Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR DETERMINING A SPEED BY MEANS OF AN INDUCTIVE SPEED SENSOR
Document Type and Number:
WIPO Patent Application WO/2019/154654
Kind Code:
A1
Abstract:
The invention relates to a method for determining a speed between a sensing element comprising at least one coil (3) and a ferromagnetic transmitter element (2) which modifies the inductance (L) of the at least one coil (3) and the voltage (U) induced in the at least one coil (3), in a vehicle, by means of an inductive speed sensor (1) comprising at least the coil (3) and the ferromagnetic transmitter element (2), according to which a modification of the inductance (L) of the at least one coil (3) is detected and the speed is determined based on the modified inductance (L) of the at least one coil (3). According to the invention, the detection of the modification of the inductance (L) of the at least one coil (3) and the determination of the speed based on the modified inductance (L) of the at least one coil (3) only occurs until the determined speed reaches a speed threshold value, starting from a standstill or low speeds. As soon as the determined speed has exceeded the speed threshold value, starting from low speeds, the voltage (U) induced in the at least one coil (3) is detected and the speed is determined based on the induced voltage (U). If the determined speed has reached or fallen below the speed threshold value, starting from higher speeds, another modification in the inductance (L) of the at least one coil (3) is detected, and the speed is determined based on the modified inductance (L) of the at least one coil (3).

Inventors:
HUBER CHRISTOPH (DE)
KLUFTINGER ANDRE (DE)
EISSNER MARKUS (DE)
HERGES MICHAEL (DE)
Application Number:
PCT/EP2019/051968
Publication Date:
August 15, 2019
Filing Date:
January 28, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KNORR BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH (DE)
International Classes:
G01P3/488; G01P3/49; G01P13/00; G01P13/04
Domestic Patent References:
WO2014095311A12014-06-26
Foreign References:
US20030176932A12003-09-18
US20050083041A12005-04-21
DE102008056700A12010-06-10
DE102012224098A12014-06-26
US20150057878A12015-02-26
DE102005016110A12006-10-12
US8965691B12015-02-24
DE10146949A12002-06-06
DE4130168A11993-03-18
Download PDF:
Claims:
PATENTANSPRÜCHE

1. Verfahren zum Bestimmen einer Geschwindigkeit zwischen einem wenigstens eine Spule (3) umfassenden Messaufnehmer und einem die Induktivität (L) der wenigstens einen Spule (3) und die in der wenigstens einen Spule (3) induzierte Spannung (U) verändernden ferromagnetischen Geberelement (2) in einem Fahrzeug mit Hilfe eines wenigstens die Spule (3) und das ferromagnetische Geberelement (2) aufweisenden induktiven Geschwindigkeitssensors (1 ), bei welchem

a) eine Änderung der Induktivität (L) der wenigstens einen Spule (3) erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität (L) der wenigstens einen Spule (3) bestimmt wird, dadurch gekennzeichnet, dass

b) das Erfassen der Änderung der Induktivität (L) der wenigstens einen Spule (3) und das Bestimmen der Geschwindigkeit basierend auf der geänderten Induktivität (L) der wenigstens einen Spule (3) nur solange erfolgt, bis die bestimmte Geschwindigkeit ausgehend von niedrigeren Geschwindigkeiten einen Geschwindigkeitsgrenzwert erreicht hat, und dass aber

c) wenn die bestimmte Geschwindigkeit den Geschwindigkeitsgrenzwert ausgehend von niedrigeren Geschwindigkeiten überschritten hat, eine Änderung der in der wenigstens einen Spule (3) induzierten Spannung (U) erfasst und die Geschwindigkeit basierend auf der geänderten Spannung (U) bestimmt wird, und dass

d) wenn die bestimmte Geschwindigkeit ausgehend von höheren Geschwindigkeiten den Geschwindigkeitsgrenzwert erreicht oder unterschritten hat, eine Änderung der Induktivität (L) der wenigstens einen Spule (3) erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität (L) der wenigstens einen Spule (3) bestimmt wird.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Erfassen der Induktivität (L) der wenigstens einen Spule (3) dadurch erfolgt, dass a) die wenigstens eine Spule (3) in einen Parallel- oder Seriell-Schwingkreis verschaltet und die Induktivität (L) der wenigstens einen Spule (3) abhängig von der Resonanzfrequenz des Schwingkreises erfasst wird, oder dass

b) die wenigstens eine Spule (3) mit einem elektrischen Impuls beaufschlagt wird und die Induktivität (L) der wenigstens einen Spule (3) abhängig von Antwort der wenigstens einen Spule (3) auf den elektrischen Impuls erfasst wird, oder dass c) die wenigstens eine Spule (3) mit einer konstanten Frequenz beaufschlagt und dann die Induktivität (L) der wenigstens einen Spule (3) erfasst wird.

3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrzeug mehrere Räder (A, B, C, D) mit jeweils einem induktiven Geschwindigkeitssensor (1 ) als Raddrehzahlsensor an wenigstens zwei Rädern (A, B) aufweisen, wobei ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis wenigstens eines zeitlichen Phasenversatzes (At1 , At2) der zeitlichen Verläufe der mittels der Raddrehzahlsensoren (1 ) der wenigstens zwei Räder (A, B) erfassten

Induktivitäten (L) ermittelt wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass

a) ausgehend von einer erfassten Fahrt des Fahrzeugs wenigstens ein erster zeitlicher Phasenversatz (At1 ) zwischen ersten zeitlichen Verläufen der von den Raddrehzahlsensoren (1 ) der wenigstens zwei Räder (A, B) erfassten

Induktivitäten (L) bis zu einem erfassten Stillstand des Fahrzeugs gespeichert wird, und dann

b) nach einem erfassten Wiederanfahren des Fahrzeugs wenigstens ein zweiter zeitlicher Phasenversatz (At2) zwischen zweiten zeitlichen Verläufen der von den Raddrehzahlsensoren (1 ) der wenigstens zwei Räder (A, B) erfassten

Induktivitäten (L) erfasst und mit dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) verglichen wird, und wenn dabei festgestellt wird, dass c) der wenigstens eine zweite zeitliche Phasenversatz (At2) von dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) eine signifikante Abweichung aufweist, auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt geschlossen wird, und falls aber

d) andernfalls festgestellt wird, dass eine lediglich nicht signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes (At2) von dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) vorliegt, auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt geschlossen wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass als eine signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes (At2) von dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) interpretiert wird, wenn der wenigstens eine zweite zeitliche Phasenversatz (At2) gegenüber dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) invertiert ist, wobei sich ein zeitlicher Vorlauf des ersten Verlaufs der von dem Raddrehzahlsensor (1 ) eines ersten Rads (A) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) gegenüber dem ersten Verlauf der von dem Raddrehzahlsensor (1 ) eines zweiten Rads (B) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) um den ersten zeitlichen Phasenversatz (At1 ) in einen zeitlichen Nachlauf des zweiten Verlaufs der von dem Raddrehzahlsensor (1 ) des ersten Rads (A) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) gegenüber dem zweiten Verlauf der von dem Raddrehzahlsensor (1 ) des zweiten Rads (B) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) um den zweiten zeitlichen Phasenversatz (At2) ändert.

6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass ein Stillstand des Fahrzeugs dadurch erfasst wird, dass in dem zeitlichen Verlauf der Induktivität (L) ein Abschnitt identifiziert wird, in welchem sich die Induktivität (L) nicht ändert und/oder der Gradient des zeitlichen Verlaufs der Induktivität (L) im Wesentlichen gleich Null ist.

