Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR PRODUCING A THIN-WALLED OBJECT WITH A THREE-DIMENSIONAL FORM
Document Type and Number:
WIPO Patent Application WO/2018/141905
Kind Code:
A1
Abstract:
A method for producing a thin-walled object with a three-dimensional form, in which a three-dimensional macro form is imparted to a thin-walled starting substrate (5) by means of a deep-drawing process using a fluid active medium and a drawing die (1), by using at least one process parameter, wherein the at least one process parameter influences at least a pressure or a pressure distribution of the fluid active medium in at least one die cavity (8) of the drawing die (1) that is adjacent to the resting starting substrate (5) and wherein the pressure or the pressure distribution of the fluid active medium is influenced by way of at least two exchange openings (7) ending in the same die cavity (8), is characterized in that the two or at least two of the exchange openings (7) that end in the same die cavity (8) are separately activated for influencing the pressure or the pressure distribution.

Inventors:
VOGEL PAUL-ALEXANDER (DE)
KREILKAMP HOLGER (DE)
Application Number:
PCT/EP2018/052659
Publication Date:
August 09, 2018
Filing Date:
February 02, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRAUNHOFER GES FORSCHUNG (DE)
International Classes:
C03B23/035
Domestic Patent References:
WO2016209902A12016-12-29
WO2014130331A12014-08-28
Foreign References:
US20160272529A12016-09-22
DE102013104299A12014-10-30
US20100077798A12010-04-01
JP2007131499A2007-05-31
JP2000256023A2000-09-19
DE10034507C12002-02-21
EP1852239B12013-07-17
US20050146073A12005-07-07
US20160194200A12016-07-07
DE102010020439A12011-11-17
DE102014200921A12014-08-07
DE102007012146A12008-09-18
Attorney, Agent or Firm:
NAEVEN, Ralf (DE)
Download PDF:
Claims:
Patentansprüche

1 . Verfahren zur Herstellung eines dünnwandigen Objekts mit

dreidimensionaler Form, bei dem einem dünnwandigen Ausgangssubstrat (5) mittels eines ein fluides Wirkmedium und eine Ziehmatrize (1 ) einsetzenden Tiefzieh prozesses unter Einsatz mindestens eines Prozessparameters eine dreidimensionale Makroform aufgegeben wird, wobei der mindestens eine Prozessparameter mindestens einen Druck oder eine Druckverteilung des fluiden Wirkmediums in mindestens einem an dem aufliegenden Ausgangssubstrat (5) angrenzenden Matrizen-Hohlraum (8) der

Ziehmatrize (1 ) beeinflusst und wobei der Druck oder die Druckverteilung des fluiden Wirkmediums über mindestens zwei in demselben Matrizen-Hohlraum (8) endende Austauschoffnungen (7) beeinflusst wird,

dadurch gekennzeichnet, dass

die zwei oder mindestens zwei der in demselben Matrizen-Hohlraum (8) endenden Austauschoffnungen (7) zur Beeinflussung des Druckes oder der Druckverteilung separat angesteuert werden.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass über eine der Austauschoffnungen oder eine Teilanzahl der Austauschoffnungen fluides Wirkmedium in den Matrizen-Hohlraum oder mindestens einen der Matrizen-Hohlräume eingespeist wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druck oder die Druckverteilung im Matrizen-Hohlraum (8) oder mindestens einem der Matrizen Hohlräume (8) durch einen von außen auf das Ausgangssubstrat (5) wirkenden Druck des fluiden Wirkmediums oder eines weiteren Mediums beeinflusst wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels Variation des Prozessparameters oder mindestens eines der Prozessparameter mit derselben Ziehmatrize (1 ) unterschiedliche dreidimensionale Formen hergestellt werden.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass die Ziehmatrize (1 ) zumindest zu Beginn des Tiefziehprozesses eine niedrigere Temperatur aufweist als das Ausgangssubstrat (5).

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass zwischen dem Ausgangssubstrat (5) und der Ziehmatrize (1 ) Abstandshalter angeordnet werden und anschließend das Ausgangssubstrat (5) erweicht wird.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass das Ausgangssubstrat (5) durch Erhitzen soweit erweicht wird, dass die Kontaktfläche zwischen Ausgangssubstrat (5) und Ziehmatrize (1 ) zumindest in einem Teilbereich gegenüber dem Wirkmedium dichtend ist.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass während des die Makroform erzeugenden Tiefziehprozesses mittels einer auf mindestens einer Innenwand (15) der Ziehmatrize (1 ) vorgesehenen Oberflächenstrukturierung der Oberfläche (17) des Ausgangssubstrat (5) zumindest in einem Teilbereich eine Mikrostruktur aufgegeben wird.

9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass das Ausgangssubstrat (5) aus Glas, vorzugsweise aus Dünnglas, ist.

10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass für den Tiefziehprozess die Ziehmatrize (1 ) in einem Ofen, vorzugsweise in einem Durchlaufofen (21 ), mittels einer Ofen-Heizeinrichtung (24) erhitzt wird und das Ausgangssubstrat (5) mittels weiterer, separat steuerbarer Erwärmungsmittel (6, 26), z.B. mindestens einer Lasereinrichtung, mit Wärmeleistung beaufschlagt wird.

1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine oder mindestens einer der

Prozessparameter zusätzlich eine Temperaturverteilung im Ausgangssubstrat (5) beeinflusst.

12. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 1 1 , umfassend eine Ziehmatrize (1 ), Substraterwärmungsmittel (6, 26) zur Erwärmung eines zu verformenden Ausgangssubstrats (5), Druckerzeugungsmittel (10, 25) zur Erzeugung eines Drucks oder einer Druckverteilung eines fluiden Wirkmediums in mindestens einem Matrizen-Hohlraum (8), welcher für einen Ziehprozess an dem zu verformenden Ausgangssubstrat (5) angrenzt, wobei mindestens zwei in demselben Matrizen-Hohlraum (8) endende Austauschöffnungen (7) zum Austausch des

Wirkmediums zwischen dem mindestens einen Matrizen-Hohlraum (8) und der

Umgebung vorhanden sind, dadurch gekennzeichnet, dass die

Druckerzeugungsmittel (10, 25) eingerichtet sind, mindestens zwei der

Austauschöffnungen (7) getrennt anzusteuern.

