Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR EXTRA-CELLULAR EXPRESSION OF PROTEIN
Document Type and Number:
WIPO Patent Application WO/1996/002637
Kind Code:
A1
Abstract:
Heterologous extra-cellular expression of recombinant proteins in soluble functional form is desirable because of the ease associated with purification of the secreted proteins and avoidance of the need for cell extraction and protein refolding procedures. The present invention provides DNA sequences of the naturally-occurring phthalyl amidase gene isolated from Xanthobacter agilis that control transcription, translation, and extra-cellular secretion of proteins in Streptomyces lividans. These DNA sequences can be used in a method for extra-cellular expression of a wide variety of proteins in soluble functional form.

Inventors:
QUEENER STEPHEN WYATT
ZOCK JOSEPH MARTIN
Application Number:
PCT/US1995/008832
Publication Date:
February 01, 1996
Filing Date:
July 14, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LILLY CO ELI (US)
International Classes:
C07K14/62; C12N9/10; C12N9/16; C12N9/48; C12N9/72; C12N9/80; (IPC1-7): C12N9/80; C12N9/86; C12P21/00; C12P21/02
Foreign References:
US5200327A1993-04-06
Other References:
GENE, Vol. 103, issued 1991, KUHSTOSS et al., "A Thiostrepton-Inducible Expression Vector for Use in Streptomyces Spp", pages 97-99.
Download PDF:
Claims:
We Claim :
1. A method for expressing protein, said method comprising: a) positioning a nucleotide sequence encoding said protein in a DNA vector adjacent to and downstream from a signal peptide functional in Streptomyces lividans; b) transforming a host cell with said vector; and c) culturing said host cell under conditions suitable for gene expression, whereby said protein is secreted in soluble form.
2. The method of claim 1 wherein said signal peptide is SEQ ID NO: 8.
3. The method of claim 1 wherein a promoter is positioned adjacent to and upstream from said signal peptide.
4. The method of claim 3 wherein said promoter is derived from a cell selected from the group consisting of XantiOj acter agilis and Streptojηyces lividans .
5. The method of claim 4 wherein said promoter is SEQ ID NO:7.
6. The method of claim 5 wherein said nucleotide sequence encodes SEQ ID NO:2.
7. The method of claim 6 wherein said nucleotide sequence is SEQ ID NO:l.
8. The method of claim 1 wherein said host cell is Streptomyces lividans .
9. The method of claim 1 wherein said protein is known to be secreted in its natural host or in another surrogate host.
10. The method of claim 1 wherein said protein is known to exist as a part of a proprotein consisting of a signal peptide amino acid sequence joined to the amino terminus of the protein.
11. The method of claim 1 wherein said protein is encoded by a DNA compound comprising a nucleotide sequence encoding a signal peptide wherein said sequence is immediately adjacent to the carboxyterminal end of a nucleotide sequence encoding said protein.
12. The method of claim 1 wherein said protein is selected from the group consisting of hemoglobin, alpha interferon, erythropoeitin, granulocytecolony stimulating factor, interleukin3 , tissue plasminogen activator, beta interferon, gammainterferon, interleukin1, epidermal growth factor, Factor XIII, metphetrypsinogen, procarboxypeptidase B, LysB28ProB29proinsulin, metarg proinsulin, and echinocandin B deacylase.
Description:
Title METHOD FOR EXTRA-CELLULAR EXPRESSION OF PROTEIN

Background of the Invention The present invention relates to the discovery that the regulatory control elements of the phthalyl amidase gene isolated from Xanthobacter agilis may be used to drive extra-cellular expression of desired proteins in a heterologous host. Heterologous expression of recombinant proteins generally results in production of non-soluble material that must be extracted from the transformed cell, solubilized with denaturant, and refolded into the proper configuration in order to obtain soluble functional protein. Thus, a method for extra-cellular expression of soluble proteins is desirable because of the ease associated with purification of the secreted proteins and avoidance of the need for cell extraction and protein refolding procedures.

Summary of the Invention The present invention provides for DNA sequences of the naturally-occurring phthalyl amidase gene isolated from Xanthobacter agilis that control transcription, translation, and extra-cellular secretion of proteins in a heterologous host.

Thus, the present invention provides a method for expressing a protein, said method comprising:

a) positioning a nucleotide sequence encoding said protein in a DNA vector adjacent to and downstream from a signal peptide-encoding nucleotide sequence functional in Streptomyces lividans; b) transforming a host cell with said vector; and c) culturing said host cell under conditions suitable for gene expression, whereby said protein is secreted in soluble form. Preferred DNA sequences for use in the DNA vector and resulting in extra-cellular production of protein include the promoter-bearing region (SEQ ID NO:7), the signal peptide-encoding sequence (SEQ ID NO:8), and the 3'-untranslated region (SEQ ID NO:10), all isolated from the phthalyl amidase gene residing in Xanti-oJbacter agilis . Preferred host cells are of the genus StreptO-πyces. The species Streptomyces lividans is especially preferred.

Definitions:

Coding sequence - the sequence of DNA in the open reading frame (ORF) of a gene that encodes the amino acid residue sequence of the protein expressed from the gene. Gene - a segment of DNA that comprises a promoter, translational activating sequence, coding sequence, and 3' regulatory sequences, positioned to drive expression of the gene product.

Promoter - a DNA sequence that directs or initiates the transcription of DNA.

Recombinant DNA vector - any autonomously replicating or integrating DNA agent, including but not limited to plasmids, comprising a promoter and other regulatory sequences positioned to drive expression of a DNA sequence that encodes a polypeptide or RNA.

Recombinant DNA sequence - any DNA sequence, excluding the host chromosome from which the DNA is derived, which comprises a DNA sequence that has been isolated, synthesized, or partially synthesized.

Restriction fragment - any linear DNA molecule generated by the action of one or more restriction enzymes. Translation activating sequence - a regulatory DNA sequence that, when transcribed into mRNA, promotes translation of mRNA into protein.

Signal peptide - a cleavable amino acid sequence appearing at the amino-terminus of a proprotein which promotes transme brane migration and extra-cellular production of the mature protein.