7. Geschwindigkeitsmessvorrichtung zum Bestimmen einer Geschwindigkeit zwischen einem wenigstens eine Spule (3) umfassenden Messaufnehmer und einem die Induktivität (L) der wenigstens einen Spule (3) und die in der wenigstens einen Spule (3) induzierte Spannung (U) verändernden ferromagnetischen Geberelement (2) in einem Fahrzeug, welche wenigstens einen induktiven Geschwindigkeitssensor (1 ) aufweist, der mindestens Folgendes umfasst:

a) die wenigstens eine Spule (3),

b) das ferromagnetische Geberelement (2),

c) eine Auswerteschaltung (7), wobei

d) die Auswerteschaltung (7) ausgebildet ist, dass sie eine Änderung der Induktivität (L) der wenigstens einen Spule (3) erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität (L) der wenigstens einen Spule (3) bestimmt, dadurch gekennzeichnet, dass

e) die Auswerteschaltung (7) weiterhin ausgebildet ist, dass sie

e1 ) das Erfassen der Änderung der Induktivität (L) der wenigstens einen Spule (3) und das Bestimmen der Geschwindigkeit basierend auf der geänderten Induktivität (L) der wenigstens einen Spule (3) nur solange vornimmt, bis die bestimmte Geschwindigkeit ausgehend von niedrigeren Geschwindigkeiten einen Geschwindigkeitsgrenzwert erreicht hat, und dass sie aber

e2) wenn die bestimmte Geschwindigkeit den Geschwindigkeitsgrenzwert ausgehend von niedrigeren Geschwindigkeiten überschritten hat, eine Änderung der in der der wenigstens einen Spule (3) induzierten Spannung (U) erfasst und die Geschwindigkeit basierend auf der geänderten Spannung (U) bestimmt wird, und dass sie

e3) wenn die bestimmte Geschwindigkeit ausgehend von höheren Geschwindigkeiten den Geschwindigkeitsgrenzwert erreicht oder unterschritten hat, eine Änderung der Induktivität (L) der wenigstens einen Spule (3) erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität (L) der wenigstens einen Spule (3) bestimmt wird.

8. Geschwindigkeitsmessvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass sie eine Raddrehzahlmessvorrichtung ausbildet und der induktive Geschwindigkeitssensor (1 ) einen Raddrehzahlsensor.

9. Geschwindigkeitsmessvorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das ferromagnetische Geberelement (2) abwechselnd vorspringende Zähne (5) und Zahnlücken (6) aufweist.

10. Geschwindigkeitsmessvorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die wenigstens eine Spule (3) einen weichmagnetischen Kern (4) umgibt.

11. Geschwindigkeitsmessvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der weichmagnetische Kern (4) an einem vom ferromagnetischen Geberelement (2) weg weisenden Ende einen Permanentmagneten (10) aufweist.

12. Geschwindigkeitsmessvorrichtung nach einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, dass

a) die wenigstens eine Spule (3) in einen Parallel- oder Seriell-Schwingkreis verschaltet ist und die Auswerteschaltung (7) ausgebildet ist, dass sie die Induktivität (L) der wenigstens einen Spule (3) abhängig von der Resonanzfrequenz des Schwingkreises erfasst, oder dass

b) Mittel zum Beaufschlagen der wenigstens einen Spule (3) mit einem elektrischen Impuls vorgesehen sind, welche die wenigstens eine Spule (3) mit einem elektrischen Impuls beaufschlagen, wobei die Auswerteschaltung (7) ausgebildet ist, dass sie die Induktivität (L) der wenigstens einen Spule (3) abhängig von der Antwort der wenigstens einen Spule (3) auf den elektrischen Impuls erfasst, oder dass

c) Mittel zum Beaufschlagen der wenigstens einen Spule (3) mit einer konstanten Frequenz vorgesehen sind, welche die wenigstens eine Spule (3) mit einer konstanten Frequenz beaufschlagen und die Auswerteschaltung (7) ausgebildet ist, dass sie dann die Induktivität (L) der wenigstens einen Spule (3) erfasst.

13. Geschwindigkeitsmessvorrichtung nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass das Fahrzeug mehrere Räder (A, B, C, D) mit jeweils einem induktiven Geschwindigkeitssensor (1 ) als Raddrehzahlsensor an wenigstens zwei Rädern (A, B) aufweist, wobei die Auswerteschaltung (7) ausgebildet ist, dass sie ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis wenigstens eines zeitlichen Phasenversatzes (At1 , At2) zwischen den zeitlichen Verläufen der mittels der Raddrehzahlsensoren (1 ) der wenigstens zwei Räder (A, B) erfassten Induktivitäten (L) ermittelt.

14. Geschwindigkeitsmessvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Auswerteschaltung (7) ausgebildet ist, dass sie

a) ausgehend von einer erfassten Fahrt des Fahrzeugs wenigstens einen ersten zeitlichen Phasenversatz (At1 ) zwischen ersten zeitlichen Verläufen der von den Raddrehzahlsensoren (1 ) der wenigstens zwei Räder (A, B) erfassten

Induktivitäten (L) bis zu einem erfassten Stillstand des Fahrzeugs speichert, und dann

b) nach einem erfassten Wiederanfahren des Fahrzeugs wenigstens einen zweiten zeitlichen Phasenversatz (At2) zwischen zweiten zeitlichen Verläufen der von den Raddrehzahlsensoren (1 ) der wenigstens zwei Räder (A, B) erfassten

Induktivitäten (L) erfasst und mit dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) vergleicht, und wenn sie dabei feststellt, dass

c) der wenigstens eine zweite zeitliche Phasenversatz (At2) von dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) eine signifikante Abweichung aufweist, auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt schließt, und falls sie aber

d) andernfalls feststellt, dass eine lediglich nicht signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes (At2) von dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) vorliegt, auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt schließt.

15. Geschwindigkeitsmessvorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Auswerteschaltung (7) ausgebildet ist, dass sie als eine signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes (At2) von dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) interpretiert, wenn sie feststellt, dass der wenigstens eine zweite zeitliche Phasenversatz (At2) gegenüber dem wenigstens einen ersten zeitlichen Phasenversatz (At1 ) invertiert ist, wobei sich ein zeitlicher Vorlauf des ersten Verlaufs der von dem Raddrehzahlsensor (1 ) eines ersten Rads (A) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) gegenüber dem ersten Verlauf der von dem Raddrehzahlsensor (1 ) eines zweiten Rads (B) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) um den ersten zeitlichen Phasenversatz (At1 ) in einen zeitlichen Nachlauf des zweiten Verlaufs der von dem Raddrehzahlsensor (1 ) des ersten Rads (A) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) gegenüber dem zweiten Verlauf der von dem Raddrehzahlsensor (1 ) des zweiten Rads (B) der wenigstens zwei Räder (A, B) erfassten Induktivität (L) um den zweiten zeitlichen Phasenversatz (At2) ändert.

16. Geschwindigkeitsmessvorrichtung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Auswerteschaltung (7) ausgebildet ist, dass sie einen Stillstand des Fahrzeugs dadurch erfasst, dass sie in dem zeitlichen Verlauf der Induktivität (L) einen Abschnitt identifiziert, in welchem sich die Induktivität (L) nicht ändert und/oder in welchem der Gradient des Verlaufs der Induktivität (L) im Wesentlichen gleich Null ist.

17. Fahrerassistenzsystem mit wenigstens einer Geschwindigkeitsmessvorrichtung nach einem der Ansprüche 7 bis 16.

18. Fahrerassistenzsystem nach Anspruch 17, dadurch gekennzeichnet, dass es eine Autohold-Funktion und/oder eine Berganfahrhilfe-Funktion beinhaltet.

19. Fahrzeug mit einem Fahrerassistenzsystem nach einem der Ansprüche 17 oder 18. 5

SEITE ABSICHTLICH LEERGELASSEN

Description:
BESCHREIBUNG

Verfahren und Vorrichtung zum Bestimmen einer Geschwindigkeit mit Hilfe eines induktiven Geschwindigkeitssensors

Die Erfindung betrifft ein Verfahren zum Bestimmen einer Geschwindigkeit zwischen einem wenigstens eine Spule umfassenden Messaufnehmer und einem die Induktivität L der wenigstens einen Spule und die in der wenigstens einen Spule induzierte Spannung U verändernden ferromagnetischen Geberelement in einem Fahrzeug mit Hilfe eines wenigstens die Spule und das ferromagnetische Geberelement aufweisenden induktiven Geschwindigkeitssensors, gemäß dem Oberbegriff von Anspruch 1 sowie eine Geschwindigkeitsmessvorrichtung zum Bestimmen einer Geschwindigkeit zwischen einem wenigstens eine Spule umfassenden Messaufnehmer und einem die Induktivität der wenigstens einen Spule und die in der wenigstens einen Spule induzierte Spannung U verändernden ferromagnetischen Geberelement in einem Fahrzeug, welche wenigstens einen induktiven Geschwindigkeitssensor aufweist, gemäß dem Oberbegriff von Anspruch 7.

