Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR PROCESSING SOOT WATER
Document Type and Number:
WIPO Patent Application WO/2019/185199
Kind Code:
A1
Abstract:
The invention relates to a method and a device for cooling (Q) and/or scrubbing (W) a hot, soot-laden gas stream (1) in direct contact with water (2, 5), producing a slurry (8), termed soot water, at a temperature of at least 100°C and a pressure of greater than 10 bar(a), from which solids are separated using a high-pressure filter system (H) in order to obtain a filtrate (10) having a solids content less than that of the soot water (8) for the purpose of cooling and/or scrubbing the hot gas stream (1) laden with soot and slag, and for obtaining a filter cake (9) containing the separated solids. The invention is characterized in that the filter cake (9) is obtained essentially dry using a pulsation filter (P) which is part of the high-pressure filter system (H).

Inventors:
GROB SASCHA (EC)
HEINZEL ALBRECHT (DE)
HASELSTEINER THOMAS (DE)
PLEINTINGER STEFAN (DE)
Application Number:
PCT/EP2019/025072
Publication Date:
October 03, 2019
Filing Date:
March 19, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LINDE AG (DE)
International Classes:
C02F1/00; C10K1/10; C02F103/18
Domestic Patent References:
WO2008037588A12008-04-03
Foreign References:
DE102010040492A12012-03-15
DE1922196A11970-01-22
DE3605065A11987-08-20
DE102009034494A12011-03-10
DE102010010493B32011-07-14
DE3537493A11987-04-23
DE102010062769A12012-06-14
US8728328B22014-05-20
Attorney, Agent or Firm:
FISCHER, Werner (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Abkühlung (Q) und/oder Wäsche (W) eines heißen, mit Ruß

beladenen Gasstroms (1 ) in direktem Kontakt mit Wasser (2, 5), wobei eine als Rußwasser bezeichnete Aufschlämmung (8) mit einer Temperatur von wenigstens 100°C und einem Druck von mehr als 10bar(a) anfällt, von der Feststoffe mit Hilfe eines Hochdruckfiltersystems (H) abgetrennt werden, um ein gegenüber dem Rußwasser (8) im Feststoffgehalt reduziertes Filtrat (10) zur Abkühlung und/oder Wäsche des heißen, mit Ruß beladenen Gasstroms (1 ) sowie einen, die abgetrennten Feststoffe enthaltenden Filterkuchen (9) zu gewinnen, dadurch gekennzeichnet, dass der Filterkuchen (9) weitgehend trocken mittels eines Pulsationsfilters (P) gewonnen wird, der Teil des Hochdruckfiltersystems (H) ist.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Rußwasser (8) dem Pulsationsfilter (P) mit einem Druck von mehr als 10bar(a) zugeführt wird.

3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Rußwasser (8) dem Pulsationsfilter (P) mit einer Temperatur zugeführt wird, die im Bereich zwischen 100°C und der maximal zulässigen Betriebstemperatur des Pulsationsfilters (P) liegt.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Rußwasser (8) stromaufwärts des Pulsationsfilters (P) nicht entspannt und/oder nicht gekühlt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem heißen, mit Ruß beladenen Gasstroms (1 ) um ein Syntheserohgas handelt.

6. Vorrichtung zur Abkühlung und/oder Wäsche eines heißen, mit Ruß beladenen Gasstroms (1 ) in direktem Kontakt mit Wasser (2, 5), mit einer Abkühleinrichtung (Q) und/oder einer Wasserwäsche (W) sowie einem Hochdruckfiltersystem (H), dem eine als Rußwasser bezeichnete, in der Abkühleinrichtung (Q) und/oder der Wasserwäsche (W) mit einer Temperatur von wenigstens 100°C und einem Druck von mehr als 10bar(a) anfallende Aufschlämmung (8) zugeführt werden kann, um ein gegenüber dem Rußwasser (8) im Feststoffgehalt reduziertes Filtrat (10) zum Einsatz in der Abkühleinrichtung (Q) und/oder der Wasserwäsche (W) sowie einen, die abgetrennten Feststoffe enthaltenden Filterkuchen (9) zu gewinnen, dadurch gekennzeichnet, dass das Hochdruckfiltersystem (H) einen

Pulsationsfilter (P) umfasst, mit dem der Filterkuchen (10) weitgehend trocken gewonnen werden kann. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Pulsationsfilter

(P) für einen Betriebsdruck ausgelegt ist, der höher als der Druck ist, mit dem das Rußwasser (8) anfällt

8. Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der Pulsationsfilter (P) mit einer Temperatur betrieben werden kann, die höher ist als die Temperatur, mit der das Rußwasser (8) anfällt.