All nucleotide and amino acid abbreviations used in this disclosure are those accepted by the United States Patent and Trademark Office as set forth in 37 C.F.R. S1.822(b)(1993).

Brief Description of the Figures The restriction enzyme and function maps presented in the drawings are approximate representations

of the recombinant DNA vectors discussed herein. The restriction site information is not exhaustive. There may be more restriction enzymes sites of a given type than are actually shown on the map. Figure 1 is a restriction enzyme site and function map of plasmid pZPA600. Abbrevia ions: PAorf = phthalyl amidase open reading frame; tsr = gene enabling resistance to thiostrepton.

Figure 2 is a restriction enzyme site and function map of plasmid pZSIGPA. Pa-prom (short arrow) is the prompter sequence of the Xanthobacter agilis phthalyl amidase gene. The long arrow represents a portion of the phthalyl amidase ORF. Pa-sig (part of the long arrow) is the sequence encoding the signal peptide. The open box represents Xanthobacter agilis DNA.

Figure 3 is a restriction enzyme site and function map of plasmid pZSIGSHMT. Shmt-prf is a sequence encoding that portion of the fusion protein comprising the serine hydroxymethyl transferase polypeptide. Black box is the linker sequence described in Example 3. The (j) marks the junction formed by ligation of the linker sequence to the Ndel-BamHI fragment containing the shmt-orf as described in Example 6.

Detailed Description of the Invention

U.S. Patent Application, Attorney reference number X9590, inventors: Stephen W. Queener and Joseph M. Zock, filed July 15, 1994 is herein incorporated by reference.

Recombinant amino acid sequences, including proteins, enzymes, peptides, and peptide hormones (collectively referred to herein as proteins), may be produced by cloning DNA encoding the desired protein into a variety of vectors by means that are well known in the art. A number of suitable vectors may be used, including cosmids, plasmids, bacteriophage, and viruses. One of the principle requirements for such a vector is that it be capable of reproducing itself and transforming a host cell. Typical expression vectors comprise a promoter region, a 5'-untranslated region, a coding sequence, a 3'- untranslated region, an origin of replication, a selective marker, and a transcription termination site.

The current invention provides DNA sequences that control transcription, translation, and extra-cellular secretion of proteins in Streptomyces lividans, recombinant DNA vectors utilizing said DNA sequences, host cells transformed with said DNA vectors, and a method for expressing recombinant proteins in extra-cellular, soluble, functional form.

The method makes use of the DNA regulatory sequences of the phthalyl amidase gene (SEQ ID NO:6) originally isolated from Xanthobacter agilis, namely, SEQ ID NO:7; SEQ ID NO:8; and SEQ ID NO:10. These sequences, when transformed into Streptomyces lividans as part of a self-replicating vector, enable the host to produce and secrete soluble, properly-folded, functional proteins in an

amount in excess of the amount of a cell-bound form produced by the natural source of the protein.

SEQ ID NO:7, which includes the promoter-bearing nucleotides l-i35 of SEQ ID NO:6, promotes transcription of the signal peptide and mature protein-encoding sequences. SEQ ID NO:8 (nucleotides 136-261 of SEQ ID NO:6) encodes the signal peptide portion of the coding sequence (SEQ ID NO:4). The signal peptide (SEQ ID NO:9), which provides for transport of the protein across the microbial cell wall of Streptomyces lividans, is cleaved from the protein by the cell, thereby enabling extra-cellular production of the mature protein. SEQ ID NO:10 (nucleotides 1621-3029 of SEQ ID NO:6) is a 3'-untranslated region which assists proper and efficient translation termination of the mRNA that encodes the protein. Those skilled in the art will recognize that the promoter of SEQ ID NO:7 and the 3'- untranslated region of SEQ ID NO:10 are not critical to expression of proteins in soluble form and can be substituted, respectively, for by other known promoters and translation termination regulatory sequences.

Thus, all that is needed to practice the current invention is that a DNA sequence encoding a signal peptide functional in Streptomyces lividans, preferably SEQ ID NO:8, be placed adjacent to and upstream from the ORF encoding the protein to be expressed and that this ORF be placed into a DNA vector used to transform the host cell, particularly Streptomyces lividans .

Use of the specific Xanthobacter agilis promoter (SEQ ID NO:7), placed adjacent to and upstream from the signal peptide is also preferred. Moreover, use of the the 3'-untranslated region of SEQ IS NO:10 placed adjacent to and downstream from the protein to be expressed is preferred.

Thus, in a preferred embodiment of the invention, a DNA compound, which encodes the desired protein and which includes the transcriptional and translational regulatory elements of the phthalyl amidase gene isolated from the bacterium Xanthobacter agilis is used to transform Streptomyces lividans .

In particular, the DNA sequence encoding mature phthalyl amidase (SEQ ID NO:l), which corresponds to nucleotides 262-1620 of SEQ ID NO:6, may be replaced in SEQ ID NO:6 by a heterologous ORF from a wide variety of organisms wherein the heterologous ORF encodes a mature protein and introns are absent from those ORFs, either by nature or by virtue of precise removal from genomic DNA to form cDNA ORFs. In this arrangement, the regulatory elements of the phthalyl amidase gene continue to function such that the substituted DNA sequences are expressed and the proteins encoded thereby are produced and secreted from Streptomyces transformed with the modified DNA sequences. Thus, substitution of a desired protein-encoding sequence for the coding sequence of mature phthalyl amidase enables economic extra-cellular production of numerous proteins.

This method is particularly useful when the protein to be expressed is known to be secreted by its natural host or another surrogate host. This often occurs when the protein to be expressed is encoded by a DNA compound that includes a signal peptide-encoding nucleotide sequence positioned immediately adjacent to the 5 '-terminal end (i.e., upstream) of protein-encoding moiety of the DNA compound.

Proteins of particular interest which can be expressed by the current method include the following proteins: hemoglobin, alpha-interferon, erythropoeitin, granulocyte-colony stimulating factor, interleukin-3, tissue plasminogen activator, beta-interferon, gamma- interferon, interleukin-1, epidermal growth factor. Factor XIII, met-phe-trypsinogen, procarboxypeptidase B, Lys B28 Pro B29 -proinsulin, met-arg-proinsulin, and echinocandin B deacylase.