Weiterhin betrifft die Erfindung auch ein Fahrerassistenzsystem mit einer solchen Geschwindigkeitsmessvorrichtung gemäß Anspruch 17 sowie auch ein Fahrzeug mit einem solchen Fahrerassistenzsystem gemäß Anspruch 19.

Aus DE 101 46 949 A1 ein aktiver Geschwindigkeitssensor als Raddrehzahlsensor bekannt, in dem sich vor einem magnetoresistiven Element als Messaufnehmer ein ferro- oder dauermagnetischer Encoder als Geberelement dreht. Der Messaufnehmer ist als Brücke in einer Brückenschaltung verschaltet, wobei die am Messaufnehmer abfallende Brückenspannung durch den sich drehenden Encoder moduliert und von einer Auswerteschaltung ausgewertet wird. Ein derartiges magnetoresistives Elemente kann beispielsweise durch ein Hall-Element gebildet werden. Bei magnetoresistiven Geschwindigkeitssensoren mit magnetoresistiven Messaufnehmern hängt die Amplitude des Signals des Messaufnehmers nicht von der Drehzahl ab. Daher können magnetoresistive Geschwindigkeitssensoren eine Geschwindigkeit vom Stillstand bis zu einer maximalen Geschwindigkeit erfassen. Gemäß der gattungsbildenden WO 2014/095311 A1 kommt für magnetoresistive Geschwindigkeitssensoren im Automobilbereich derzeit aus Kostengründen ausschließlich Silizium in Frage, wodurch die Arbeitstemperatur der magnetoresistiven Geschwindigkeitssensoren nach oben begrenzt werde, je nach Technologie auf 150 °C bis 200 °C. In Kraftfahrzeugen gibt es jedoch an einigen Einsatzorten für Geschwindigkeitssensoren höhere Spitzentemperaturen, die bislang nur durch induktive Geschwindigkeitssensoren abgedeckt werden können. Weiterhin gebe es einen Nachteil der halbleiterbasierten, magnetoresistiven Geschwindigkeitssensoren, der nicht prinzipbedingt sei, sondern durch die Art der Industrialisierung der Lösung verursacht werde. Da die Signalverarbeitungsschaltungen, die in Form von ASICs ausgebildet sein könnten, sehr billig sein müssten, was nur durch Massenproduktion möglich sei, könne keine Anpassung an die jeweilige Applikation in einem Fahrzeug vorgenommen werden. Alle Geschwindigkeitssensoren eines Typs arbeiteten mit der gleichen Obergrenze der Frequenz, ab der das Messsignal aus dem Messaufnehmer durch die Tiefpassfilterung abgeschwächt werde. Für bestimmte Anwendungen liege die Grenze, die durch den Massenmarkt gesetzt wird, jedoch teilweise zu niedrig.

DE 41 30 168 A1 offenbart einen passiven induktiven Geschwindigkeitssensor als Motordrehzahlsensor, in dem sich vor einer als Messaufnehmer ausgebildeten Spule mit ganz oder teilweise permanent-magnetischem Kern als Joch ein als Geberelement ausgebildeter ferromagnetischer Encoder dreht. Die Anordnung wirkt als Generator. In der Spule wird eine Generatorspannung induziert, deren Frequenz und Amplitude proportional zur Drehzahl sind. Bei induktiven Geschwindigkeitssensoren sind die Generatorspannung und deren Frequenz proportional zur erfassten Geschwindigkeit. Dies führt dazu, dass im Stillstand keine Generatorspannung gemessen werden kann. Daher existiert bei induktiven Geschwindigkeitssensoren eine untere Grenzgeschwindigkeit, bei der die induzierte Spannung noch gerade hoch genug ist, um eine Auswertung zu ermöglichen, die hinsichtlich Zuverlässigkeit und Genauigkeit der zu erfassenden Geschwindigkeit den Anforderungen genügt. Wenn bei Fahrzeugen die Radgeschwindigkeiten durch induktive Geschwindigkeitssensoren gemessen werden sollen, ist die Existenz einer solchen Untergrenze für die zu erfassende Geschwindigkeit allerdings nachteilig, weil in einem Fahrzeug üblicherweise vorhandene Regelsysteme wie Fahrerassistenzsysteme die Signale der als Raddrehzahlsensoren ausgebildeten Geschwindigkeitssensoren benötigen. Viele der zuvor genannten Funktionen werden bei jeder zu erfassenden Geschwindigkeit benötigt, andere sind besonders bei sehr niedrigen zu erfassenden Geschwindigkeiten bis hin zum Stillstand von Bedeutung. Beispiele sind die Berganfahrhilfe (HSA, „Hill Start Assist"), Autohold-Funktion und Antriebsschlupfregelung (ASR). Die induktiven Geschwindigkeitssensoren haben jedoch den Vorteil, dass ihre Herstellungskosten im Vergleich zu aus Halbleitern hergestellten magnetoresistiven Geschwindigkeitssensoren geringer sind. Zum anderen sind sie besonders robust. Das gilt für die mechanische Beanspruchung, für externe elektromagnetische Felder und für den zulässigen Temperaturbereich.

Gemäß dem in der gattungsbildenden WO 2014/095311 A1 offenbarten Verfahren wird daher eine Induktivität als Messaufnehmer in einem Geschwindigkeitssensor verwendet. Anders als in einem induktiven Geschwindigkeitssensor wird jedoch die als Messaufnehmer verwendete Induktivität nicht als Generator betrieben. Vielmehr wird die als Messaufnehmer verwendete Induktivität wie in einem magnetoresistiven Geschwindigkeitssensor hinsichtlich ihrer sich verändernden elektrischen Impedanz betrachtet. Genauer umfasst das dort das angegebene Verfahren die Schritte: Anlegen einer Quellenspannung an die Induktivität, und Erfassen einer Änderung einer basierend auf der Quell- Spannung an der Induktivität abfallenden Messspannung, um die Änderung der Induktivität zu erfassen. Dabei moduliert der an der Induktivität mit der zu messenden Geschwindigkeit vorbeiziehende Encoder die Quellspannung in Abhängigkeit dieser Geschwindigkeit. Auf diese Weise wird eine veränderliche Messspannung als Messsignal erfasst, aus der die zu messende Geschwindigkeit hervorgeht. Als Quellspannung wird dabei eine Wechselspannung herangezogen. Die Geschwindigkeit des Encoders soll damit keinen Einfluss auf die Amplitude des Messergebnisses haben, so dass das angegebene Verfahren geschwindigkeitsunabhängig zur Messung der Geschwindigkeit eingesetzt werden könnte. Jedoch muss hierzu eine Spannungsquelle für die Quellspannung vorgesehen und angeschlossen werden.

Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, ein auf einem passiven induktiven Geschwindigkeitssensor basierendes Verfahren zum Bestimmen einer Geschwindigkeit bzw. eine darauf basierende Geschwindigkeitsmessvorrichtung derart weiter zu entwickeln, dass es bzw. sie mit einem geringeren Aufwand realisierbar ist. Ebenso sollen auch ein Fahrerassistenzsystem mit wenigstens einer solchen Geschwindigkeitsmessvorrichtung sowie ein Fahrzeug mit einem solchen Fahrerassistenzsystem zur Verfügung gestellt werden.

Gemäß der Erfindung wird diese Aufgabe durch die Merkmale der Ansprüche 1 , 7, 17 und 19 gelöst.

Offenbarung der Erfindung

Die Erfindung basiert auf der Überlegung, für das Verfahren und die Geschwindigkeitsmessvorrichtung ausschließlich passive induktive

Geschwindigkeitssensoren für die Geschwindigkeitsmessung wegen der oben beschriebenen Vorteile hinsichtlich Fierstellkosten und Robustheit heranzuziehen.