13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die

Druckerzeugungsmittel (10, 25) eingerichtet sind, bei Betrieb mit derselben Ziehmatrize (1 ) zur Erzeugung unterschiedlich geformter Objekte kontrolliert unterschiedliche Prozessparameter einzusetzen.

14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Ziehmatrize (1 ) Oberflächenstrukturen zur Erzeugung mindestens eines Teils einer Mikrostruktur auf einer Oberfläche (17) des Ausgangssubstrats (5) aufweist.

15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch

gekennzeichnet, dass die Substraterwärmungsmittel (6, 26) eingerichtet sind, bei Betrieb mit derselben Ziehmatrize (1 ) zur Erzeugung unterschiedlich geformter Objekte kontrolliert unterschiedliche Prozessparameter einzusetzen

16. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch

gekennzeichnet, dass die Substraterwärmungsmittel (6, 26) eingerichtet sind, im

Ausgangssubstrat (1 ) kontrolliert unterschiedliche Temperaturverteilungen einzustellen.

17. Vorrichtung nach Anspruch 16, gekennzeichnet durch Mittel zur Messung der Temperaturverteilung auf dem Ausgangssubstrat (1 ).

18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Substraterwärmungsmittel (6, 26) Mittel zur Steuerung und/oder Regelung der

Temperaturverteilung auf dem Ausgangssubstrat (1 ) vor und/oder während des

Tiefziehprozesses umfassen.

19. Vorrichtung nach einem der Ansprüche 12 bis 18, gekennzeichnet durch einen Ofen, vorzugsweise einen Durchlaufofen (21 ), zur Aufnahme der Ziehmatrize (1 ) und vorzugsweise mindestens einer weiteren Ziehmatrize (1 ), wobei der Ofen eine Ofen-Heizeinrichtung (24) aufweist.

20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass zusätzlich zur Ofen-Heizeinrichtung (24) weitere Substraterwärmungsmittel (6, 26) zur Erwärmung des Ausgangssubstrats (5) vorgesehen sind.

Description:
Verfahren und Vorrichtung zur Herstellung eines dünnwandigen Objekts mit dreidimensionaler Form

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung eines dünnwandigen Objekts mit dreidimensionaler Form sowie eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 12.

Dünnwandige dreidimensionale Objekte finden in unterschiedlichsten Technikbereichen Anwendung. Derartige Objekte werden z.B. zum Erreichen hoher Kratzfestigkeit und Haltbarkeit bevorzugt aus Glas hergestellt und in unterschiedlichsten Anwendungen, z.B. als Abdeckung oder auf vielfältige Weise im Interieur von Kraftfahrzeugen eingesetzt. Andere Beispiele eines stark wachsenden Marktes sind Display- Abdeckungen von Mobiltelefonen oder Abdeckungen und Umhausungen von sensorischen Elementen.

Oberflächen derartiger Objekte mit dreidimensionaler Makroform können mittels einer Mikrostrukturierung funktionalisiert sein. Objekte mit funktionalisierter Oberfläche können z.B. eine besondere haptische Wirkung aufweisen und beispielsweise als Abdeckung dienen. Funktionalisierte Oberflächen können auch optisch wirksam sein, z.B. mit Anwendungen in der allgemeinen Optik, z.B. als Reflektoren oder im

Zusammenhang mit LED-Beleuchtung, und insbesondere im Displaybereich. Antiadhäsive Oberflächen, z.B. selbstreinigende oder benetzungsarme Oberflächen, können z.B. im Medizintechnikbereich bedeutsam sein.

In den vorgenannten Beispielen und vielen weiteren Anwendungen kann insbesondere Dünnglas eingesetzt werden, welches hier als Glas mit einer Dicke von maximal 2 mm verstanden wird. Insbesondere Gläser noch geringerer Dicke, z.B. unterhalb 1 mm, vorzugsweise unter 500 μιτι oder weiter vorzugsweise unterhalb 300 μιτι, stellen mit Blick auf die Zukunft einen besonders interessanten Anwendungsbereich der Erfindung dar. Der Werkstoff Glas bietet aufgrund seiner Kratzfestigkeit, Haptik, und

Langzeitbeständigkeit sowie seiner Einsatzmöglichkeit bei hohen Temperaturen und seiner Beständigkeit gegenüber ultravioletter Strahlung und einer Vielzahl von korrosiven Medien und Lösungsmitteln eine hochwertige Alternative zu Kunststoffen. Die hier dargestellte Erfindung umfasst allerdings auch grundsätzlich dünnwandige Objekte aus Kunststoff oder anderen Materialien.

Es ist allgemein bekannt, eine Mikrostrukturierung auf Oberflächen in gesonderten, in der Regel nachgelagerten Prozessschritten mittels Beschichtungstechnik oder

Laserstrukturierungstechniken durchzuführen. Beschichtungen sind zumeist sehr aufwendig sowie kostenintensiv und machen zudem ein späteres Recycling des

Substrats schwierig oder gar unmöglich. Die Laserstrukturierung ist nur für spezielle, industriell oftmals nicht relevante Materialien einsetzbar. Zudem ist die

Laserstrukturierung, z. B. aufgrund der eingesetzten Kurzpuls-Laser, der aufwendigen hochpräzisen Strahlführung und der durch den Einsatz von Laserstrahlquellen erhöhten Sicherheitsanforderungen, mit hohem Aufwand und damit hohen Kosten verbunden.