9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass es sich bei dem der Pulsationsfilter (P) um einen Pulse Tube Filter oder einen Pressure Leaf Filter handelt.

10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass sie keinen Einrichtungen zur Entspannung und/oder Kühlung des Rußwassers (8) umfasst.

Description:
Beschreibung

Verfahren und Vorrichtung zur Aufbereitung von Rußwasser

Die Erfindung betrifft ein Verfahren zur Abkühlung und/oder Wäsche eines heißen, mit Ruß beladenen Gasstroms in direktem Kontakt mit Wasser, wobei eine als Rußwasser bezeichnete Aufschlämmung mit einer T emperatur von wenigstens 100°C und einem Druck von mehr als 10bar(a) anfällt, von der Feststoffe mit Hilfe eines

Hochdruckfiltersystems abgetrennt werden, um ein gegenüber dem Rußwasser im Feststoffgehalt reduziertes Filtrat zur Abkühlung und/oder Wäsche des heißen, mit Ruß beladenen Gasstroms sowie einen, die abgetrennten Feststoffe enthaltenden

Filterkuchen zu gewinnen.

Verfahren und Vorrichtungen der gattungsgemäßen Art werden insbesondere zur Abkühlung und Wäsche von Syntheserohgasen eingesetzt, die bei der Vergasung von kohlenstoffhaltigen festen und flüssigen Einsätzen durch Partielle Oxidation gewonnen werden. Die Einsätze, bei denen es sich beispielsweise um Raffinerierückstände,

Kohle oder Schweröl handelt, werden dabei gemeinsam mit einem Oxidationsmittel sowie Dampf und evtl. Kohlendioxid in einen Reaktionsraum eingeleitet, wo sie zu einem Wasserstoff- und kohlenmonoxidreichen Stoffgemisch umgesetzt werden, das auch Kohlendioxid und Wasserdampf sowie Feststoffe enthält, bei denen es sich insbesondere um Rußpartikel handelt, die durch unvollständige Umsetzung des im Einsatz enthaltenen Kohlenstoffs entstehen. Das als Syntheserohgas bezeichnete Stoffgemisch, das den Reaktionsraum typischerweise mit einer Temperatur zwischen 1000 und 1500°C und einem Druck zwischen 30 und 80bar(a) verlässt, wird zunächst im Wasserbad oder durch die Eindüsung von Wasser auf eine Temperatur abgekühlt (gequencht), die gewöhnlich im Bereich von 180 bis 300°C liegt, wobei mineralische Komponenten zu Schlackepartikeln erstarren. Anschließend werden Feststoffe aus dem abgekühlten Gas beispielsweise in einer Kombination aus Venturiwäscher und Wasserwaschkolonne abgetrennt. Sowohl bei der Abkühlung im Wasserbad als auch in den Waschschritten fällt mit Ruß und Schlackepartikeln beladenes sog. Rußwasser an, das nachfolgend aufbereitet wird, um eine weitgehend feststofffreie Wasserfraktion zu erhalten, die mit Hilfe von Pumpen wieder auf Prozessdruck gebracht, zurückgeführt und erneut bei der Abkühlung oder Wäsche des Syntheserohgases verwendet wird. Zu seiner Aufbereitung wird das mit einem Feststoffgehalt zwischen 1 und 3Gew.-% vorliegende Rußwasser üblicherweise einer Filtereinrichtung zugeführt, deren