The naturally-occurring phthalyl amidase gene of Xanthobacter agilis, which is SEQ ID NO:6, is available on an 3.2 kb SacI-BamHI restriction fragment of plasmid pZPA600, which can be isolated from Streptomyces lividans TK23 pZPA600 by techniques well known in the art. Streptomyces lividans TK23/pZPA600 designates Streptomyces lividans strain TK23 which has been transformed with vector pZPA600.

Plasmid pZPA600 was derived by ligating SEQ ID NO:6 into Streptoinyces vector, pIJ702 (Hopwood, D.A., Bibb, M.J., Smith, C.P., Ward, J.M. , Schremph, H., Genetic

Manipulations of Streptomyces: A Laboratory Manual , The John Innes Foundation, Norwich, England, 1985). The pIJ702 vector contains a pIJlOl Streptomyces replicon and a thiostrepton resistance gene for selection. The ligated material was transformed into Streptomyces lividans TK23 by a standard protoplast fusion technique. After selection on thiostrepton (45 μg/ml), the plasmid designated pZPA600, was isolated and confirmed by restriction analysis. A restriction site and function map of plasmid pZPA600 is found in Figure 1.

Streptomyces lividans TK23/pZPA600 is publicly available and on deposit at the National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604-39999, under accession number NRRL 21290 (date of deposit: June 23, 1994). The Streptomyces lividans TK23 strain has been previously described in Plasmid 12:1936 (1984).

Plasmid pZPA600, when transformed into Streptomyces lividans TK23, allows high level expression of the pro-phthalyl amidase ORF and results in secretion of soluble phthalyl amidase. Modification of plasmid pZPA600 by replacing the phthalyl amidase ORF by an ORF of an alternate protein results in secretion of the protein in soluble form. Thus, a preferred embodiment of the invention comprises a process in which Streptomyces lividans TK23, transformed by such a modified plasmid pZPA600, is grown and then separated from its extra-

cellular broth so that high concentrations of the substituted protein are obtained in that cell-free broth. The DNA sequences of the current invention may also be created by synthetic methodology. Such methodology of synthetic gene construction is well known in the art. See Brown et al. (1979) Methods in Enzymology, Academic Press, N.Y., 68:109. The DNA sequences may be generated using a conventional DNA synthesizing apparatus, such as the Applied Biosysterns Model 380A of 38OB DNA synthesizers (commercially available from Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, CA 94404.

A skilled artisan will recognize that the nucleotide sequences described in the present disclosure may be altered by methods known in the art to produce additional sequences that substantially correspond to the described sequences without changing their functional aspects. These altered sequences are considered to be included in the current invention.

In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that the examples are for illustrative purposes only and are not to be construed as limiting the scope of the invention.

EXAMPLE 1

Expression of pro-phthalyl amidase open reading frame in

Streptomyces lividans

A 5 ml inoculum of Streptomyces lividans TK23 pZPA600 (grown for 48 hours at 30° C, 280 rpm) was added to each of two 2 L shake flasks containing 500 ml Trypticase Soy Broth medium and cultured at 30° C, 280 rpm for 24 hours. Incubations beyond 24 hours were deleterious to production of phthalyl amidase. Cells were removed by centrifugation (4° C, 15 min, 12,000 x g) . The cell-free broth (800 ml, 0.10 mg/ml) was passed at 1 ml/min through a Mono Q column (10 x 10 mm (8 ml); Pharmacia). A linear gradient of 0 to 1.5 M KCl in buffer A was passed over the column and 2 ml fractions were collected. Most of the phthalyl amidase activity eluted in fractions 19 and 20 (about 0.75 M KCl).

A 1 ml aliquot of fraction 19 was concentrated 10-fold via ultrafiltration and analyzed by SDS-PAGE. A major protein band was observed at about 50,000 daltons, which corresponded to the molecular weight observed by electrospray mass spectrometry for purified mature phthalyl amidase obtained from Xanthobacter agilis . It also corresponded closely to the theoretical molecular weight predicted for a protein encoded by SEQ ID NO:l.

Culturing Streptomyces lividans/pZPA600 under conditions promoting gene expression resulted in expression of 76,378 units of phthalyl amidase activity per liter of culture medium having a specific activity of 748.8 nmol/min/mg.

Phthalyl amidase activity was determined using phthalamido carbacephem (III) as substrate.

III

The enzymatic reaction was initiated by the addition of phthalyl amidase and stopped by the addition of 1 ml methanol. Specific activity of the enzyme was determined by monitoring the hydrolysis of III into the corresponding beta-lactam nucleus and phthalic acid by HPLC

EXAMPLE 2 Construction of a Phthalyl Amidase Signal Plasmid pZSIGPA

Creation of a plasmid (pZSIGPA) (Figure 2) containing the phthalyl amidase promoter and signal sequence is as follows. Plasmid pZPA600 (NRRL 21290, date of deposit: June 23, 1994) is digested with Sacl and Mlul to release a 1.08 kb fragment, which is subsequently excised from an agarose gel and eluted by the GeneClean method (Bio 101). The Sacl-Mlul fragment contains an internal Xhol site within the coding sequence for the phthalyl amidase signal peptide (see Example 6). The purified fragment is ligated into a prepared vector pUCBM20

(digested with Sacl and Mlul ) and transformed into competant E. coli DH5α (BRL) using the supplied protocol.

Ampicillin resistant clones are isolated and a clone containing pZSIGPA is confirmed by restriction analysis. All recombinant techniques in this and following examples employ standard protocols described in Sambrook, J. , Fritsch,E.F., and Maniatis,T. , (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

EXAMPLE 3 Construction of -Ϋiiol-Ndel Linker

A DΝA linker fragment, which encodes the carboxy-terminal portion of the Xanthobacter agilis phthalyl amidase signal peptide and which allows placement of any ORF having an Ndel overhang at the ATG start codon immediately downstream from the signal peptide cleavage sequence ALA-PHE-ALA is constructed according to the following procedure.