Die JP 2007131499 A offenbart, einem flachen Glasartikel eine Makroform aufzugeben, wofür ein Glas-Ausgangssubstrat auf eine Tiefziehmatrize gelegt wird, welche eine oder mehrere Matrizen-Hohlräume bildende Vertiefungen mit jeweils einer Absaugöffnung aufweist. Über die Absaugöffnung wird ein Unterdruck erzeugt, mit dem das erhitzte und damit erweichte Glas-Ausgangssubstrat in die Form hineingezogen wird. Am Rand der Form wird das Glasmaterial fixiert. Die JP 2007131499 A hat eine möglichst gleichbleibende Dicke des Glasprodukts nach der Umformung zum Ziel. Um ein

Hineinfließen eines zu großen Anteils des Glases in die Tiefziehform zu vermeiden, wird die Erzeugung des Vakuums zeitweise mittels eines Umschaltventils unterbrochen. Sämtliche Absaugöffnungen sind über einen Sammelraum mit demselben

Umschaltventil verbunden. Mit dem Umschalten des Ventils wird von Unterdruck schlagartig auf Normaldruck umgestellt, so dass ein Nachfließen des Glases zunächst verhindert wird. Durch erneutes Umschalten des Ventils wird wieder Unterdruck erzeugt, wodurch sich der Teil des Glases, der noch nicht an die Oberfläche der Form angeformt ist, weiter in die Form absenkt. Das Einbringen einer Mikrostruktur in die Glasoberfläche wird nicht angesprochen.

Aus der JP 2000256023 A sind eine Vorrichtung und ein Verfahren der eingangs genannten Art bekannt, bei denen erweichtes Glas durch Unterdruck einem Tiefziehprozess unterzogen wird. Eine der Ausführungsformen weist eine Mehrzahl von Absaugöffnungen an einem Matrizen-Hohlraum auf zur Erzeugung des Unterdrucks auf.

Aus der DE 10034507 C1 ist ein Verfahren zur Erzeugung von Mikrostrukturen auf Glas- oder Kunststoffsubstraten bekannt. Dabei wird mittels eines

Formgebungswerkzeuges, dessen Oberfläche entsprechend dem Negativ der zu erzeugenden Mikrostruktur ausgebildet ist, in das Substrat die Mikrostruktur durch Aufpressen eingeformt. Das Formgebungswerkzeug weist einen Grundwerkstoff mit offener Porenstruktur auf, durch die ein Unterdruck erzeugt wird, mit dem das Substrat auf die Oberfläche des Formgebungswerkzeuges gepresst wird. Das Entformen erfolgt mit Überdruck, ebenfalls durch die Porenstruktur hindurch. Das offenbarte Verfahren sowie das Formgebungswerkzeug dienen allein zum Einbringen einer Mikrostruktur.

Die EP 1852239 B1 offenbart es, auf der Oberfläche eines Ausgangssubstrats aus Kunststofffolie zunächst eine Mikrostruktur zu erzeugen und anschließend das

Ausgangssubstrat mittels eines fluides Wirkmediums und einer Ziehmatrize im

Tiefziehprozess dreidimensional zu formen. Es sind zwei Absaugöffnungen für den Matrizen-Hohlraum gezeigt, über die ein Vakuum erzeugt werden kann. Die Öffnungen können aber auch als Austauschöffnungen zum Entweichen eines Fluids, z.B. Luft, dienen für den Fall, dass von der dem Matrizen-Hohlraum abgewandten Seite des Ausgangssubstrats ein Überdruck aufgebaut wird.

Die US 2005/0146073 A1 offenbart, aus einem dünnen Ausgangssubstrat aus

Kunststoff mittels Tiefziehens einen Blumentopf herzustellen. Dabei wird dem

Blumentopf im Tiefziehprozess auf seiner äußeren Oberfläche eine Struktur

aufgegeben. Eine zentrale Absaugöffnung verzweigt dabei zum Matrizen-Hohlraum hin in mehrere Einzelöffnungen.

Aus der US 2016/0194200 A1 ist ein Verfahren zur Herstellung dreidimensionaler Mikrostrukturen bekannt, bei dem ein im Wesentlichen flaches umzuformendes Material zwischen zwei Formen eingelegt und erhitzt wird. Durch einen Druckgradienten wird das Material in Richtung auf einen Boden eines der Formen gedrückt. Dabei kann dieselbe Form mehrere Matrizen-Hohlräume aufweisen, wobei jeder Matrizen-Hohlraum eine eigene Austauschöffnung zum Austausch einen Wirkmediums, z.B. Luft, aufweist. Dabei können unterschiedliche Matrizen-Hohlräume mit unterschiedlichen Drücken versehen werden, so dass sich das umzuformende Material in den unterschiedlichen Matrizen-Hohlräumen unterschiedlich stark verformt.

Die DE 10 2010 020 439 A1 offenbart Verfahren zum Herstellen geformter Glasartikel mit definierter Geometrie. Dabei wird eine Glasscheibe auf eine Form aufgelegt und in einem Heizaggregat erwärmt. Die Verformung erfolgt dann mittels äußerer

Krafteinwirkung, zum Beispiel mittels Schwerkraft oder einer Druckdifferenz. Dabei kann vorgesehen werden, dass Glas nicht homogen aufzuheizen sondern bevorzugt in solchen Bereichen, in denen eine Umformung vorgenommen werden soll. Damit kann über eine definierte Temperaturverteilung die spätere Form des Glasartikels beeinflusst werden.

Aus der DE 10 2014 200 921 A1 ist ebenfalls ein Verfahren zur Herstellung eines geformten Glasartikels begann, wobei dort jedoch eine Form oder Ziehmatrize nicht erforderlich ist. Ein Ausgangsglas wird lediglich gehalten, erwärmt und einem

Druckgefälle ausgesetzt. Dabei wird vorzugsweise mittels eines Laserstrahls ein gewünschter Temperatur-Zeit-Verlauf auf der Glasscheibe eingestellt. Die

Temperaturverteilung auf dem Ausgangglas ist dabei so gewählt, dass die Viskosität an den Stellen im erforderlichen Maße erniedrigt wird, an denen eine Verformung erwünscht ist.

Aus der DE 10 2007 012 146 B4 sind eine Vorrichtung und ein Verfahren zur

Umformung aus unter Wärmeeinfluss verformbaren Materialien, insbesondere aus Glas, bekannt. Auch hier wird auf eine Biegeform oder eine Ziehmatrize verzichtet. Die Verformung erfolgt, indem bei einer Erwärmung des Bauteiles die Temperaturverteilung in dem Bauteil so gewählt und das Bauteil so gelagert wird, dass sich das Bauteil unter Schwerkrafteinwirkung in einer Formungszone verformt. Mit ein und derselben

Vorrichtung können unterschiedliche Umformungsvorgänge durch unterschiedliche Temperaturverteilungen ausgeführt werden. Es ist nun Aufgabe der Erfindung, ein alternatives Verfahren sowie eine alternative Vorrichtung der eingangs genannten Art zur Verfügung zu stellen, ein dünnwandiges Objekt dreidimensional zu formen.