Filterelemente Feststoffe zurückhalten, während Wasser als Filtrat weitgehend ungehindert passieren kann. Für diesen Einsatzzweck geeignete Filterelemente können häufig nur bei vergleichsweise geringen Tempertaturen von weniger als 50°C betrieben werden, weshalb es erforderlich ist, das Rußwasser stromaufwärts der Filtereinrichtung zu kühlen, was allerdings mit Hilfe von Wärmeübertragern nur bedingt möglich ist, da die im Rußwasser enthaltenen Feststoffe zu Verlegungen führen. Nach dem Stand der Technik wird das Rußwasser daher durch Entspannung abgekühlt, wobei wegen der stark abrasiven Wirkung der Feststoffe mehrere

Entspannungsschritte erforderlich sind, die mit einem entsprechend hohen apparativen Aufwand durchgeführt werden müssen. Unter Umständen ist eine Entspannung bis in den Vakuumbereich notwendig, um die gewünschte Abkühlung zu erreichen. In diesem Fall besteht ein erhöhtes Risiko für den Eintrag von Sauerstoff in das System, der insbesondere in Verbindung mit im Rußwasser vorhandenen Chloriden zu

Spannungskorrosion an den eingesetzten Apparaten führen kann.

Wird das im Syntheserohgas enthaltene Kohlenmonoxid in einem nachfolgenden Prozessschritt mit Wasser zu Wasserstoff und Kohlendioxid konvertiert, wird angestrebt, das Syntheserohgas bereits während der Wasserwäsche bzw. Quenchung mit einem Großteil oder der Gesamtmenge des im Konvertierungsschritt benötigen Wassers anzureichern, so dass nur eine geringe oder keine zusätzliche Dampfzugabe erforderlich ist. Da das Synthesegas umso weniger Wasser aufnehmen kann, je geringer die Temperatur des Waschwassers ist, ist eine niedrige Temperatur des aufbereiteten und zurückgeführten Wassers von weniger als 50°C sehr nachteilig. Zwar ist es bedingt möglich, das aufbereitete Wasser bei seiner Rückführung durch

Wärmeintegration anzuwärmen, allerdings ist dies stets mit einem erhöhten

apparativen Aufwand und mit Exergieverlusten verbunden.

Zur Überwindung der beschriebenen Nachteile sind aus dem Stand der Technik verschiedene Vorschläge bekannt. So offenbart die deutsche Patenanmeldung

DE1020100140493 ein Verfahren, bei dem die Feststoffe aus dem ungekühlten Rußwasser mit Hilfe von Hydrozyklonen abgetrennt werden, während die DE3537493 alternativ den Einsatz von unter Druck betriebenen Schwerkraft- oder Koaleszier- Abscheidern vorsieht. Vor allem wegen des zweifelhaften Abscheidegrads von Hydrozyklonen und dem erheblichen apparativen Aufwand, sind diese Verfahren allerdings wenig attraktiv.

In einem weiteren, aus der deutschen Patenschrift DE102010062769 bekannten Verfahren wird Rußwasser ohne Druckabsenkung einem Hochdruckfiltersystem zugeführt, in dem neben Quenchwasser eine feststoffreiche Flüssigphase abgetrennt wird. Zur Entwässerung wird die feststoffreiche Flüssigphase anschließend durch Entspannung abgekühlt und drucklos einer herkömmlichen Filtereinrichtung zugeführt. Um das so zurückgewonnene Wasser ebenfalls als Quenchwasser nutzen zu können, muss es wieder auf Prozessdruck gepumpt werden.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren sowie eine Vorrichtung der gattungsgemäßen Art anzugeben, durch die es möglich ist, heiße, mit Ruß und Schlacke beladene Gasströme wirtschaftlicher abzukühlen und zu waschen, als dies nach dem Stand der Technik möglich ist.

Diese Aufgabe wird verfahrensseitig erfindungsgemäß dadurch gelöst, dass der Filterkuchen weitgehend trocken mittels eines Pulsationsfilters gewonnen wird, der Teil des Hochdruckfiltersystems ist.