An 81 base pair oligonucleotide (SEQ. ID. NO: 13) is prepared and annealed with a 79 base pair DNA oligonucleotide (SEQ. ID. NO:14). Both oligonucleotides are synthesized on an ABI 380B DNA synthesizer and are purified with an Oligonucleotide Purification Cartridge®, (Applied Biosystems Inc., Foster City, CA) .

The two oligonucleotides are mixed, heated to 80° C, and allowed to slowly cool to room temperature. In this manner

the two oligonucleotides are annealed to form the desired double stranded linker having a four base overhang that appears at the 5' end of SEQ ID NO:13 and a two base overhang that appears at the 5' end of SEQ ID NO:14. This configuration results in Xhol and Ndel overhangs at opposite ends of the linker.

EXAMPLE 4 Isolation of the serine hydroxymethyltransferase (SHMT) ORF on an Ndel-BamHI fragment is done as follows. A plasmid which has been created to contain the SHMT ORF on an Ndel-BamHI fragment is digested with Ndel and BamHI to release a 1.41 kb fragment containing the SHMT ORF. The fragment is isolated and purified as in example 2.

EXAMPLE 5.

Isolation of the p-nitrobenzyl esterase (PΝB) ORF on a Ndel-BamHI fragment is done as follows. Plasmid PΝB106R (constructed as described in published European Application No. EP 05517550, published July 21, 1993) is partially digested with Ndel and the linear plasmid is purified as in example 2. The linear fragment is digested with BamHI to release a 1.78 kb Ndel-BamHI fragment and isolated as in example 2.

EXAMPLE 6

Construction of intermediate plasmid pZSIGSHMT

Plasmid pZSIGPA (Figure 3) is digested with Xhol and BamHI to release a 3.09kb vector fragment, which is purified as in example 2. The Xhol end of the vector fragment encodes the amino-terminal portion of the phthalyl amidase signal peptide. The vector fragment is ligated to the Xhol-Ndel linker from example 3 and the Ndel-BamHI SHMT ORF fragment from example 4. The resulting plasmid mixture is transformed into E. coli DH5α (B L) using the supplied protocol. Ampicillin resistant clones containing pZSIGSHMT are isolated and the correct plasmid is confirmed by restriction analysis.

EXAMPLE 7 Construction of plasmid pZSIGPΝB

Plasmid pZSIGPA is digested with Xhol and BamHI to release a 3.09kb vector fragment and the fragment is purified as in Example 2. The vector fragment is ligated to -the X-_oI-NdeI linker from Example 3 and the Ndel-BamHI PΝB ORF fragment from example 5. The resulting plasmid mixture is transformed into E. coli DH5α (BRL) using the supplied protocol. Ampicillin resistant clones containing pZSIGPΝB are isolated and the correct plasmid is confirmed by restriction analysis.

EXAMPLE 8 Construction of Expression Plasmid pSLSHMT and

Transformation into Streptomyces lividans

Plasmid pZSIGSHMT is digested with Sacl and BamHI to release a 1.83 kb fragment containing the phthalyl amidase promoter, signal sequence, and SHMT ORF. The fragment is purified as in example 2. This fragment is ligated to prepared vector pIJ702 (Hopwood, D.A., et. al . , (1985) Genetic Manipulations of Streptomyces: A Laboratory Manual, The John Innes Foundation, Norwich, England.), digested with Sacl and Bglll and transformed into

Streptomyces lividans TK23 using the protoplast fusion technique (Thompson, C. J. , et al . , (1982) Cloning of Antibiotic Resistance and Nutritional Genes in Streptomyces, J. Bacteriol. 151:668-77). Transformants are selected on thiostrepton (45 μg/ml). Plasmid DNA is isolated from a representative thiostrepton-resistant transformant and is analyzed by restriction enzyme analysis to verify that it is pSLSHMT.

EXAMPLE 9

Construction of Expression Plasmid pSLPNB and Transformation into Streptomyces lividans

Plasmid pZSIGPNB is digested with Sacl and BamHI to release a 2.20 kb fragment containing the phthalyl amidase promoter, signal sequence, and PNB ORF. The fragment is purified as in example 2. This fragment is ligated to prepared vector pIJ702 (digested with Sacl and

Bglll) and transformed into Streptomyces lividans TK23 using the protoplast fusion technique as done in Example 8. Transformants are selected on thiostrepton (45 μg/ml). Plasmid DNA is isolated from a representative thiostrepton- resistant transformant and is analyzed by restriction enzyme analysis to verify that it is pSLPNB.

EXAMPLE 10 Each pSP source plasmid listed in Table 1, Column 2 contains an ORF which is used in this invention to construct a corresponding pSL plasmid vector (Table 1, Column 4) . Each source plasmid contains the ORF on an Ndel-BamHI fragment wherein the Ndel site comprises the ATG start codon of the ORF encoding a protein of interest (Table 1, Column 5) and the BamHI site is downstream of the ORF. A pSL plasmid vector is a vector that enables Streptomyces lividans to make and excrete the protein encoded by the source plasmid when the pSL vector is transformed into Streptomyces lividans . The pSL plasmid vectors are made via corresponding pZSIG intermediate plasmids (Table 1, Column 3). Each intermdiate plasmid is constructed by digesting the corresponding source plasmid with Ndel and BamHI restriction enzymes and isolating the desired Ndel-BamHI fragment containing the ORF that encodes the protein of interest as in Example 2. The isolated fragment is used to replace the Ndel-BamHI fragment described for the construction of pZSIGSHMT in Example 6.

In all other respects, construction of the intermediate plasmids is the same as pZSIGSHMT in Example 6.

Each pSL plasmid vector is constructed by digesting the corresponding intermediate plasmid with Sacl and BamHI restriction enzymes. The Sacl-BamHI fragment, which contains the ORF that encodes a fusion protein consisting of the Xanthobacter agilis phthalyl amidase signal peptide fused to the amino-terminus of the protein of interest, is isolated as in Example 2. The isolated fragment is used to replace the Sacl-BamHI fragment described for the construction of pSLSHMT in Example 8. In all other respects, the construction of the pSL plasmid vectors is the same as the construction of pSLSHMT in Example 8.