Bei einem Verfahren der eingangs genannten Art wird die Aufgabe mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsbeispiele des erfindungsgemäßen Verfahrens ergeben sich aus den abhängigen Verfahrensansprüchen.

Bei einer Vorrichtung der eingangs genannten Art wird die Erfindung mit den

kennzeichnenden Merkmalen des Anspruchs 12 gelöst. Bevorzugte

Ausführungsbeispiele der erfindungsgemäßen Vorrichtung ergeben sich aus den abhängigen Vorrichtungsansprüchen.

Somit wird bei einem Verfahren zur Herstellung eines dünnwandigen Objekts gemäß dem Oberbegriff das Anspruchs 1 erstmals vorgeschlagen, dass zwei oder mindestens zwei der in demselben Matrizen-Hohlraum endenden Austauschöffnungen zur

Beeinflussung des Druckes oder der Druckverteilung separat angesteuert werden.

Das erfindungsgemäße Verfahren wird dabei so ausgeführt, dass der Druck oder die Druckverteilung des fluiden Wirkmediums in dem Matrizen-Hohlraum über mindestens zwei Austauschöffnungen beeinflusst wird. Bei dem fluiden Wirkmedium kann es sich - unabhängig von der beanspruchten Ausführungsvariante der Erfindung - um ein Gas, z.B. Luft handeln.

Beispielsweise kann vorgesehen werden, ab einem bestimmten Zeitpunkt aus einer der Austauschöffnungen oder aus einer Teilanzahl der Austauschöffnungen das fluide Wirkmedium nicht (mehr) abzusaugen, während aus den verbleibenden

Austauschöffnungen abgesaugt wird. Es kann auch vorgesehen werden, aus

verschiedenen Austauschöffnungen mit unterschiedlicher Leistung abzusaugen.

Hierdurch wird die Vielfalt der erreichbaren Formen des dünnwandigen Objekts oder von Strukturen auf der Oberfläche des Objekts erhöht. Weiterhin kann vorgesehen werden, über eine der Austauschöffnungen oder eine Teilanzahl der Austauschoffnungen fluides Wirkmedium in den Matrizen-Hohlraum oder mindestens einen der Matrizen-Hohlräume einzuspeisen, um lokal den Druck (wieder) zu erhöhen. Mit der Verringerung oder Einstellung der Absaugleistung oder durch Einspeisen des Wirkmediums an einer Austauschöffnung oder an einer Teilanzahl der Austauschoffnungen kann verhindert werden, dass sich das Ausgangssubstrat lokal im Bereich der jeweiligen Austauschöffnung an die Wand des Matrizen-Hohlraumes vollständig anschmiegt.

Lokal können - insbesondere durch Einspeisen des Wirkmediums - Strukturen in die Oberfläche, z.B. Eindellungen, eingebracht werden. Auf diese Weise ist es auch möglich, auf die Oberfläche des Objekts herzustellende Mikrostrukturen in ihrer Form zu beeinflussen oder solche Mikrostrukturen zu erzeugen. Durch Fluidflüsse beeinflusste oder erzeugte Mikrostrukturen können in ihrer Form vorgegeben sein, z.B. durch in die Wandung des zugehörigen Matrizen-Hohlraumes eingebrachte Wandstrukturen, z.B. den Fluidfluss beeinflussende Kanäle. Es ist aber auch möglich, der Mikrostruktur eine durch Zufall beeinflusste Form zu geben, in dem die Fluidflüsse nicht durch

Kanalisierung fest vorgegeben werden.

Es ist auch denkbar, dass bei einer Mehrzahl von Matrizen-Hohlräumen jeder der weiteren Hohlräume, die nicht bereits mit mindestens zwei Austauschoffnungen versehen sind, mit mindestens einer Austauschöffnung versehen ist. Deckt nun ein zu verformendes Ausgangssubstrat mehrere Matrizen-Hohlräume ab, kann der

Tiefziehprozess auf einzelne Matrizen-Hohlräume beschränkt werden. Damit können durch Variation der bedienten Matrizen-Hohlräume unterschiedliche dreidimensionale Makroformen mit einer mehrere Matrizen-Hohlräume aufweisenden Tiefziehmatrize hergestellt werden.

Darüber hinaus ist es möglich, die Geschwindigkeit des Austausche des Wirkmediums, also z.B. die Evakuierungsgeschwindigkeit, zum Matrizen-Hohlraum oder zu

mindestens einem der Matrizen-Hohlräumen zu variieren. Hierdurch kann die für die Prozessführung insgesamt benötigte Zeit beeinflusst werden. Durch unterschiedliche Austauschgeschwindigkeiten in unterschiedlichen Matrizen-Hohlräumen kann ebenfalls die Makroform oder auch die Mikroform beeinflusst werden.

Außerdem kann ein pulsierender Austausch des Wirkmediums sinnvoll sein. Das heißt, dass der Druck zeitlich zwischen einem höheren und einem niedrigeren Druckgrenzwert pendelt. Der höhere Druckgrenzwert kann z.B. dem Umgebungsdruck entsprechen oder auch niedriger oder höher sein. Der höhere Druckgrenzwert und/oder der niedrigere Druckgrenzwert können auch zeitlich variieren, z.B. stetig sinken, während der aktuelle Druck zwischen diesen Druckgrenzwerten pendelt. Das Pendeln kann stetig sein, z.B. durch einen in der Zeit sinusförmigen Verlauf, oder auch schlagartige

Druckänderungen, z.B. auf Umgebungsdruck, umfassen. Der pulsierende Austausch des Wirkmediums kann zu sukzessiven Verformungsschritten und zu einer gezielteren Verformung des Ausgangssubstrats führen, z.B. indem durch Rückführung des Druckes im Matrizen-Hohlraum auf Umgebungsdruck ein Nachfließen in Randbereichen unterbunden wird, bis dieser Randbereich sich an die angrenzende Wand angelegt hat und stabil ist, um anschließend den Druck wieder abzusenken und eine weitere

Verformung des übrigen Materials des Ausgangssubstrats zu bewirken.