Die Erfindung basiert dann gemäß einem Aspekt auf einem Verfahren zum Bestimmen einer Geschwindigkeit zwischen einem wenigstens eine Spule umfassenden Messaufnehmer und einem die Induktivität L der wenigstens einen Spule und eine die in der wenigstens einen Spule induzierte Spannung U verändernden ferromagnetischen Geberelement mit Hilfe eines wenigstens die Spule und das ferromagnetische Geberelement aufweisenden induktiven Geschwindigkeitssensors, bei welchem eine Änderung der Induktivität L der wenigstens einen Spule erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität L der wenigstens einen Spule bestimmt wird.

Wie in WO 2014/09531 1 A1 beschrieben, wird bei dem Verfahren daher (auch) eine Änderung der Induktivität L erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität L bestimmt.

Anders als in WO 2014/09531 1 A1 erfolgt das Erfassen der Änderung der Induktivität L der wenigstens einen Spule und das Bestimmen der Geschwindigkeit basierend auf der geänderten Induktivität L der wenigstens einen Spule allerdings nur solange, bis die durch Änderung der Induktivität L bestimmte Geschwindigkeit ausgehend von niedrigeren Geschwindigkeiten einen Geschwindigkeitsgrenzwert erreicht hat.

Wenn dann die bestimmte Geschwindigkeit den Geschwindigkeitsgrenzwert ausgehend von niedrigeren Geschwindigkeiten überschritten hat, dann wird hingegen eine Änderung der in der wenigstens einen Spule induzierten Spannung U erfasst und die Geschwindigkeit basierend auf der geänderten Spannung U bestimmt. Wenn dann die bestimmte Geschwindigkeit ausgehend von höheren Geschwindigkeiten wieder den Geschwindigkeitsgrenzwert erreicht oder unterschritten hat, wird wiederum eine Änderung der Induktivität L der wenigstens einen Spule erfasst und die Geschwindigkeit wiederum basierend auf der geänderten Induktivität L der wenigstens einen Spule bestimmt.

Der Erfindung liegt dabei die Überlegung zugrunde, dass die Induktivität L der wenigstens einen Spule durch bevorzugt schnell hintereinander erfolgende Messungen mit einer bestimmten Abtastfrequenz erfasst wird. Diese Abtastfrequenz müsste allerdings bei hohen Geschwindigkeiten zwischen dem Geberelement und dem Messaufnehmer, d.h. bei Geschwindigkeiten oberhalb des Geschwindigkeitsgrenzwerts relativ hoch sein, was für ein Erfassen der Induktivität L der wenigstens einen Spule aber schwierig zu realisieren ist.

Aus diesem Grund hat die Erfindung erkannt, dass es, wenn die bestimmte Geschwindigkeit den Geschwindigkeitsgrenzwert überschritten hat, günstiger ist, in konventioneller Weise eine Änderung der in der wenigstens einen Spule induzierten Spannung U zu erfassen und die Geschwindigkeit basierend auf der geänderten Spannung U zu bestimmen. Denn für eine Erfassung der in der wenigstens einen Spule induzierten Spannung U spielt die Abtastfrequenz der Messung eine untergeordnete Rolle.

Andererseits erfolgt das Bestimmen der Geschwindigkeit basierend auf der geänderten Induktivität L der wenigstens einen Spule solange, bis die durch Änderung der Induktivität L bestimmte Geschwindigkeit ausgehend von niedrigeren Geschwindigkeiten den Geschwindigkeitsgrenzwert erreicht hat. Anders als in einem induktiven Geschwindigkeitssensor wird die als Messaufnehmer verwendete Spule dann nicht als Generator betrieben. Vielmehr wird die als Messaufnehmer verwendete wenigstens eine Spule wie in einem magnetoresistiven Geschwindigkeitssensor hinsichtlich ihrer sich verändernden elektrischen Impedanz bzw. Induktvität L betrachtet, mit dem Vorteil, dass dann niedrige Geschwindigkeiten bis hin zum Stillstand zuverlässig erfasst werden können. Dies ist vor allem bei einer Bestimmung von Radgeschwindigkeiten im Rahmen von Fahrerassistenzsystemen wie Berganfahrhilfen (HSA,„Hill Start Assist"), Autohold- Systemen und Antriebsschlupfregelung (ASR) von Vorteil. Die Erfindung vereint daher die Vorteile beider Messmethoden in sich, bei welchen geschwindigkeitsabhängig, d.h. bei niedrigen Geschwindigkeiten bis zum Erreichen des Geschwindigkeitsgrenzwerts die Induktivität L der wenigstens einen Spule und bei höheren Geschwindigkeiten oberhalb des Geschwindigkeitsgrenzwerts die in der wenigstens einen Spule induzierte Spannung U erfasst und auf der Basis der jeweils erfassten Größe - Induktivität L oder induzierte Spannung U - jeweils die Geschwindigkeit zwischen dem Messaufnehmer und dem Geberelement bestimmt wird.

Gemäß einer bevorzugten Ausführungsform des Verfahrens erfolgt das Erfassen der Induktivität L der wenigstens einen Spule dadurch, dass

a) die wenigstens eine Spule in einen Parallel- oder Seriell-Schwingkreis verschaltet und die Induktivität L der wenigstens einen Spule abhängig von der Resonanzfrequenz des Schwingkreises erfasst wird, oder dass

b) die wenigstens eine Spule mit einem elektrischen Impuls beaufschlagt wird und die Induktivität L der wenigstens einen Spule abhängig von Antwort der wenigstens einen Spule auf den elektrischen Impuls erfasst wird, oder dass

c) die wenigstens eine Spule mit einer konstanten Frequenz beaufschlagt und dann die Induktivität L der wenigstens einen Spule erfasst wird.

Gemäß einer Weiterbildung des Verfahrens kann das Fahrzeug mehrere Räder mit jeweils einem induktiven Geschwindigkeitssensor als Raddrehzahlsensor an wenigstens zwei Rädern aufweisen, wobei ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis wenigstens eines zeitlichen Phasenversatzes der zeitlichen Verläufe der mittels der Raddrehzahlsensoren der wenigstens zwei Räder erfassten Induktivitäten L ermittelt wird. Mit anderen Worten wird ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis wenigstens eines zeitlichen Phasenversatzes der zeitlichen Verläufe der von Raddrehzahlsensoren von wenigstens zwei unterschiedlichen Rädern des Fahrzeugs erfassten Induktivitäten ermittelt.

Insbesondere kann bei dem Verfahren

a) ausgehend von einer erfassten Fahrt des Fahrzeugs wenigstens ein erster zeitlicher Phasenversatz zwischen ersten zeitlichen Verläufen der von den Raddrehzahlsensoren der wenigstens zwei Räder erfassten Induktivitäten bis zu einem erfassten Stillstand des Fahrzeugs gespeichert werden, und dann b) nach einem erfassten Wiederanfahren des Fahrzeugs wenigstens ein zweiter zeitlicher Phasenversatz zwischen zweiten zeitlichen Verläufen der von den Raddrehzahlsensoren der wenigstens zwei Räder erfassten Induktivitäten L erfasst und mit dem wenigstens einen ersten zeitlichen Phasenversatz verglichen werden, und wenn dabei festgestellt wird, dass

c) der wenigstens eine zweite zeitliche Phasenversatz von dem wenigstens einen ersten zeitlichen Phasenversatz eine signifikante Abweichung aufweist, auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt geschlossen werden, und falls aber

d) andernfalls festgestellt wird, dass eine lediglich nicht signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes von dem wenigstens einen ersten zeitlichen Phasenversatz vorliegt, auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt geschlossen werden.

Die Anmelderin nutzt dabei den Effekt, dass bei an mehreren Rädern angeordneten Raddrehzahlsensoren davon auszugehen ist, dass deren periodischen Induktivitätssignale aufgrund einer in Umfangsrichtung gesehen zufälligen Montage der Geberelemente (Encoder) und damit der Zahn/Zahnlückenpositionen an den Rädern stets von phasenverschobenen Verläufen der von verschiedenen Raddrehzahlsensoren erfassten Induktivitäten L auszugehen ist. Bei zwei mit jeweils einem Raddrehzahlsensoren versehenen Rädern läuft daher der erste Verlauf der von dem einen Raddrehzahlsensor erfassten Induktivität L beispielsweise dem ersten Verlauf der von dem einen Raddrehzahlsensor erfassten Induktivität L zeitlich vor oder nach. Wie die Anmelderin erkannt hat, kehrt sich dieser zeitliche Vorlauf bzw. Nachlauf jedoch nach einem Zwischenstopp oder Fahrzeugstillstand in einen zeitlichen Nachlauf bzw. Vorlauf um, wenn die Fahrtrichtung nach dem Zwischenstopp oder Fahrzeugstillstand geändert wurde, was eine signifikante Abweichung des zweiten zeitlichen Phasenversatzes von dem ersten zeitlichen Phasenversatz darstellt.