Table 1

Example source intermediate plasmid protein of plasmid plasmid vector interest

10 pSP603 pZSIG603 pSL603 met-phe- trypsinogen

11 pSP213 pZSIG213 pSL213 procarboxy- peptidase B

12 pSPl90 pZSIG190 pSL190 Lys B28p ro B29. proinsulin

13 pSPl82 PZSIG182 pSL182 met-arg- proinsulin

EXAMPLE 14

Expression of secreted SHMT by Streptomyces iividans/pSLSHMT, expression of secreted PNB esterase by Streptomyces lividans/pSLPNB, expression of secreted met- phe-trysinogen by Streptomyces lividans/pSL603, expression of secreted procarboxypeptidase B by Streptomyces lividans /pSL213,expression of secreted Lys B28 Pro B29 - proinsulin by Streptomyces lividans/pSL190, expression of secreted met-arg-proinsulin by Streptomyces lividans/pSL182, is carried out by fermentation as in Example 1. Assays specific for the protein of interest are used to determine the kinetics and extent of expression.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Queener, Stephen W. Zoc , Joseph M.

(ii) TITLE OF INVENTION: Method for Extra-Cellular Expression of Protein

(iii) NUMBER OF SEQUENCES: 12

(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Eli Lilly and Company

(B) STREET: Lilly Corporate Center

(C) CITY: Indianapolis

(D) STATE: Indiana

(E) COUNTRY: USA (F) ZIP: 46285

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.0 Mb storage

(B) COMPUTER: Macintosh (C) OPERATING SYSTEM: Macintosh

(D) SOFTWARE: Microsoft Word

(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:

(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Cantrell, Paul R. (B) REGISTRATION NUMBER: 36,470

(C) REFERENCE/DOCKET NUMBER: X9692

(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 317-276-3885 (B) TELEFAX: 317-277-1917

(2) INFORMATION FOR SEQ ID NO:l: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1359 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..1356

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1 :

CAG GCG CCG TCT GTG CAC CAA CAC GTC GCC TTC ACT GAG GAA ATT GGA 48 Gin Ala Pro Ser Val His Gin His Val Ala Phe Thr Glu Glu lie Gly

1 5 10 15

GAC CTT CCC GAC GGC TCA AGT TAC ATG ATC CGT GTG CCG GAG AAC TGG 96 Asp Leu Pro Asp Gly Ser Ser Tyr Met lie Arg Val Pro Glu Asn Trp 20 25 30

AAC GGC GTG TTA ATT CGC GAC CTA GAC CTT GTC AGC GGC ACC AGC AAT 144 Asn Gly Val Leu lie Arg Asp Leu Asp Leu Val Ser Gly Thr Ser Asn 35 40 45

TCT AAC GCC GCA AGG TAC GAA ACC ATG CTG AAA GAA GGT TTT GCC GTT 192 Ser Asn Ala Ala Arg Tyr Glu Thr Met Leu Lys Glu Gly Phe Ala Val 50 55 60 GCT GGC ACG GCG AGG CAT CCC CTT CGG CAA TGG CAA TAT GAC CCC GCT 240 Ala Gly Thr Ala Arg His Pro Leu Arg Gin Trp Gin Tyr Asp Pro Ala 65 70 75 80

CAC GAG ATT GAA AAC CTC AAT CAC GTG CTG GAC ACA TTC GAG GAA AAT 288 His Glu lie Glu Asn Leu Asn His Val Leu Asp Thr Phe Glu Glu Asn

85 90 95

TAC GGT TCA CCT GAA AGA GTT ATC CAG TAC GGT TGC TCG GGT GGG GCA 336 Tyr Gly Ser Pro Glu Arg Val lie Gin Tyr Gly Cys Ser Gly Gly Ala 100 105 110

CAC GTG TCA CTA GCC GTG GCA GAG GAC TTC TCG GAC CGC GTA GAT GGC 384 His Val Ser Leu Ala Val Ala Glu Asp Phe Ser Asp Arg Val Asp Gly 115 120 125

TCA GTT GCT CTA GCT GCT CAT ACT CCT GTC TGG ATA ATG AAT TCT TTC 432 Ser Val Ala Leu Ala Ala His Thr Pro Val Trp lie Met Asn Ser Phe 130 135 140 TTG GAC GGA TGG TTT TCG CTG CAG TCT CTG ATC GGC GAG TAC TAT GTA 480 Leu Asp Gly Trp Phe Ser Leu Gin Ser Leu lie Gly Glu Tyr Tyr Val 145 150 155 160

GAA GCT GGT CAC GGC CCA CTT TCG GAT CTC GCT ATT ACG AAA CTG CCC 528 Glu Ala Gly His Gly Pro Leu Ser Asp Leu Ala lie Thr Lys Leu Pro

165 170 175

AAT GAT GGT AGC TCT AAT TCG AGC GGT CAT GGA ATG GAA GGA GAT CTT 576 Asn Asp Gly Ser Ser Asn Ser Ser Gly His Gly Met Glu Gly Asp Leu 180 185 190

CCT GCC GCG TGG CGC AAC GCG TTC ACC GCT GCT AAC GCC ACA CCT GAG 624 Pro Ala Ala Trp Arg Asn Ala Phe Thr Ala Ala Asn Ala Thr Pro Glu 195 200 205

GGT CGC GCA CGC ATG GCA CTA GCC TTT GCG CTC GGT CAG TGG TCT CCG 672 Gly Arg Ala Arg Met Ala Leu Ala Phe Ala Leu Gly Gin Trp Ser Pro 210 215 220 TGG TTG GCC GAC AAC ACG CCC CAA CCT GAT CTC GAT GAT CCT GAG GCC 720 Trp Leu Ala Asp Asn Thr Pro Gin Pro Asp Leu Asp Asp Pro Glu Ala 225 230 235 240

ATC GCG GAT TCC GTA TAT GAG TCT GCC ATG CGA CTT GCA GGA AGC CCT 768 lie Ala Asp Ser Val Tyr Glu Ser Ala Met Arg Leu Ala Gly Ser Pro