Es kann auch vorgesehen werden, dass zusätzlich zum Unterdruck oder alternativ zum Unterdruck ein von außen auf das Ausgangssubstrat wirkender Überdruck mittels desselben oder eines anderen Wirkmediums eingesetzt wird, um den Druck oder die Druckverteilung im mindestens einen Matrizen-Hohlraum zu beeinflussen.

Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass mittels Variation des Prozessparameters oder mindestens eines der

Prozessparameter mit derselben Ziehmatrize unterschiedliche dreidimensionale

Formen herzustellen. Bei den variierbaren Prozessparametern handelt es sich um solche, die den Druck oder die Druckverteilung im mindestens einen Matrizen-Hohlraum beeinflussen. Unterschiedliche Formen mit derselben Tiefziehmatrize erhält man dann, wenn das Ausgangssubstrat unterschiedlich weit in den Matrizen-Hohlraum oder die Matrizen-Hohlräume eindringt. Das heißt, je nach gewünschter Makroform des Objekts endet der Tiefziehprozess, bevor sich das Ausgangssubstrat vollständig an sämtliche Wände des Matrizen-Hohlraumes angeschmiegt hat. Durch die Wahl der auf den Druck bezogenen Prozessparameter kann bestimmt oder zumindest beeinflusst werden, wie der Tiefzieh prozess voranschreitet und wann er in welchen Bereichen des Matrizen- Hohlraums endet.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass die

Ziehmatrize während des Tiefziehprozesses eine niedrigere Temperatur aufweist als das Ausgangssubstrat. Hiermit kann ein Kleben des Substratmaterials an der

Ziehmatrize verhindert oder zumindest verringert werden. Hierfür kann es vorteilhaft sein, zwischen dem Ausgangssubstrat und der Ziehmatrize Abstandshalter anzuordnen und anschließend erst das Ausgangssubstrat durch Zuführung von thermischer Energie zu erweichen.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass das

Ausgangssubstrat durch Erhitzen so weit erweicht wird, dass eine durch ein Absinken des Ausgangssubstrats entstehende Kontaktfläche zwischen dem Ausgangssubstrat und der Ziehmatrize zumindest in einem Teilbereich gegenüber dem Wirkmedium dichtend ist. Das Erhitzen kann z. B. vor Anlegen eines Vakuums oder eines

Überdruckes erzeugt werden, so dass das Substrat allein aufgrund der Gravitationskraft auf die Ziehmatrize absinkt und hierdurch dichtend wirkt. Dadurch kann der Einsatz besonderer Maßnahmen zur Abdichtung des Ziehmatrizeninnenraumes gegenüber der Umgebung eingespart werden.

Insbesondere kann es vorteilhaft sein, das erfindungsgemäße Verfahren so

auszuführen, dass während des die Makroform erzeugenden Tiefziehprozesses mittels einer auf mindestens einer Innenwand der Ziehmatrize vorgesehenen

Oberflächenstrukturierung der Oberfläche des Ausgangssubstrat zumindest in einem Teilbereich eine Mikrostruktur aufgegeben wird.

Die Oberflächenstrukturierung der mindestens einen Innenwand der Ziehmatrize ist vorzugsweise das Negativ der gewünschten Mikrostruktur für den zur Anlage

kommenden Bereich des Substrates. Die Oberflächenstrukturierung der Ziehmatrize kann auch durch mindestens ein in die Ziehmatrize eingelegtes Objekt, z.B. eine Folie oder ein gestanztes oder vorzugsweise gelasertes Lochblech, erreicht werden. Die Mikrostruktur kann zusätzlich durch den Fluss des Wirkmediums beeinflusst werden, wie dies weiter oben bereits dargestellt ist.

Das erfindungsgemäße Verfahren kann aber auch so ausgeführt werden, dass zumindest ein Teil der angestrebten Mikrostrukturen erst nach dem Tiefziehprozess eingebracht wird, z. B. mittels eines Stempels.

Es ist auch möglich, zumindest einen Teil der angestrebten Mikrostruktur vor dem Tiefziehprozess bereits in das Ausgangssubstrat einzubringen.

Das Herstellen der Mikrostruktur vor oder nach dem Tiefziehprozess oder während des Tiefziehprozesses kann am selben Ausgangssubstrat auch kombiniert werden.

Des Weiteren kann das erfindungsgemäße Verfahren so ausgeführt werden, dass der mindestens eine oder mindestens einer der Prozessparameter zusätzlich eine

Temperaturverteilung im Ausgangssubstrat beeinflusst. Dabei kann es sich bei einem auf die Temperatur bezogenen Prozessparameter um einen solchen handeln, der nicht gleichzeitig zur Steuerung des Druckes in einem Matrizen-Hohlraum vorgesehen ist. Insbesondere kann zur Variation der dem Objekt aufzugebenden Makroform und - soweit gewünscht - einer Mikrostruktur den Ausgangssubstraten in verschiedenen Tiefziehprozessen unterschiedliche Temperaturverteilungen, z.B. in der zur

Dickenrichtung senkrechten Fläche des Ausgangssubstrats, für den Tiefziehprozess aufgegeben werden. Die Temperaturverteilung im Ausgangssubstrat beeinflusst die Art und Weise des Einfließens des Ausgangssubstrats in die Ziehmatrize, so dass z. B. erreicht werden kann, dass Bereiche der Ziehmatrizen-Oberfläche vom Substrat nicht erreicht werden oder dass das fertig ausgeformte Substrat unterschiedliche Dicken in unterschiedlichen Bereichen aufweist. Z.B. können die Bereiche des

Ausgangssubstrats, welche sich während des Tiefziehprozesses stärker verformen müssen, stärker erhitzt werden, um dort eine höhere Fließfähigkeit zu erreichen.

Die Beeinflussung der Makroform oder der Mikrostruktur mittels des

Temperaturgradienten kann auch kombiniert werden mit der oben beschriebenen Steuerung des Absaugens oder der Zufuhr des fluiden Wirkmediums durch die

Austauschöffnungen.