Das Schließen auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt bzw. das Schließen auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt kann den Verfahrensschritt einer Erzeugung eines entsprechenden Signals beinhalten, welches dann zur Weiterverarbeitung beispielsweise einem Fahrerassistenzsystem zur Verfügung gestellt wird.

Ein Erfassen der Fahrt bzw. der Wiederanfahrt des Fahrzeugs kann durch eine zeitliche Änderung der Induktivität L auf einfache Weise ermittelt werden.

Bei dem Verfahren kann insbesondere als eine signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes von dem wenigstens einen ersten zeitlichen Phasenversatz interpretiert werden, wenn der wenigstens eine zweite zeitliche Phasenversatz gegenüber dem wenigstens einen ersten zeitlichen Phasenversatz invertiert ist, wobei sich ein zeitlicher Vorlauf des ersten Verlaufs der von dem Raddrehzahlsensor eines ersten Rads der wenigstens zwei Räder erfassten Induktivität gegenüber dem ersten Verlauf der von dem Raddrehzahlsensor eines zweiten Rads der wenigstens zwei Räder erfassten Induktivität um den ersten zeitlichen Phasenversatz in einen zeitlichen Nachlauf des zweiten Verlaufs der von dem Raddrehzahlsensor des ersten Rads der wenigstens zwei Räder erfassten Induktivität gegenüber dem zweiten Verlauf der von dem Raddrehzahlsensor des zweiten Rads der wenigstens zwei Räder erfassten Induktivität um den zweiten zeitlichen Phasenversatz ändert. Während daher der erste zeitliche Verlauf der Induktivität L der von dem Raddrehzahlsensor des ersten Rades erfassten Induktivität L dem ersten zeitlichen Verlauf der Induktivität der von dem Raddrehzahlsensor des zweiten Rades erfassten Induktivität L zeitlich vorgelaufen ist, kehren sich nach dem Zwischenstopp oder Fahrzeugstillstand die Verhältnisse um, indem dann der zweite zeitliche Verlauf der Induktivität L der von dem Raddrehzahlsensor des ersten Rades erfassten Induktivität L dem zweiten zeitlichen Verlauf der Induktivität der von dem Raddrehzahlsensor des zweiten Rades erfassten Induktivität L zeitlich nachläuft. Dieser Wechsel von zeitlichem Vorlauf während der ersten zeitlichen Verläufe der Induktivität L, also zeitlich vor dem Fahrzeugstillstand oder Zwischenstopp in einen zeitlichen Nachlauf während der zweiten zeitlichen Verläufe der Induktivität L stellt daher ein Indiz für eine signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes von dem wenigstens einen ersten zeitlichen Phasenversatz dar.

Auch kann bei dem Verfahren ein Stillstand des Fahrzeugs dadurch erfasst werden, dass in dem zeitlichen Verlauf der Induktivität L ein Abschnitt identifiziert wird, in welchem sich die Induktivität L nicht ändert und/oder in welchem der Gradient des zeitlichen Verlaufs der Induktivität L im Wesentlichen gleich Null ist. Gemäß einem weiteren Aspekt der Erfindung wird eine Geschwindigkeitsmessvorrichtung zum Bestimmen einer Geschwindigkeit zwischen einem wenigstens eine Spule umfassenden Messaufnehmer und einem die Induktivität L der wenigstens einen Spule und die in der wenigstens einen Spule induzierte Spannung U verändernden ferromagnetischen Geberelement in einem Fahrzeug offenbart, welche wenigstens einen induktiven Geschwindigkeitssensor aufweist, der mindestens Folgendes umfasst:

a) die wenigstens eine Spule,

b) das ferromagnetische Geberelement,

c) eine (elektronische) Auswerteschaltung, wobei

d) die (elektronische) Auswerteschaltung ausgebildet ist, dass sie eine Änderung der Induktivität L der wenigstens einen Spule erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität L der wenigstens einen Spule bestimmt, wobei

e) die Auswerteschaltung weiterhin ausgebildet ist, dass sie

e1 ) das Erfassen der Änderung der Induktivität L der wenigstens einen Spule und das Bestimmen der Geschwindigkeit basierend auf der geänderten Induktivität L der wenigstens einen Spule nur solange vornimmt, bis die bestimmte Geschwindigkeit ausgehend von niedrigeren Geschwindigkeiten einen Geschwindigkeitsgrenzwert erreicht hat, und dass sie aber e2) wenn die bestimmte Geschwindigkeit den Geschwindigkeitsgrenzwert ausgehend von niedrigeren Geschwindigkeiten überschritten hat, eine Änderung der in der der wenigstens einen Spule induzierten Spannung U erfasst und die Geschwindigkeit basierend auf der geänderten Spannung U bestimmt wird, und dass sie

e3) wenn die bestimmte Geschwindigkeit ausgehend von höheren Geschwindigkeiten den Geschwindigkeitsgrenzwert erreicht oder unterschritten hat, eine Änderung der Induktivität L der wenigstens einen Spule erfasst und die Geschwindigkeit basierend auf der geänderten Induktivität L der wenigstens einen Spule bestimmt wird.

Gemäß einer Weiterbildung der Geschwindigkeitsmessvorrichtung bildet sie eine Raddrehzahlmessvorrichtung aus. Beispielsweise ist das ferromagnetische Geberelement dann ringförmig ausgebildet und dreht sich zusammen mit einem Rad des Fahrzeugs koaxial in Bezug auf die Radachse, während die wenigstens eine stationäre Spule einen weichmagnetischen Kern umgibt und eine gemeinsame Mittelachse der wenigstens einen Spule und des weichmagnetischen Kerns parallel zur Radachse und senkrecht zu einer Ebene angeordnet ist, welche auch senkrecht zur Radachse ist.

Insbesondere kann bei der Geschwindigkeitsmessvorrichtung das ferromagnetische Geberelement abwechselnd vorspringende Zähne und Zahnlücken aufweisen. In diesem Fall weist ein zeitlicher Verlauf der Induktivität L der wenigstens einen Spule ein Maximum auf, wenn ein Zahn dem weichmagnetischen Kern gegenüberliegt und ein Minimum, wenn eine Zahnlücke dem weichmagnetischen Kern gegenüberliegt. Daher ergibt sich ständig ein Wechsel zwischen einer minimalen Iduktivität Lmin und einer maximalen Induktivität Lmax, wenn sich das Rad zusammen mit dem Geberelement gegenüber der Spule mit dem weichmagnetischen Kern dreht. Abschnitte in dem zeitlichen Verlauf der Induktivität, in denen sich die Induktivität nicht ändert oder in welchen der Gradient gleich Null ist markieren dann einen Stillstand des Rades.

Auch kann bei der Geschwindigkeitsmessvorrichtung der weichmagnetische Kern an einem vom ferromagnetische Geberelement weg weisenden Ende einen Permanentmagneten aufweist.