245 250 255

GGG GGA GAA GCG CGC ATA ATG TTC GAG AAC GCC GCT CGA GGG CAA CAG 816 Gly Gly Glu Ala Arg lie Met Phe Glu Asn Ala Ala Arg Gly Gin Gin 260 265 270

CTC TCT TGG AAC GAC GAC ATC GAC TAT GCG GAT TTC TGG GAG AAC TCA 864 Leu Ser Trp Asn Asp Asp lie Asp Tyr Ala Asp Phe Trp Glu Asn Ser 275 280 285

AAC CCA GCC ATG AAG AGC GCC GTT CAG GAG CTG TAC GAC ACG GCC GGC 912 Asn Pro Ala Met Lys Ser Ala Val Gin Glu Leu Tyr Asp Thr Ala Gly 290 295 300 CTT GAT CTG CAG TCC GAT ATA GAA ACG GTA AAT TCC CAG CCA CGC ATA 960 Leu Asp Leu Gin Ser Asp lie Glu Thr Val Asn Ser Gin Pro Arg lie 305 310 315 320

GAG GCA TCG CAG TAT GCG CTC GAC TAC TGG AAC ACG CCA GGT CGC AAT 1008 Glu Ala Ser Gin Tyr Ala Leu Asp Tyr Trp Asn Thr Pro Gly Arg Asn

325 330 335

GTC ATT GGC GAC CCC GAA GTT CCT GTG CTG CGC CTG CAT ATG ATA GGC 1056 Val lie Gly Asp Pro Glu Val Pro Val Leu Arg Leu His Met lie Gly 340 345 350

GAC TAC CAA ATT CCC TAT AGT CTT GTA CAG GGC TAC AGC GAT CTT ATC 1104 Asp Tyr Gin lie Pro Tyr Ser Leu Val Gin Gly Tyr Ser Asp Leu lie 355 360 365

TCA GAG AAC AAC AAT GAT GAC TTG TAC AGA ACT GCT TTT GTG CAA TCC 1152 Ser Glu Asn Asn Asn Asp Asp Leu Tyr Arg Thr Ala Phe Val Gin Ser 370 375 380 ACT GGA CAC TGC AAT TTC ACA GCT GCA GAA AGT TCC GCT GCG ATT GAG 1200 Thr Gly His Cys Asn Phe Thr Ala Ala Glu Ser Ser Ala Ala lie Glu 385 390 395 400

GTC ATG ATG CAA CGG CTT GAC ACG GGT GAG TGG CCG AGC ACC GAG CCG 1248 Val Met Met Gin Arg Leu Asp Thr Gly Glu Trp Pro Ser Thr Glu Pro

405 410 415

GAT GAT CTG AAT GCA ATT GCC GAA GCC TCA AAC ACC GGA ACT GAA GCA 1296 Asp Asp Leu Asn Ala lie Ala Glu Ala Ser Asn Thr Gly Thr Glu Ala 420 425 430

CGT TTC ATG GCC CTA GAT GGC TGG GAA ATA CCC GAG TAC AAT CGT ACT 1344 Arg Phe Met Ala Leu Asp Gly Trp Glu lie Pro Glu Tyr Asn Arg Thr 435 440 445

TGG AAG CCT GAA TAA 1359 Trp Lys Pro Glu 450

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 452 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Gin Ala Pro Ser Val His Gin His Val Ala Phe Thr Glu Glu lie Gly 1 5 10 15 Asp Leu Pro Asp Gly Ser Ser Tyr Met lie Arg Val Pro Glu Asn Trp

20 25 30

Asn Gly Val Leu lie Arg Asp Leu Asp Leu Val Ser Gly Thr Ser Asn 35 40 45

Ser Asn Ala Ala Arg Tyr Glu Thr Met Leu Lys Glu Gly Phe Ala Val 50 55 60

Ala Gly Thr Ala Arg His Pro Leu Arg Gin Trp Gin Tyr Asp Pro Ala 65 70 75 80

His Glu lie Glu Asn Leu Asn His Val Leu Asp Thr Phe Glu Glu Asn

85 90 95 Tyr Gly Ser Pro Glu Arg Val lie Gin Tyr Gly Cys Ser Gly Gly Ala 100 105 110

His Val Ser Leu Ala Val Ala Glu Asp Phe Ser Asp Arg Val Asp Gly 115 120 125

Ser Val Ala Leu Ala Ala His Thr Pro Val Trp lie Met Asn Ser Phe 130 135 140

Leu Asp Gly Trp Phe Ser Leu Gin Ser Leu lie Gly Glu Tyr Tyr Val 145 150 155 160

Glu Ala Gly His Gly Pro Leu Ser Asp Leu Ala lie Thr Lys Leu Pro 165 170 175 Asn Asp Gly Ser Ser Asn Ser Ser Gly His Gly Met Glu Gly Asp Leu 180 185 190

Pro Ala Ala Trp Arg Asn Ala Phe Thr Ala Ala Asn Ala Thr Pro Glu 195 200 205

Gly Arg Ala Arg Met Ala Leu Ala Phe Ala Leu Gly Gin Trp Ser Pro 210 215 220

Trp Leu Ala Asp Asn Thr Pro Gin Pro Asp Leu Asp Asp Pro Glu Ala 225 230 235 240 lie Ala Asp Ser Val Tyr Glu Ser Ala Met Arg Leu Ala Gly Ser Pro 245 250 255 Gly Gly Glu Ala Arg He Met Phe Glu Asn Ala Ala Arg Gly Gin Gin 260 265 270

Leu Ser Trp Asn Asp Asp He Asp Tyr Ala Asp Phe Trp Glu Asn Ser 275 280 285

Asn Pro Ala Met Lys Ser Ala Val Gin Glu Leu Tyr Asp Thr Ala Gly 290 295 300

Leu Asp Leu Gin Ser Asp He Glu Thr Val Asn Ser Gin Pro Arg He 305 310 315 320

Glu Ala Ser Gin Tyr Ala Leu Asp Tyr Trp Asn Thr Pro Gly Arg Asn 325 330 335 Val He Gly Asp Pro Glu Val Pro Val Leu Arg Leu His Met He Gly 340 345 350