Das erfindungsgemäße Verfahren eignet sich in besonderer Weise bei einem

Ausgangssubstrat aus Glas, insbesondere aus dünnem Glas mit einer Dicke von höchstens 2 mm, vorzugsweise unterhalb 1 mm, weiter vorzugsweise unter 500 μιτι und weiter vorzugsweise unterhalb 300 μιτι.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung bieten insbesondere in Hinblick auf die Beeinflussbarkeit der Mikrostruktur und/oder der Makroform mittels separater Steuerung unterschiedlicher Austauschöffnungen oder der Einstellung bestimmter Temperaturverteilungen im Ausgangssubstrat interessante Möglichkeiten, die z.B. für eine adaptive Produktion, insbesondere eine vernetzte adaptive Produktion, vorteilhaft eingesetzt werden können.

Bevorzugte und beispielhafte Ausführungsformen des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen Vorrichtung werden im Folgen anhand von Figuren dargestellt.

Es zeigt schematisch

Fig. 1 : allgemein eine Tiefziehvorrichtung mit Heizungsvarianten, Fig. 2: eine Tiefziehmatrize mit Absaugkanälen,

Fig. 3: eine Variante der Tiefziehmatrize mit Absaugkanälen mit Mikrobohrungen,

Fig. 4: eine Tiefziehmatrize mit angeschlossener Überdruckkammer,

Fig. 5: ausschnittsweise die Innenseite einer Tiefziehmatrize mit einem Negativ einer gewünschten Mikrostrukturierung, Fig. 6 eine Tiefziehmathze mit Glassubstrat, welches bereits vor dem Tiefziehen mikrostrukturiert wurde

Fig. 7 das Ergebnis des Tiefziehprozesses an einem vorstrukturierten Substrat

Fig. 8 Tiefziehmatrize mit Substrat und Stempelwerkzeug zur nachträglichen

Mikrostrukturierung und

Fig. 9 einen Durchlaufofen mit Tiefziehmatrize.

Fig. 1 zeigt schematisch im Querschnitt eine Tiefziehvorrichtung mit einer Ziehmatrize 1 , einem die Ziehmatrize 1 umgebenden Heizblock 2 zur Erwärmung der Ziehmatrize 1 . Der Heizblock 2 kann z. B. elektrisch, beispielsweise mit Heizpatronen 3 oder

Heizschlangen 4, beheizt werden. Heizpatrone 3 und Heizschlange 4 sind nur symbolisch hier eingezeichnet und können sich in beliebiger und geeigneter weise im Heizblock 2 verteilen. Dabei können alleine Heizpatronen 3 oder alleine Heizschlangen 4 oder beide Maßnahmen eingesetzt werden. Möglich sind auch alternativ oder zusätzlich weitere hier nicht genannte Heizmöglichkeiten für die Ziehmatrize 1 .

Auf der Ziehmatrize 1 liegt ein Ausgangssubstrat 5, vorzugsweise aus Glas, auf, welches somit einen Matrizen-Hohlraums 8 einseitig begrenzt. Das Ausgangssubstrat 5 kann gesondert durch eine Heizeinheit 6 beheizt werden. Die hier nur symbolisch dargestellte Heizeinheit 6 kann z. B. eine Strahlungsheizung, eine Konvektionsheizung und/oder eine Laserstrahleinrichtung umfassen. Es ist möglich, mit der gesonderten Heizeinheit 6 dem Ausgangssubstrat 5 eine gezielte Temperaturverteilung aufzugeben, um eine gewünschte ortsabhängige Fluidität des Ausgangssubstrats 5 zu erreichen.

Die Heizeinheit 6 kann zu der aus Ziehmatrize 1 und Heizblock 2 zusammengesetzten Ziehvorrichtung gehören. Die Heizeinheit 6 kann aber auch Bestandteil einer

gesonderten Heizkammer sein, in die Ziehmatrize 1 und Heizblock 2 einzeln oder in Gruppen eingestellt werden. Die Heizeinheit 6 kann aber auch als Bestandteil eines in Fig. 9 beispielhaft dargestellten Ofens, insbesondere eines Durchlauf-Ofens, oder zusätzlich zu einer Ofen-Heizeinrichtung eines solchen (Durchlauf-)Ofens eingesetzt werden. Mit einem Durchlauf-Ofen oder kontinuierlichen Ofen könnte eine signifikante Steigerung der Wirtschaftlichkeit erreicht werden.

In Abhängigkeit von der Art und Weise der Aufheizung der Ziehvorrichtung und des Substrats 5 kann unterschieden werden zwischen isothermen Tiefziehprozessen und nicht-isothermen Tiefziehprozessen. Bei isothermen Tiefziehprozessen, wie sie in einem Ofen, z.B. einem Durchlauf-Ofen verwirklicht werden können, weisen die

Ziehmatrize 1 und das Substrat 5 im Wesentlichen dieselbe Temperatur auf. Der Aufheizprozess ist bei einem isothermen Prozess möglicherweise einfacherer zu steuern, allerdings kann es zum Anbacken des Ausgangssubstrats 5 an der Ziehmatrize 1 kommen.

Bei einem nicht-isothermen Prozess kann mittels der Heizeinheit 6 die Temperatur des Ausgangssubstrats 5 anders gestaltet werden, als die der Ziehmatrize 1 . So kann z. B. die Temperatur des Ausgangssubstrats 5 im Vergleich zur Temperatur der Ziehmatrize 1 höher eingestellt werden, was insbesondere bei Ausgangssubstraten 5 aus Glas vorteilhaft sein kann. Nicht-isotherme Tiefzieh prozesse ermöglichen zudem das bereits oben beschriebene Einrichten gewünschter Temperaturverteilungen im

Ausgangssubstrat 5. So kann z. B. vorgesehen werden, die Temperatur im

Ausgangssubstrat 5 dort höher einzustellen, wo der Umformgrad höher ist, z. B. die Bereiche, die sich an die Seitenwand der Ziehmatrize 1 und den Übergang zum

Bodenbereich oder an andere hier nicht dargestellte Strukturen anschmiegen sollen. Nicht-isotherme Ziehprozesse können auch in einem Ofen, z.B. einem Durchlauf-Ofen, verwirklicht werden, z.B. indem - wie im vorherigen Absatz erwähnt - separate

Heizmittel eingesetzt werden.