Zumindest die im Rußwasser enthaltenen Rußpartikel verfügen über ein hohes freies Porenvolumen, das in der Regel mit Wasser gefüllt ist, welches durch Filterung nicht zurückgewonnen werden kann und das daher auch noch als Teil des Filterkuchens vorliegt. Als weitgehend trocken soll der Filterkuchen daher gelten, wenn die

Oberflächen der Partikel, aus denen er gebildet ist, fühlbar trocken sind.

Ein Verfahren zur Behandlung von Rußwasser unter Einsatz eines Pulsationsfilters ist beispielsweise aus der Patentschrift US8728328 bekannt, wobei das Rußwasser nach einer Entspannung bis ins Vakuum in einen Absetzbehälter eingeleitet wird, aus dem sog. Grauwasser abgezogen und drucklos dem Pulsationsfilter zugeführt wird.

Im Unterschied hierzu ist erfindungsgemäß vorgesehen, den Pulsationsfilter mit einem deutlichen höheren Druck von mehr als 10bar(a) zu betreiben, so dass das erhaltene, weitgehend aus Wasser bestehende Filtrat auf einem entsprechend hohen

Druckniveau gewonnen wird. Das erhaltene Filtrat weist sinnvollerweise eine Reinheit auf, die seinen unmittelbaren Einsatz bei der Abkühlung oder Wäsche des heißen, mit Ruß beladenen Gasstroms erlaubt. Vorzugsweise wird das Rußwasser stromaufwärts des Pulsationsfilters bis auf unvermeidliche Leitungsverluste keiner Drosselung unterworfen, so dass das Filtrat das Hochdruckfiltersystem mit einem Druck verlässt, der im Wesentlichen dem Druck entspricht, mit dem das Rußwasser anfällt. Die Rückführung des Filtrats kann daher mit vergleichsweise geringem Energieaufwand durchgeführt werden.

Der Einsatz moderner, aus temperaturbeständigen Kunststoffen oder Metall bestehender Filtermaterialien erlaubt derzeit den Betrieb von Pulsationsfiltern mit Temperaturen bis zu 240°C. Eine bevorzugte Ausgestaltung der Erfindung sieht vor, das Rußwasser mit einer Temperatur in den Pulsationsfilter einzuleiten, die sich in einem Bereich zwischen 100°C und der maximal zulässigen, über 100°C liegenden Betriebstemperatur des Pulsationsfilters befindet. Fällt das Rußwasser mit einer Temperatur unterhalb der maximal zulässigen Betriebstemperatur des Pulsationsfilters an, wird das Rußwasser vorzugsweise stromaufwärts des Pulsationsfilters bis auf unvermeidliche Leitungsverluste nicht abgekühlt, so dass das Filtrat das

Hochdruckfiltersystem mit einer Temperatur verlässt, die im Wesentlichen der

Temperatur des Rußwassers entspricht. Durch den Verzicht auf eine Kühlung des Rußwassers verbleibt dessen Energie weitgehend im System; Exergieverluste sowie der Energiebedarf zur Anwärmung des zurückgeführten Filtrats werden minimiert.

Das erfindungsgemäße Verfahren ist prinzipiell für die Abkühlung und/oder Wäsche beliebiger heißer, mit Ruß beladener Gasströme geeignet. Mit besonderem Vorzug kann es jedoch bei der Behandlung eines durch die Vergasung von festen oder flüssigen kohlenstoffhaltigen Einsatzstoffen erhaltenen Syntheserohgas eingesetzt werden.

Weiterhin betrifft die Erfindung eine Vorrichtung zur Abkühlung und/oder Wäsche eines heißen, mit Ruß beladenen Gasstroms in direktem Kontakt mit Wasser, mit einer Abkühleinrichtung und/oder einer Wasserwäsche sowie einem Hochdruckfiltersystem, dem eine als Rußwasser bezeichnete, in der Abkühleinrichtung und/oder der

Wasserwäsche mit einer T emperatur von wenigstens 100°C und einem Druck von mehr als 10bar(a) anfallende Aufschlämmung zugeführt werden kann, um ein gegenüber dem Rußwasser im Feststoffgehalt reduziertes Filtrat zum Einsatz in der Abkühleinrichtung und/oder der Wasserwäsche sowie einen, die abgetrennten

Feststoffe enthaltenden Filterkuchen zu gewinnen.