Asp Tyr Gin He Pro Tyr Ser Leu Val Gin Gly Tyr Ser Asp Leu He 355 360 365

Ser Glu Asn Asn Asn Asp Asp Leu Tyr Arg Thr Ala Phe Val Gin Ser 370 375 380

Thr Gly His Cys Asn Phe Thr Ala Ala Glu Ser Ser Ala Ala He Glu 385 390 395 400

Val Met Met Gin Arg Leu Asp Thr Gly Glu Trp Pro Ser Thr Glu Pro 405 410 415 Asp Asp Leu Asn Ala He Ala Glu Ala Ser Asn Thr Gly Thr Glu Ala 420 425 430

Arg Phe Met Ala Leu Asp Gly Trp Glu He Pro Glu Tyr Asn Arg Thr 435 440 445

Trp Lys Pro Glu 450

(2) INFORMATION FOR SEQ ID NO:3 :

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1485 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1482

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG ATA ATC AAG GGT AGT GTA CCG GGT AAA GCC GGA GGA AAA CCT CGA 48 Met He He Lys Gly Ser Val Pro Gly Lys Ala Gly Gly Lys Pro Arg 1 5 10 15 GCG ACC ATC TTT CAT AGT TCT ATT GCA ACG CTA CTT TTA ACC ACA GTC 96 Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu Leu Thr Thr Val 20 25 30

TCA CTG TCA GGA GTA GCG CCA GCA TTT GCA CAG GCG CCG TCT GTG CAC 144 Ser Leu Ser Gly Val Ala Pro Ala Phe Ala Gin Ala Pro Ser Val His

35 40 45

CAA CAC GTC GCC TTC ACT GAG GAA ATT GGA GAC CTT CCC GAC GGC TCA 192 Gin His Val Ala Phe Thr Glu Glu He Gly Asp Leu Pro Asp Gly Ser 50 55 60

AGT TAC ATG ATC CGT GTG CCG GAG AAC TGG AAC GGC GTG TTA ATT CGC 240 Ser Tyr Met He Arg Val Pro Glu Asn Trp Asn Gly Val Leu He Arg 65 70 75 80

GAC CTA GAC CTT GTC AGC GGC ACC AGC AAT TCT AAC GCC GCA AGG TAC 288 Asp Leu Asp Leu Val Ser Gly Thr Ser Asn Ser Asn Ala Ala Arg Tyr 85 90 95 GAA ACC ATG CTG AAA GAA GGT TTT GCC GTT GCT GGC ACG GCG AGG CAT 336 Glu Thr Met Leu Lys Glu Gly Phe Ala Val Ala Gly Thr Ala Arg His 100 105 110

CCC CTT CGG CAA TGG CAA TAT GAC CCC GCT CAC GAG ATT GAA AAC CTC 384 Pro Leu Arg Gin Trp Gin Tyr Asp Pro Ala His Glu He Glu Asn Leu 115 120 125

AAT CAC GTG CTG GAC ACA TTC GAG GAA AAT TAC GGT TCA CCT GAA AGA 432 Asn His Val Leu Asp Thr Phe Glu Glu Asn Tyr Gly Ser Pro Glu Arg 130 135 140

GTT ATC CAG TAC GGT TGC TCG GGT GGG GCA CAC GTG TCA CTA GCC GTG 480 Val He Gin Tyr Gly Cys Ser Gly Gly Ala His Val Ser Leu Ala Val 145 150 155 160

GCA GAG GAC TTC TCG GAC CGC GTA GAT GGC TCA GTT GCT CTA GCT GCT 528

Ala Glu Asp Phe Ser Asp Arg Val Asp Gly Ser Val Ala Leu Ala Ala

165 170 175 CAT ACT CCT GTC TGG ATA ATG AAT TCT TTC TTG GAC GGA TGG TTT TCG 576 His Thr Pro Val Trp He Met Asn Ser Phe Leu Asp Gly Trp Phe Ser 180 185 190

CTG CAG TCT CTG ATC GGC GAG TAC TAT GTA GAA GCT GGT CAC GGC CCA 624 Leu Gin Ser Leu He Gly Glu Tyr Tyr Val Glu Ala Gly His Gly Pro 195 200 205

CTT TCG GAT CTC GCT ATT ACG AAA CTG CCC AAT GAT GGT AGC TCT AAT 672 Leu Ser Asp Leu Ala He Thr Lys Leu Pro Asn Asp Gly Ser Ser Asn 210 215 220

TCG AGC GGT CAT GGA ATG GAA GGA GAT CTT CCT GCC GCG TGG CGC AAC 720 Ser Ser Gly His Gly Met Glu Gly Asp Leu Pro Ala Ala Trp Arg Asn 225 230 235 240

GCG TTC ACC GCT GCT AAC GCC ACA CCT GAG GGT CGC GCA CGC ATG GCA 768 Ala Phe Thr Ala Ala Asn Ala Thr Pro Glu Gly Arg Ala Arg Met Ala 245 250 255 CTA GCC TTT GCG CTC GGT CAG TGG TCT CCG TGG TTG GCC GAC AAC ACG 816 Leu Ala Phe Ala Leu Gly Gin Trp Ser Pro Trp Leu Ala Asp Asn Thr 260 265 270

CCC CAA CCT GAT CTC GAT GAT CCT GAG GCC ATC GCG GAT TCC GTA TAT 864 Pro Gin Pro Asp Leu Asp Asp Pro Glu Ala He Ala Asp Ser Val Tyr

275 280 285

GAG TCT GCC ATG CGA CTT GCA GGA AGC CCT GGG GGA GAA GCG CGC ATA 912 Glu Ser Ala Met Arg Leu Ala Gly Ser Pro Gly Gly Glu Ala Arg He 290 295 300

ATG TTC GAG AAC GCC GCT CGA GGG CAA CAG CTC TCT TGG AAC GAC GAC 960 Met Phe Glu Asn Ala Ala Arg Gly Gin Gin Leu Ser Trp Asn Asp Asp 305 310 315 320