Bei der Geschwindigkeitsmessvorrichtung kann

a) die wenigstens eine Spule in einen Parallel- oder Seriell-Schwingkreis verschaltet und die Auswerteschaltung ausgebildet sein, dass sie die Induktivität L der wenigstens einen Spule abhängig von der Resonanzfrequenz des Schwingkreises erfasst, oder es können

b) Mittel zum Beaufschlagen der wenigstens einen Spule mit einem elektrischen Impuls vorgesehen sein, welche die wenigstens eine Spule mit einem elektrischen Impuls beaufschlagen, wobei dann die Auswerteschaltung ausgebildet sein kann, dass sie die Induktivität L der wenigstens einen Spule abhängig von Antwort der wenigstens einen Spule auf den elektrischen Impuls erfasst, oder es können c) Mittel zum Beaufschlagen der wenigstens einen Spule mit einer konstanten Frequenz vorgesehen sein, welche die wenigstens eine Spule mit einer konstanten Frequenz beaufschlagen und die Auswerteschaltung ausgebildet sein, dass sie dann die Induktivität L der wenigstens einen Spule erfasst. Weiterhin kann das Fahrzeug mehrere Räder mit jeweils einem induktiven Geschwindigkeitssensor als Raddrehzahlsensor an wenigstens zwei Rädern aufweisen, wobei die Auswerteschaltung ausgebildet sein kann, dass sie ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis wenigstens eines zeitlichen Phasenversatzes zwischen zeitlichen Verläufen der mittels der Raddrehzahlsensoren der wenigstens zwei Räder erfassten Induktivitäten L ermittelt.

Insbesondere kann dann die Auswerteschaltung ausgebildet sein, dass sie

a) ausgehend von einer erfassten Fahrt des Fahrzeugs wenigstens einen ersten zeitlichen Phasenversatz zwischen ersten zeitlichen Verläufen der von den Raddrehzahlsensoren der wenigstens zwei Räder erfassten Induktivitäten L bis zu einem erfassten Stillstand des Fahrzeugs speichert, und dann

b) nach einem erfassten Wiederanfahren des Fahrzeugs wenigstens einen zweiten zeitlichen Phasenversatz zwischen zweiten zeitlichen Verläufen der von den Raddrehzahlsensoren der wenigstens zwei Räder erfassten Induktivitäten L erfasst und mit dem wenigstens einen ersten zeitlichen Phasenversatz vergleicht, und wenn sie dabei feststellt, dass

c) der wenigstens eine zweite zeitliche Phasenversatz von dem wenigstens einen ersten zeitlichen Phasenversatz eine signifikante Abweichung aufweist, auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt schließt, und falls sie aber

d) andernfalls feststellt, dass eine lediglich nicht signifikante Abweichung des wenigstens einen zweiten zeitlichen Phasenversatzes von dem wenigstens einen ersten zeitlichen Phasenversatz vorliegt, auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt schließt.

Das Schließen auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt bzw. das Schließen auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt kann eine Erzeugung eines entsprechenden Signals durch die elektronische Auswerteschaltung beinhalten, welches dann zur Weiterverarbeitung beispielsweise einem Fahrerassistenzsystem zur Verfügung gestellt wird.

Ein Erfassen der Fahrt bzw. der Wiederanfahrt des Fahrzeugs kann durch eine zeitliche Änderung der Induktivität L von der elektronischen Auswerteschaltung ermittelt werden. Weiterhin kann bei der Geschwindigkeitsmessvorrichtung die Auswerteschaltung ausgebildet sein, dass sie als eine signifikante Abweichung zwischen dem wenigstens einen zweiten zeitlichen Phasenversatz von dem wenigstens einen ersten zeitlichen Phasenversatz interpretiert, wenn sie feststellt, dass der wenigstens eine zweite zeitliche Phasenversatz gegenüber dem wenigstens einen ersten zeitlichen Phasenversatz invertiert ist Eine solche Inversion bedeutet beispielsweise, dass, wenn bei der Fahrt des Fahrzeugs ein Maximum oder ein Minimum des zeitlichen Verlaufs der Induktivität L eines ersten Raddrehzahlsensors einem Maximum oder einem Minimum des zeitlichen Verlaufs der Induktivität L eines zweiten Raddrehzahlsensors zeitlich vorgelaufen ist, dieser Vorlauf sich bei der Wiederanfahrt des Fahrzeugs in einen Nachlauf umkehrt, d.h. dass das Maximum oder das Minimum des zeitlichen Verlaufs der Induktivität L des ersten Raddrehzahlsensors dem Maximum oder dem Minimum des zeitlichen Verlaufs der Induktivität L des zweiten Raddrehzahlsensors nun zeitlich nachläuft. Zur Erläuterung dieses Effekts wird auf die obigen Ausführungen verwiesen.

Bei der Geschwindigkeitsmessvorrichtung kann die Auswerteschaltung auch ausgebildet sein, dass sie einen Stillstand des Fahrzeugs dadurch erfasst, dass sie in dem zeitlichen Verlauf der Induktivität L einen Abschnitt identifiziert, in welchem der Gradient des Verlaufs der Induktivität L im Wesentlichen gleich Null ist.

Die Erfindung betrifft auch ein Fahrerassistenzsystem mit wenigstens einer oben beschriebenen Geschwindigkeitsmessvorrichtung. Bei einem solchen Fahrerassistenzsystem kann insbesondere eine zuverlässige Erfassung der Geschwindigkeit Null bzw. des Fahrzeugstillstands bedeutsam sein wie dies beispielsweise bei einem Fahrerassistenzsystem der Fall ist, welches eine Autohold- Funktion und/oder eine Berganfahrhilfe-Funktion beinhaltet.

Ebenso beinhaltet die Erfindung ein Fahrzeug mit einem solchen Fahrerassistenzsystem. Zeichnung

Nachstehend ist ein Ausführungsbeispiel der Erfindung in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. In der Zeichnung zeigt

Fig .1 schematische Darstellung einer Raddrehzahlmessvorrichtung als bevorzugte Ausführungsform einer Geschwindigkeitsmessvorrichtung der Erfindung; Fig.2 ein Diagramm, welches den zeitlichen Verlauf der durch die

Raddrehzahlmessvorrichtung nach Fig .1 erfassten Induktivität L über der Zeit t darstellt;

Fig.3 ein Diagramm, welches den zeitlichen Verlauf der durch

Raddrehzahlmessvorrichtungen an vier Rädern eines Fahrzeugs erfassten Induktivitäten L über der Zeit t bei einer Fahrt in einer einzigen Fahrtrichtung mit Zwischenstopp darstellt;

Fig .4 ein Diagramm, welches den zeitlichen Verlauf der durch

Raddrehzahlmessvorrichtungen an vier Rädern eines Fahrzeugs erfassten Induktivitäten L über der Zeit t bei einer Fahrt in einer Fahrtrichtung und einem Zwischenstopp zeitlich nachfolgend in der Gegenfahrtrichtung darstellt.

Beschreibung des Ausführungsbeispiels

Fig-1 ist ein eine schematische Darstellung eines Raddrehzahlsensors 1 als bevorzugte Ausführungsform einer Geschwindigkeitsmessvorrichtung der Erfindung. Der Raddrehzahlsensor 1 ist als passiver induktiver Geschwindigkeitssensor ausgebildet und umfasst ein ferromagnetisches Geberelement (Encoder) 2, welches beispielsweise ringförmig ausgebildet ist und sich zusammen mit einem Rad des Fahrzeugs koaxial in Bezug auf die Radachse dreht. Weiterhin umfasst der Raddrehzahlsensor 1 eine stationäre Spule 3 und einen weichmagnetischen Kern 4, wobei die Spule 3 den weichmagnetischen Kern 4 umgibt und eine gemeinsame Mittelachse der Spule 3 und des weichmagnetischen Kerns 4 parallel zur Radachse und senkrecht zu einer Ebene angeordnet ist, welche auch senkrecht zur Radachse ist.

Das ferromagnetische Geberelement 2 weist abwechselnd vorspringende Zähne 5 und Zahnlücken 6 auf. Umfasst von dem Raddrehzahlsensor 1 ist auch eine elektronische Auswerteschaltung 7, welche durch Leitungen 8 mit der Spule 3 verbunden ist. Zwischen dem ferromagnetischen Geberelement 2 und einem zu diesem weisenden Ende des weichmagnetischen Kerns 4 ist ein lichter Spalt 9 ausgebildet. An dem vom ferromagnetischen Geberelement 2 weg weisenden Ende des weichmagnetischen Kerns 4 ist ein Permanentmagnet 10 angeordnet. Das Magnetfeld des Permanentmagneten 10 durchsetzt einerseits den weichmagnetischen Kern 4, die Spule 3 wie auch das ferromagnetische Geberelement 2 wenigstens stellenweise. Wenn sich das ferromagnetische Geberelement 2 gegenüber der stationären Einheit aus Spule 3 und weichmagnetischem Kern 4 dreht, also wenn sich das mit dem

Raddrehzahlsensor 1 versehene Rad des Fahrzeugs dreht, dann ändert sich zum einen die Induktivität L der Spule 3 und eine in der Spule 3 induzierte Spannung U infolge der im Bereich des Spalts 9 abwechselnd ein- und ausfahrenden Zähne 5 und Zahnlücken 6.

