belastungsermittlung ermöglicht wird.

[0020] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, kann in dem vierten Schritt 140 des Verfahrens 100 beim Ermitteln der Belastungen auf den Turm anhand des Berechnungsmodells ein Kaiman Filter verwendet werden, um die Genauigkeit bei der Ermittlung der Belastungen auf den Turm zu erhöhen.

[0021] In diesem Zusammenhang sei erwähnt, dass im Gegensatz zu den klassischen FIR- und IIR-Filtern der Signal- und Zeitreihenanalyse der Kalman-Filter auf einer Zustandsraummodellierung basiert, bei der explizit zwischen der Dynamik des Systemzustands und dem Prozess seiner Messung unterschieden wird. Daher ist die Verwendung eines Kaiman Filters in dem hierin beschriebenen Verfahren besonders vorteilhaft, da dessen spezielle mathematische Struktur, den Einsatz in Echtzeitsystemen ermöglicht, beispielsweise bei der Auswertung von Signalen zur Positionsverfolgung sich bewegender Objekte. Somit ermöglicht die Verwendung eines Kaiman-Filters beim Ermitteln der Belastungen auf den Turm anhand des Berechnungsmodells, insbesondere unter Berücksichtigung der Gondelauslenkung, die Genauigkeit bei der Ermittlung der Belastungen auf den Turm aufgrund der Echtzeitfähigkeit des Filters zu erhöhen.

[0022] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, kann das hierin beschriebene Verfahren insbesondere unter Verwendung einer hierin beschriebenen Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage durchgeführt werden. Figur 3 zeigt eine vereinfachte schematische Darstellung einer Vorrichtung 300 gemäß hierin beschriebener Ausführungsformen zur Ermittlung von Belastungen auf einen Turm 202 einer Windenergieanlage 200, wie sie beispielhaft in Figur 4 dargestellt ist. [0023] Gemäß hierin beschriebener Ausführungsformen, umfasst die Vorrichtung 300 zur Ermittlung von Belastungen auf einen Turm 202 einer Windenergieanlage 200 zumindest einen Dehnungssensor 310, der an mindestens einem Rotorblatt 210 der Windenergieanlage 200 derart angeordnet und angepasst ist, um eine Messung einer Dehnung des mindestens einen Rotorblatts der Windenergieanlage durchzuführen. Ferner umfasst die hierin beschriebene Vorrichtung 300 zumindest eine Positionssensorvorrichtung 320, die an der Windenergieanlage 200 derart angeordnet und angepasst ist, um eine Positionsbestimmung der Gondel 203 des Turms 202 der Windenergieanlage 200 durchzuführen. Des Weiteren umfasst die hierin beschriebene Vorrichtung 300 eine Auswerteeinheit 330, die mit dem zumindest einen Dehnungssensor 310 zum Empfang eines ersten Signals Sl von dem zumindest einen Dehnungssensor 310 und die mit der zumindest einen Positionssensorvorrichtung 320 zum Empfang eines zweiten Signals S2 von der zumindest einen Positionssensorvorrichtung 320 verbunden ist.

[0024] Typischerweise ist die Auswerteeinheit 330 angepasst um aus dem ersten Signal S 1 Biegemomente in dem mindestens einen Rotorblatt der Windenergieanlage zu bestimmen, um eine erste Größe Gl bereitzustellen. Ferner ist die Auswerteeinheit 330 typischerweise angepasst um aus dem zweiten Signal S2 eine Gondelauslenkung zu bestimmen, um eine zweite Größe G2 bereitzustellen. Wie in

Figur 3 schematisch dargestellt, ist die Auswerteeinheit 330 gemäß hierein beschriebener Ausführungsformen angepasst, um aus der ersten Größe Gl und der zweiten Größe G2 anhand eines Berechnungsmodells M, welches das Turmverhalten abbildet, Belastungen B auf den Turm 202 der Windenergieanlage 200 zu ermitteln. [0025] Somit kann mittels der hierin beschriebenen Ausführungsformen der

Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage eine verbesserte Zustandsüberwachung des Turms einer Windenergieanlage bereitgestellt werden.

[0026] Gemäß weiteren Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, kann die Positionssensorvorrichtung der hierin beschriebenen Vorrichtung dazu angepasst sein mindestens ein Verfahren ausgewählt aus der Gruppe bestehend aus: einem GPS-Positions- ermittlungsverfahren, insbesondere per RTK-GPS (Real Time Kinematic-GPS); einem differentiellen GPS-Positionsermittlungsverfahren; einem kamerabasierten Positionsermittlungsverfahren; einem radarbasierten Positionsermittlungsverfahren; und einem laserbasierten Positionsermittlungsverfahren, durchzuführen. Ferner kann die Positionssensorvorrichtung auch ausgelegt sein um zur Positionsermittlung einen stationären Referenzpunkt zu verwenden.