Die gestellte Aufgabe wird vorrichtungsseitig erfindungsgemäß dadurch gelöst, dass das Hochdruckfiltersystem einen Pulsationsfilter umfasst, mit dem der Filterkuchen weitgehend trocken gewonnen werden kann.

Der Pulsationsfilter ist zweckmäßigerweise mit einem Druckbehälter ausgeführt, in dem mehrere Filterelemente angeordnet sind, die entweder aus einem porösen Metall oder Kunststoff bestehen oder einen perforierten Träger aufweisen, über den ein Filtertuch aus einem hitzebeständigen Material gespannt ist. Je nach der Form der

Filterelemente, die als Rohr oder ebene Platte ausgebildet sein können, unterscheidet der Fachmann Pulse Tube Filter und Pressure Leaf Filter.

Der Druckbehälter ist derart ausgelegt, dass der Pulsationsfilter für einen Betriebsdruck ausgelegt ist, der höher als der Druck ist, mit dem das Rußwasser anfällt.

Zweckmäßigerweise bestehen die Filterelemente des Pulsationsfilters aus einem Material, das bis zu einer Temperatur beständig ist, die höher ist als die Temperatur, mit der das Rußwasser anfällt.

Vorteilhafterweise sind stromaufwärts des Pulsationsfilters keine Einrichtungen zur Entspannung und/oder Kühlung des Rußwassers angeordnet.

Im Folgenden soll die Erfindung anhand eines in der Figur 1 schematisch dargestellten Ausführungsbeispiels näher erläutert werden.

Die Figur 1 zeigt die Verwendung der Erfindung zur Abkühlung und Wäsche eines Syntheserohgases.

Das in der Vergasungseinrichtung V beispielsweise aus einem kohlenstoffhaltigen Raffinerierückstand durch Partielle Oxidation erhaltene, Ruß und mineralische

Komponenten enthaltene Syntheserohgas 1 wird mit einem Druck zwischen 30 bis 80bar(a) in die Quencheinrichtung Q eingeleitet, um ohne wesentlichen Druckverlust in direktem Kontakt mit Quenchwasser 2 bis zur Sättigungstemperatur von bis zu 240°C abgekühlt zu werden, wobei eine erste Aufschlämmung 3 anfällt, die Ruß und zu Schlacke erstarrte mineralische Komponenten enthält. Das abgekühlte

Syntheserohgas 4 wird anschließend einer Wäsche W unterzogen, wobei verbliebene Feststoffe etwa in einer Kombination aus Venturiwäscher und Waschkolonne mit Hilfe von Waschwasser 5 abgetrennt werden, so dass ein weitgehend feststofffreies Syntheserohgas 6 zur weiteren Behandlung (nicht dargestellt) abgezogen werden kann. Die in der Wäsche W anfallende zweite Ruß und Schlacke enthaltene

Aufschlämmung 7 wird mit der ersten Aufschlämmung 3 zum Rußwasser 8 zusammengeführt. Das Rußwasser 8, in dem die Feststoffe mit einem Massenanteil zwischen 1 und 3% vorliegen, wird ohne Abkühlung und Entspannung dem in der Hochdruckfiltereinrichtung H angeordneten Pulsationsfilter P zugeführt, dessen aus einem ausreichend hitzebeständigen Material bestehenden Filterelemente F in einem Druckbehälter D angeordnet sind. Der im Pulsationsfilter P erhältliche Filterkuchen 9 kann aufgrund seiner geringen Restfeuchte ohne einen zusätzlichen

Entwässerungsschritt durch Deponierung oder Verbrennen entsorgt werden. Das im Rußwasser 8 enthaltene Wasser verbleibt nahezu vollständig und mit nur geringfügig reduzierten Druck- und Temperaturwerten im Filtrat 10, das mit vergleichsweise geringem Energieeinsatz über die Pumpe C zurückgeführt wird, um nach Aufteilung in einen ersten 1 1 und einen zweiten Teilstrom 12 dem Quenchwasser 2 und dem Waschwasser 5 zugeführt zu werden.