Zum einen wird aufgrund des Induktionsgesetzes in der Spule 3 und daher auch in den Leitungen 8 eine Spannung U induziert, die der zeitlichen Änderung des magnetischen Flusses F proportional ist. Abhängig von der induzierten Spannung U kann dann in der elektronischen Auswerteschaltung 7 dann die (Dreh-) Geschwindigkeit des ferromagnetischen Geberelements 2 und damit des Rades bestimmt werden. Dabei hängt der magnetische Fluss F davon ab, ob dem Ende des weichmagnetischen Kerns 4, welches dem ferromagnetischen Geberelement 2 zugewandt ist, ein Zahn 5 oder eine Zahnlücke 6 gegenübersteht. Ein Zahn 5 bündelt den Streufluss des

Permanentmagneten 10, ein Zahnlücke 6 dagegen schwächt den Magnetfluss. Wenn sich daher das Rad des Fahrzeugs zusammen mit dem ferromagnetischen Geberelement 2 dreht, so wird durch jeden Zahn 5 eine Magnetfeldänderung bewirkt. Diese Änderung des Magnetfelds erzeugt in der Spule 3 die Induktionsspannung U. Die Anzahl der Impulse pro Zeiteinheit sind dann ein Maß für die Raddrehzahl des Rades.

Zum einen ist daher die elektronische Auswerteschaltung 7 ausgebildet, dass sie eine Änderung der in der Spule 3 induzierten Spannung U erfasst und die (Dreh-) Geschwindigkeit des Rades basierend auf der geänderten, in der Spule 3 induzierten Spannung U bestimmt.

Andererseits wird bei einer Drehung des Rades und damit des ferromagnetischen Geberelements 2 die Induktivität L der Spule 3 in einer periodischen Weise verändert. Abhängig davon, ob ein Zahn 5 oder eine Zahnlücke 6 dem weichmagnetischen Kern 4 gegenüberliegt ändert sich die Induktivität L der Spule 3.

Die elektronische Auswerteschaltung 7 ist daher zum andern ausgebildet ist, dass sie auch eine Änderung der Induktivität L der Spule 3 erfasst und die (Dreh-) Geschwindigkeit des Rades basierend auf der geänderten Induktivität L der Spule 3 bestimmt.

Dabei sind verschiedene Erfassungsverfahren denkbar. Beispielsweise kann die Spule 3 in einen Parallel- oder Seriell-Schwingkreis verschaltet und die Auswerteschaltung ausgebildet sein, dass sie die Induktivität L der Spule 3 abhängig von der Resonanzfrequenz des Schwingkreises erfasst. Alternativ können Mittel zum Beaufschlagen der Spule 3 mit einem elektrischen Impuls vorgesehen sein, welche die Spule 3 mit einem elektrischen Impuls beaufschlagen, wobei die Auswerteschaltung 7 dann beispielsweise ausgebildet ist, dass sie die Induktivität L der Spule 3 abhängig von der Antwort der Spule 3 auf den elektrischen Impuls erfasst. Nicht zuletzt können auch Mittel zum Beaufschlagen der Spule 3 mit einer konstanten Frequenz vorgesehen sein, welche die Spule 3 mit einer konstanten Frequenz beaufschlagen, wobei dann die Auswerteschaltung 7 ausgebildet ist, dass sie die Induktivität L der Spule 3 erfasst.

Fig.2 zeigt ein Diagramm, welches den zeitlichen Verlauf der durch den Raddrehzahlsensor 1 nach Fig-1 erfassten Induktivität L über der Zeit t darstellt. Wie dort zu erkennen, stellt sich dabei ein periodischer Verlauf der Induktivität L ein, welcher sich annährend sinusförmig zwischen einem Maximalwert Lmax und einem Minimalwert Lmin bewegt, wobei die Maximalwerte Lmax eingenommen werden, wenn ein Zahn 5 des ferromagnetischen Geberelements 2 dem weichmagnetischen Kern 4 gegenüberliegt und die Minimalwerte Lmin, wenn eine Zahnlücke 6 dem weichmagnetischen Kern 4 gegenübersteht.

Durch den Pfeil 1 1 in Fig.2 gekennzeichnete Abschnitt oder Bereiche, in welchen sich die Induktivität L nicht ändert und/oder der Gradient des zeitlichen Verlaufs der Induktivität L im Wesentlichen gleich Null ist, identifiziert die elektronische Auswerteschaltung 7 als Stillstand des Rades.

Die elektronische Auswerteschaltung 7 ist weiterhin ausgebildet ist, dass sie das Erfassen der Änderung der Induktivität L der Spule 3 und das Bestimmen der (Dreh-) Geschwindigkeit des Rades basierend auf der geänderten Induktivität L der Spule 3 nur solange vornimmt, bis die bestimmte Geschwindigkeit ausgehend von niedrigeren Geschwindigkeiten beispielsweise ausgehend vom Stillstand einen Geschwindigkeitsgrenzwert erreicht hat. Dieser Geschwindigkeitsgrenzwert kann relativ niedrig sein.

Die Auswerteschaltung 7 ist weiterhin ausgebildet, dass sie wenn die von ihr bestimmte Geschwindigkeit den Geschwindigkeitsgrenzwert ausgehend von niedrigeren Geschwindigkeiten beispielsweise bei einem Beschleunigen des Fahrzeugs überschritten hat, die Änderung der in der Spule 3 induzierten Spannung U erfasst und die Geschwindigkeit dann nicht mehr basierend auf der Änderung der Induktivität L sondern lediglich basierend auf der geänderten Spannung U bestimmt. Wenn dann die durch die Auswerteschaltung 7 bestimmte Geschwindigkeit ausgehend von höheren Geschwindigkeiten den Geschwindigkeitsgrenzwert wieder erreicht oder unterschritten hat, also beispielsweise wenn das in Fahrt befindliche Fahrzeug abgebremst wird, dann wird wiederum eine Änderung der Induktivität L der wenigstens einen Spule 3 erfasst und die Geschwindigkeit dann nicht mehr basierend auf der Änderung der induzierten Spannung U sondern basierend auf der geänderten Induktivität L der Spule 3 bestimmt.

Das Fahrzeug weist beispielsweise vier Räder A, B, C, D (Figuren 3 und 4) mit jeweils einem eigenen induktiven Geschwindigkeitssensor als Raddrehzahlsensor 1 auf. Dann wird ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis von wenigstens einem zeitlichen Phasenversatz zwischen zeitlichen Verläufen der mittels der Raddrehzahlsensoren an beispielsweise zwei Rädern A und B erfassten Induktivitäten L durch die elektronische Auswerteschaltung 7 ermittelt. Mit anderen Worten wird ein Vorliegen von Vorwärtsfahrt oder Rückwärtsfahrt des Fahrzeugs auf der Basis wenigstens eines zeitlichen Phasenversatzes der zeitlichen Verläufe der von den Raddrehzahlsensoren 1 von wenigstens zwei unterschiedlichen Rädern des Fahrzeugs erfassten Induktivitäten L ermittelt.

Diese Vorwärtsfahrt-/Rückwärtsfahrterkennung soll nun anhand der Diagramme von Fig.3, und von Fig.4 näher erläutert werden, welche jeweils den zeitlichen Verlauf der von vier Raddrehzahlsensoren erfassten Induktivitäten L von vier Rädern A, B, C und D des Fahrzeugs über der Zeit t darstellen. Dabei erfasst für jedes Rad A, B, C und D ein eigener Raddrehzahlsensor 1 die (Dreh-) Geschwindigkeit bzw. die Raddrehzahl. Mit A ist das erste Rad, mit B das zweite Rad, mit C das dritte Rad und mit D das vierte Rad des Fahrzeugs bezeichnet.