[0027] Figur 4 zeigt eine Windenergieanlage 200 mit einer hierin Vorrichtung zur Ermittlung von Belastungen gemäß hierein beschriebener Ausführungsformen. Die Windenergieanlage 200 beinhaltet einen Turm 202 und eine Gondel 203. An der Gondel 203 ist ein Rotor 204 befestigt. Der Rotor 204 beinhaltet eine Nabe 205, an der die Rotorblätter 206 befestigt sind. Gemäß typischen Ausführungsformen hat der Rotor 204 zumindest zwei Rotorblätter, insbesondere drei Rotorblätter. Beim Betrieb der Windenergieanlage rotiert der Rotor 204, d.h. die Nabe 205 mit den Rotorblättern 206 um eine Achse. Dabei wird ein Generator zur Stromerzeugung angetrieben.

[0028] Gemäß Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, wird in der Windenergieanlage ein Dehnungssensor 310 eingesetzt, beispielsweise ein faseroptischer Dehnungssensor 310, wie er in Figur 5 dargestellt ist. Typischerweise wird der Dehnungssensor 310 an einem oder mehreren Rotorblättern 206, insbesondere in einem äußeren radialen Bereich, zur Verfügung gestellt werden. Wie in Figur 4 dargestellt, ist zumindest ein Dehnungssensor 310 an einem Rotorblatt zur Verfügung gestellt. Der Dehnungssensor 310 ist über eine Signalleitung 212, beispielsweise einen Lichtleiter mit der hierin beschriebenen Auswerteeinheit 330 verbunden. In diesem Zusammenhang sei angemerkt, dass es für den Einsatz von faseroptischer Dehnungssensoren in Rotorblättern von Windenergieanlage bzw. für Verfahren zur Überwachung von Windenergieanlage besonders günstig ist, wenn eine Dehnung und/oder einen Stauchung in einer Richtung senkrecht zur Längserstreckung des Lichtleiters gemessen wird. [0029] Gemäß typischen Ausführungsformen, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden können, wird an jedem Rotorblatt mindestens ein Dehnungssensor bereitgestellt, so dass in jedem Rotorblatt kann separat eine individuelle Dehnungs- bzw. Stauchungsverteilung gemessen und entsprechende Biegemomente bestimmt werden können. Insbesondere wird gemäß hierein beschriebener Ausführungsformen in jedem Rotorblatt mindestens ein faseroptischer Dehnungssensor zur Verfügung gestellt.

[0030] Gemäß einigen der hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ermöglichen faseroptische Dehnungssensor, bei welchen ein Signal optisch über einen Lichtleiter übertragen wird, eine bisher in der Praxis als ungünstig angesehene radiale Montageposition entlang einer Längserstreckung des Rotorblatts, da die Übertragung mittels eines Lichtleiters bzw. einer optischen Faser ein reduziertes Risiko eines Blitzschadens mit sich bringt. Daher können faseroptische Dehnungssensoren derart zur Verfügung gestellt werden, dass sie eine Montage in einem radial äußeren Bereich eines

Rotorblatts erlauben, ohne das Risiko eines Blitzschadens zu erhöhen.

[0031] Figur 5 zeigt eine vereinfachte schematische Darstellung eines faseroptischen Dehnungssensors 310 zum Messen von Dehnungen und/oder Stauchungen gemäß hierein beschriebener Ausführungsformen. Der Dehnungssensors 310 beinhaltet einen Lichtleiter 112 mit einem Sensorelement 111, zum Beispiel ein Faser-Bragg-Gitter, wobei der Lichtleiter 112 in einer Einspannvorrichtung 305eingespannt ist. Die Einspannvorrichtung 305 wiederum beinhaltet eine Trägerstruktur, welche ein erstes Befestigungselement 301 zur Befestigung des Lichtleiters 112 an einer ersten Position 401 und ein von dem ersten Befestigungselement 301 beanstandetes zweites Befestigungselement 302 zur

Befestigung des Lichtleiters 112 an einer zweiten Position 402 aufweist, wobei die ersten und zweiten Positionen 401, 402 einen ersten Abstand in einer Längserstreckung des Lichtleiters 112 aufweisen. Ferner kann der faseroptische Dehnungssensor einen Zwischenträger 400 aufweisen, über den der Dehnungssensor an ein Messobjekt, beispielsweise ein Rotorblatt einer Windenergieanlage anbringbar ist. Das Sensorelement 111 ist typischerweise empfindlich auf eine Faserdehnung bzw. eine Faserstauchung (siehe Pfeile Δχ in Figur 5), so dass in den Lichtleiter 112 eintretende optische Strahlung mit einer veränderten Wellenlängenverlauf aus dem Sensorelement 111 reflektiert wird, woraus die Dehnung, beispielsweise mit einer entsprechenden Auswerte- und Analyseeinheit, bestimmt werden kann.

[0032] Es sei an dieser Stelle darauf hingewiesen, dass die hierin beschriebenen Aspekte und Ausführungsformen angemessen miteinander kombinierbar sind, und dass einzelne Aspekte dort weggelassen werden können, wo es im Rahmen des fachmännischen Handelns sinnvoll und möglich ist. Abwandlungen und Ergänzungen der hierin beschriebenen Aspekte sind dem Fachmann geläufig.