In einer Ausführungsform gemäß Fig. 2 weist die Ziehmatrize 1 mehrere

Austauschkanäle 7 auf, die zu einem in Fig. 2 nicht dargestellten Unterdrucksystem führen. Mit der Abdeckung durch das Ausgangssubstrat 5 kann bereits eine Abdichtung des Matrizen-Hohlraums 8 der Tiefziehmatrize 1 erreicht werden, wodurch eine

Unterdruckkammer entsteht. Weitere Maßnahmen zur Abdichtung zwischen

Ausgangssubstrat 5 und Tiefziehmatrize 1 sind möglich, hier aber nicht dargestellt. Als Abdichtungsmaßnahmen denkbar sind z. B. ein temperaturbeständiger umlaufender Dichtring zwischen Tiefziehmatrize 1 und Ausgangssubstrat 5 oder eine das Ausgangssubstrat 5 umringende, auf der Tiefziehmatrize 1 aufsetzende Dichtwand. Es ist aber auch denkbar, durch die in Fig. 2 nicht dargestellte Heizeinheit 6 (siehe Fig. 1 ) ein besonderes Aufheizen des äußeren Randes 9 des Ausgangssubstrats 5 derart zu erreichen, dass das Ausgangssubstrat erweicht und derart innig einen Kontakt mit der Tiefziehmatrize 1 eingeht, dass die Kontaktfläche dichtend ist.

Fig. 3 zeigt schematisch eine Tiefziehmatrize 1 mit drei Austauschkanälen 7, die jeweils mit einem gesonderten Unterdruckerzeuger 10, z. B. einer Pumpe oder einem

Vakuumejektor, verbunden sind. Die Unterdruckerzeuger 10 sind jeweils gesondert ansteuerbar, so dass die Saugleistung durch die Austauschkanäle 7 hindurch

unterschiedlich gestaltet werden kann. Durch unterschiedliche Absaugleistungen kann die Formgebung während des Tiefzieh prozesses beeinflusst werden. So ist es z. B. nicht zwingend erforderlich, dass zum Ende des Ziehprozesses das Ausgangssubstrat 5 in allen Wandbereichen der Tiefziehmatrize 1 anliegt. Die Tiefziehvorrichtung kann auch so eingerichtet, dass an mindestens einem der Austauschkanäle 7 nicht ein bloßer Unterdruckerzeuger 10 anliegt, sondern eine Einrichtung, die bei Bedarf auch ein Gas einbringen kann, z.B. um bestimmte Gasflüsse zu bewirken und/oder einen Überdruck zu erzeugen. Zudem kann jeder Austauschkanal 7 mit einem Absperrventil oder einem regelbaren Ventil zur Drosselung der Absaugleistung oder der Blasleistung (im Falle eines Überdruckes) ausgestattet sein.

Die Beeinflussung des Ergebnisses des Tiefziehprozesses mittels steuerbarer oder regelbarer Druckverteilungen in den Austauschkanälen 7 kann unterstützt werden durch die Einrichtung gezielter Temperaturverteilungen am Ausgangssubstrat 5, welchem in der Tiefziehmatrize 1 eine Makroform aufgegeben werden soll. Durch

Simulationsrechnungen oder auf experimentellem Wege können geeignete Parameter während des Tiefziehprozesses ermittelt werden, z. B. zeitliche und räumliche

Verteilung der Temperatureinstrahlung auf das Ausgangssubstrat 5 oder zeitliche und räumliche Verteilung der Absaugleistungen oder Überdruckleistungen durch die

Austauschkanäle 7. Diese Parameter können dann einer hier nicht dargestellten datenverarbeitenden Einheit zur Steuerung der Heizeinheit 6 und der

Unterdruckerzeuger 10 oder Überdruckerzeuger zur Verfügung gestellt werden. Die für das Ausgangssubstrat 5 zu wählende Temperaturverteilung hängt vom Material des Ausgangssubstrats 5 und der zugehörigen Viskositätskurve sowie vom

gewünschten Effekt ab. Soll z.B. erreicht werden, dass ein erster Bereich des

Ausgangssubstrats 5 schneller in den darunter liegenden Matrizen-Hohlraum 8 hineinfließt als ein zweiter Bereich, ist die Temperaturverteilung so zu wählen, dass im ersten Bereich eine geringere Viskosität gegeben ist als im zweiten Bereich.

In Fig. 3 reichen die Austauschkanäle 7 nicht in ihrer ursprünglichen Form bis zur inneren Oberfläche der Tiefziehmatrize 1 , sondern verzweigen jeweils in eine Vielzahl von Mikrokanälen 1 1 , so dass die Unterdruck-/Überdruckerzeugung gleichmäßiger oder in der speziellen gewünschten Verteilung auf der inneren Oberfläche der

Tiefziehmatrize 1 verteilt wird. Die Aufteilung der Austauschkanäle 7 in Mikrokanäle 1 1 ist nicht zwingend, kann aber bei allen hier dargestellten Ausführungsbeispielen und weiteren Varianten eingesetzt werden.

Fig. 4 zeigt eine Tiefziehmatrize 1 mit Austauschkanälen 7 und aufliegendem

Austauschsubstrat 5 entsprechend der Fig. 2. Zusätzlich ist noch eine

Überdruckkammer 12 vorgesehen, die über einen Zuführkanal 13 mit einem

Wirkmedium zur Erzeugung des Überdruckes versorgt werden kann. Das Wirkmedium ist ein Fluid, vorzugsweise ein Gas, wie z. B. Luft. Die Überdruckkammer kann mit einem Fenster 14, z. B. aus Quarzglas versehen sein. Durch das Fenster 14 hindurch kann das Ausgangssubstrat 5 beheizt werden, z. B. durch Laserstrahlung. Das Fenster 14 kann auch zur Sichtkontrolle dienen, was insbesondere eine Messung der erreichten Temperaturverteilung am Ausgangssubstrat 5 ermöglicht.