Es wird dabei beispielhaft davon ausgegangen, dass die elektronischen Auswerteschaltungen 7 der vier Raddrehzahlsensoren in einer integrierten elektronischen Auswerteschaltung 7 zusammengefasst sind und dass eine Vorwärtsfahrt-, Rückwärtsfahrt- sowie auch eine Stillstanderkennung in der integrierten elektronischen Auswerteschaltung 7 implementiert ist. Ausgehend von einer durch die Raddrehzahlsensoren 1 erfassten Fahrt des Fahrzeugs, beispielsweise bei einer Vorwärtsfahrt mit einer Geschwindigkeit, welche beispielsweise niedriger als der Geschwindigkeitsgrenzwert ist, wird ein erster zeitlicher Phasenversatz At1 zwischen ersten zeitlichen Verläufen der Induktivitäten L beispielsweise der beiden Raddrehzahlsensoren 1 des ersten Rades A und des zweiten Rades B bis zu einem erfassten Stillstand des Fahrzeugs gespeichert. Die ersten zeitlichen Verläufe der Induktivitäten L der Raddrehzahlsensoren 1 aller vier Räder A bis D sind in Fig.3 links dargestellt. Aus Fig.3 geht hervor, dass bei der Vorwärtsfahrt die ersten zeitlichen Verläufe der Induktivitäten L der vier Raddrehzahlsensoren der vier Räder A bis D jeweils einen Phasenversatz zueinander aufweisen.

Beispielhaft ist in Fig.3 der erste zeitliche Phasenversatz At1 zwischen dem von dem Raddrehzahlsensor 1 des ersten Rades A und dem von dem Raddrehzahlsensor 1 des zweiten Rades B erfassten Induktivitätsverlauf zwischen den Amplitudenmaxima Amax und Bmax gezeigt. Alternativ könnte dieser der erste zeitliche Phasenversatz At1 auch zwischen beliebigen sich entsprechenden Werten der von dem Raddrehzahlsensor 1 des ersten Rades A und dem von dem Raddrehzahlsensor 1 des zweiten Rades B erfassten Induktivitätsverlauf ermittelt werden. Bei Vorwärtsfahrt eilt der Verlauf der Induktivität L an dem ersten Rad A dem Verlauf der Induktivität L an dem zweiten Rad B daher um den zeitlichen ersten Phasenversatz At1 vor, wie aus Fig.3 links hervorgeht.

Es wird nun angenommen, dass das Fahrzeug ausgehend von der Vorwärtsfahrt bis in den Stillstand (Stop) abgebremst wird, was von der integrierten elektronischen Auswerteschaltung 7 beispielsweise dadurch erkannt wird, dass die zeitlichen Verläufe der von den Raddrehzahlsensoren aller vier Räder A bis D erfassten Induktivitäten L jeweils einen Gradienten von Null aufweisen und/oder sich die Induktivitäten L nicht ändern bzw. konstant bleiben, was in Fig.3 etwa in der Mitte anschaulich dargestellt wird.

Nach einem durch die integrierte elektronische Auswerteschaltung 7 erfassten Wiederanfahren des Fahrzeugs aus dem erfassten Fahrzeugstillstand wird dann ein zweiter zeitlicher Phasenversatz At2 zwischen zweiten zeitlichen Verläufen der Induktivitäten L der Raddrehzahlsensoren 1 des ersten Rades A und des zweiten Rades B erfasst. Diese zweiten zeitlichen Verläufe der Induktivitäten L der Raddrehzahlsensoren 1 der beiden Räder A und B sowie der zweite zeitliche Phasenversatz At2 sind in Fig.3 und in Fig.4 jeweils rechts dargestellt. Analog zum ersten zeitlichen Phasenversatz At1 wird der zweite zeitliche Phasenversatz At2 hier beispielsweise ebenfalls zwischen den Amplitudenmaxima Amax und Bmax der zweiten zeitlichen Verläufe der Induktivitäten L der Raddrehzahlsensoren 1 des ersten Rades A und des zweiten Rades B angegeben.

Dann wird der zweite zeitliche Phasenversatz At2 mit dem ersten zeitlichen Phasenversatz At2 verglichen. Wenn die integrierte elektronische Auswerteschaltung 7 dabei feststellt, dass der zweite zeitliche Phasenversatz At2 von dem ersten zeitlichen Phasenversatz At1 eine signifikante Abweichung aufweist, so schließt sie auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt.

Als eine signifikante Abweichung des zweiten zeitlichen Phasenversatzes At2 von dem ersten zeitlichen Phasenversatz At1 wird beispielsweise interpretiert, wenn der zweite zeitliche Phasenversatz At2 gegenüber dem ersten zeitlichen Phasenversatz At1 invertiert ist. Diese Situation ist in Fig.4 dargestellt. Bei den in Fig.4 links dargestellten zeitlichen Verläufen der Induktivitäten L der vier Räder A bis D bei Vorwärtsfahrt eilt wie bei der Vorwärtsfahrt von Fig.3 links der Verlauf der Induktivität L an dem ersten Rad A dem Verlauf der Induktivität L an dem zweiten Rad B um den ersten zeitlichen Phasenversatz At1 vor. Bei der in Fig.4 rechts dargestellten, nach dem Stillstand des Fahrzeugs beginnenden Weiterfahrt sind die Verhältnisse jedoch umgekehrt, d.h. dass der Verlauf der Induktivität L an dem ersten Rad A dem Verlauf der Induktivität L an dem zweiten Rad B nun nicht mehr um den ersten zeitlichen Phasenversatz At1 voreilt sondern im Gegenteil um den zweiten zeitlichen Phasenversatz At2 nacheilt. Folglich hat nach dem Zwischenstopp eine Umkehrung der Fahrtrichtung des Fahrzeugs von Vorwärtsfahrt auf Rückwärtsfahrt stattgefunden.

Falls die integrierte elektronische Auswerteschaltung 7 bei dem Vergleich aber andernfalls feststellt, dass eine lediglich nicht signifikante Abweichung des zweiten zeitlichen Phasenversatzes At2 von dem ersten zeitlichen Phasenversatz At1 vorliegt, so schließt sie auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt. Diese Situation ist in Fig.3 rechts dargestellt. Dort eilt bei der nach dem Stillstand des Fahrzeugs beginnenden Weiterfahrt des Fahrzeugs der Verlauf der Induktivität L an dem ersten Rad A dem Verlauf der Induktivität L an dem zweiten Rad B wie vor dem Zwischenstopp um den zweiten zeitlichen Phasenversatz At2 vor, welcher beispielsweise gegenüber dem ersten zeitlichen Phasenversatz At1 identisch ist. Folglich liegt hier keine signifikante Abweichung des zweiten zeitlichen Phasenversatzes At2 von dem ersten zeitlichen Phasenversatz At1 vor.

Das Schließen auf eine Umkehrung der Fahrtrichtung von Vorwärtsfahrt auf Rückwärtsfahrt oder von Rückwärtsfahrt auf Vorwärtsfahrt bzw. das Schließen auf eine Beibehaltung der Fahrtrichtung Vorwärtsfahrt oder Rückwärtsfahrt kann eine Erzeugung eines entsprechenden Signals durch die integrierte elektronische Auswerteschaltung 7 beinhalten, welches dann zur Weiterverarbeitung beispielsweise einem Fahrerassistenzsystem zur Verfügung gestellt wird. Bei einem solchen Fahrerassistenzsystem handelt es sich insbesondere um ein Fahrerassistenzsystem mit einer Autohold-Funktion oder Berganfahrhilfe-Funktion, bei welcher ein Feststellen des Fahrzeugstillstands bzw. ein Anfahren oder Anrollen des Fahrzeugs in einer detektierten Richtung von Bedeutung ist.

Bezugszeichenliste

1 Raddrehzahlsensor

2 Geberelement

3 Spule

4 Kern

5 Zähne

6 Zahnlücke

7 Auswerteschaltung

8 Leitungen

9 Spalt

10 Permanentmagnet

11 Pfeil

A erstes Rad

B zweites Rad

C drittes Rad

D viertes Rad

U induzierte Spannung

L Induktivität

At1 erster zeitlicher Phasenversatz At2 zweiter zeitlicher Phasenversatz