Fig. 5 zeigt ausschnittsweise die Ziehmatrize 1 mit einer Innenwand 15 und einem Boden 16, an die sich das zu formende Ausgangssubstrat 5 anlegen soll. Auf der Innenwand 15 und dem Boden ist symbolisch eine feine Strukturierung dargestellt, die ein Negativ einer Mikrostruktur ist, welche in die Oberfläche des Ausgangssubstrats 5 während des Tiefziehprozesses eingebracht werden soll. In diesem Fall werden

Makroform des Ausgangssubstrats 5 und gleichzeitig die Mikrostruktur der Oberfläche des Ausgangssubstrats 5 erzeugt. Fig. 6 verdeutlicht ein gegenüber Fig. 5 alternatives Verfahren, bei dem dem Ausgangssubstrat 5 bereits vor dem Tiefziehprozess eine Mikrostruktur aufgegeben wurde, die in Fig. 6 nur symbolisch auf der strukturierten Oberfläche 17 angedeutet ist. In der Darstellung der Fig. 6 ist die strukturierte Oberfläche 17 des Ausgangssubstrats 5 der Innenwand 15 und dem Boden 16 der Tiefziehmatrize 1 abgewandt. Es ist aber auch denkbar, eine Mikrostrukturierung allein oder zusätzlich auf der der Innenwand 15 der Tiefziehmatrize 1 zugewandten Oberfläche des Ausgangssubstrats 5 bereits vor dem Tiefziehen vorzusehen. Dies kann auch lediglich stellenweise so vorgesehen werden, z.B. für die Bereiche, für die eine direkte Berührung des Ausgangssubstrats 5 mit der Innenwand 15 in den mikrostrukturierten Bereich vermieden werden soll, wie dies weiter oben als Möglichkeit beschrieben wurde.

Fig. 7 zeigt ein mögliches Ergebnis eines zu Fig. 5 dargestellten Tiefziehprozesses, nämlich ein fertiges Objekt 20 mit der durch den Tiefziehprozess erzeugten Makroform und der Mikrostrukturierung.

Fig. 8 zeigt eine weitere Alternative zum Einbringen der Mikrostrukturierung. So wurde dem Ausgangssubstrat 5 mittels der Tiefziehmatrize 1 zunächst eine Makroform aufgegeben. Anschließend wird dem verformten Ausgangssubstrat 5 mittels eines an seiner Stempelseite 19 strukturierten Stempels 18 die Mikrostruktur eingeprägt.

Mittels der Austauschkanäle 7 (siehe Figuren 2 bis 4 und 6) kann ein Überdruck erzeugt werden, um das Ausgangssubstrat 5 nach dem Tiefziehprozess aus der Tiefziehmatrize 1 zu entfernen.

Fig. 9 zeigt schematisch einen Durchlaufofen 21 , bei dem auf einem angetriebenen Laufband 22 mehrere Ziehmatrizen 1 angeordnet sind, von denen eine vergrößert dargestellt ist. Über eine Eingangsseite 23, die in hier nicht dargestellter Weise gegen zu große Wärmeverluste gesichert ist, werden die Ziehmatrizen 1 zusammen mit einem Ausgangssubstrat 5 in den Durchlaufofen 21 eingeführt. Der Innenraum des

Durchlaufofens 21 ist mittels einer hier nur symbolisch dargestellten Heizung 24 möglichst homogen aufgeheizt, so dass im Bereich der Ziehmatrizen 1 weitgehend isotherme Verhältnisse herrschen. An einem Bearbeitungsort dockt die Ziehmatrize 1 an Druckerzeugungsmittel 25 an, welche in einem Matrizen-Hohlraum 8 (sie z.B. Fig. 1 oder 2) einen Unterdruck oder einen Überdruck erzeugen kann. Die Druckeinrichtung 25 kann mehrere Austauschöffnungen 7 (siehe z.B. Fig. 2 bis 4 und 5) bedienen und separat ansteuern. In der Bearbeitungsposition kann das auf der Ziehmatrize 1 aufliegende Ausgangssubstrat 5 über Laserstrahlung leitende Mittel 26 zur gesonderten Beheizung mit Laserstrahlung beaufschlagt werden. Damit kann dem Ausgangssubstrat 5 gezielt eine gewünschte Temperaturverteilung aufgegeben werden. Durch eine Ausgangsseite 27 verlässt die Ziehmatrize 1 den Durchlaufofen 21 . Das fertige Objekt kann nun aus der Ziehmatrize 1 ausgeformt werden.

Das dargestellte Verfahren und die dargestellte Vorrichtung eignen sich insbesondere für Dünnglas, welches hier als Glas mit einer Dicke von maximal 2 mm verstanden wird. Insbesondere Gläser sehr geringer Dicke, unterhalb 1 mm, vorzugsweise unter 500 μιτι oder weiter vorzugsweise unterhalb 300 μιτι stellen einen besonders interessanten Anwendungsbereich der Erfindung dar. Derartige Gläser finden Anwendung z. B. als Display-Gläser. Das hier beschriebene Verfahren ermöglicht es, die bei der Herstellung von dreidimensionalen Makroformen und bei Bedarf auch bei der Abformung von Mikrostrukturen notwendigen engen Prozessfenster einzuhalten. Durch die

Beobachtbarkeit (siehe z. B. Ausführungsbeispiel nach Fig. 4) ist auch eine Messbarkeit gegeben, wodurch eine adaptive Beeinflussungsmöglichkeit für den Tiefzieh prozess gegeben ist. So kann z. B. über Thermokameras die Temperaturverteilung am

Ausgangssubstrat 5 festgestellt werden. Zusätzliche Einflussgrößen sind die

Umformgeschwindigkeit, welche über die lokale Variation der Drücke oder aber auch über den Gesamtdruck im Matrizen-Hohlraum 8 (siehe Fig. 2) beeinflusst werden kann.

Bezugszeichenliste

1 Ziehmatrize

2 Heizblock

3 Heizpatrone

4 Heizschlange

5 Ausgangssubstrat

6 Heizeinheit

7 Austauschkanal

8 Matrizen-Hohlraum

9 Rand der Tiefziehmatrize

10 Unterdruckerzeuger

1 1 Mikrokanal

12 Überdruckkammer

13 Zuführkanal

14 Fenster

15 Innenwand

16 Teilbereich

17 strukturierte Oberfläche

20 Objekt

21 Durchlaufofen

22 Laufband

23 Eingangsseite

24 Heizung

25 Druckerzeugungsmittel

26 Mittel zur Laserstrahlleitung

27 Ausgangsseite