ATC GAC TAT GCG GAT TTC TGG GAG AAC TCA AAC CCA GCC ATG AAG AGC 1008 He Asp Tyr Ala Asp Phe Trp Glu Asn Ser Asn Pro Ala Met Lys Ser 325 330 335 GCC GTT CAG GAG CTG TAC GAC ACG GCC GGC CTT GAT CTG CAG TCC GAT 1056 Ala Val Gin Glu Leu Tyr Asp Thr Ala Gly Leu Asp Leu Gin Ser Asp 340 345 350

ATA GAA ACG GTA AAT TCC CAG CCA CGC ATA GAG GCA TCG CAG TAT GCG 1104 He Glu Thr Val Asn Ser Gin Pro Arg He Glu Ala Ser Gin Tyr Ala 355 360 365

CTC GAC TAC TGG AAC ACG CCA GGT CGC AAT GTC ATT GGC GAC CCC GAA 1152 Leu Asp Tyr Trp Asn Thr Pro Gly Arg Asn Val He Gly Asp Pro Glu 370 375 380

GTT CCT GTG CTG CGC CTG CAT ATG ATA GGC GAC TAC CAA ATT CCC TAT 1200 Val Pro Val Leu Arg Leu His Met He Gly Asp Tyr Gin He Pro Tyr 385 390 395 400

AGT CTT GTA CAG GGC TAC AGC GAT CTT ATC TCA GAG AAC AAC AAT GAT 1248 Ser Leu Val Gin Gly Tyr Ser Asp Leu He Ser Glu Asn Asn Asn Asp 405 410 415 GAC TTG TAC AGA ACT GCT TTT GTG CAA TCC ACT GGA CAC TGC AAT TTC 1296 Asp Leu Tyr Arg Thr Ala Phe Val Gin Ser Thr Gly His Cys Asn Phe 420 425 430

ACA GCT GCA GAA AGT TCC GCT GCG ATT GAG GTC ATG ATG CAA CGG CTT 1344 Thr Ala Ala Glu Ser Ser Ala Ala He Glu Val Met Met Gin Arg Leu 435 440 445

GAC ACG GGT GAG TGG CCG AGC ACC GAG CCG GAT GAT CTG AAT GCA ATT 1392 Asp Thr Gly Glu Trp Pro Ser Thr Glu Pro Asp Asp Leu Asn Ala He 450 455 460

GCC GAA GCC TCA AAC ACC GGA ACT GAA GCA CGT TTC ATG GCC CTA GAT 1440 Ala Glu Ala Ser Asn Thr Gly Thr Glu Ala Arg Phe Met Ala Leu Asp 465 470 475 480

GGC TGG GAA ATA CCC GAG TAC AAT CGT ACT TGG AAG CCT GAA TAA 1485 Gly Trp Glu He Pro Glu Tyr Asn Arg Thr Trp Lys Pro Glu 485 490

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 494 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4 :

Met He He Lys Gly Ser Val Pro Gly Lys Ala Gly Gly Lys Pro Arg 1 5 10 15 Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu Leu Thr Thr Val

20 25 30

Ser Leu Ser Gly Val Ala Pro Ala Phe Ala Gin Ala Pro Ser Val His 35 40 45

Gin His Val Ala Phe Thr Glu Glu He Gly Asp Leu Pro Asp Gly Ser 50 55 60

Ser Tyr Met He Arg Val Pro Glu Asn Trp Asn Gly Val Leu He Arg 65 70 75 80

Asp Leu Asp Leu Val Ser Gly Thr Ser Asn Ser Asn Ala Ala Arg Tyr

85 90 95 Glu Thr Met Leu Lys Glu Gly Phe Ala Val Ala Gly Thr Ala Arg His 100 105 110

Pro Leu Arg Gin Trp Gin Tyr Asp Pro Ala His Glu He Glu Asn Leu 115 120 125

Asn His Val Leu Asp Thr Phe Glu Glu Asn Tyr Gly Ser Pro Glu Arg 130 135 140

Val He Gin Tyr Gly Cys Ser Gly Gly Ala His Val Ser Leu Ala Val 145 150 155 160

Ala Glu Asp Phe Ser Asp Arg Val Asp Gly Ser Val Ala Leu Ala Ala 165 170 175 His Thr Pro Val Trp He Met Asn Ser Phe Leu Asp Gly Trp Phe Ser 180 185 190

Leu Gin Ser Leu He Gly Glu Tyr Tyr Val Glu Ala Gly His Gly Pro 195 200 205

Leu Ser Asp Leu Ala He Thr Lys Leu Pro Asn Asp Gly Ser Ser Asn 210 215 220

Ser Ser Gly His Gly Met Glu Gly Asp Leu Pro Ala Ala Trp Arg Asn 225 230 235 240

Ala Phe Thr Ala Ala Asn Ala Thr Pro Glu Gly Arg Ala Arg Met Ala 245 250 255 Leu Ala Phe Ala Leu Gly Gin Trp Ser Pro Trp Leu Ala Asp Asn Thr 260 265 270

Pro Gin Pro Asp Leu Asp Asp Pro Glu Ala He Ala Asp Ser Val Tyr 275 280 285

Glu Ser Ala Met Arg Leu Ala Gly Ser Pro Gly Gly Glu Ala Arg He 290 295 300

Met Phe Glu Asn Ala Ala Arg Gly Gin Gin Leu Ser Trp Asn Asp Asp

305 310 315 320

He Asp Tyr Ala Asp Phe Trp Glu Asn Ser Asn Pro Ala Met Lys Ser 325 330 335 Ala Val Gin Glu Leu Tyr Asp Thr Ala Gly Leu Asp Leu Gin Ser Asp 340 345 350

He Glu Thr Val Asn Ser Gin Pro Arg He Glu Ala Ser Gin Tyr Ala 355 360 365

Leu Asp Tyr Trp Asn Thr Pro Gly Arg Asn Val He Gly Asp Pro Glu 370 375 380

Val Pro Val Leu Arg Leu His Met He Gly Asp Tyr Gin He Pro Tyr 385 390 395 400

Ser Leu Val Gin Gly Tyr Ser Asp Leu He Ser Glu Asn Asn Asn Asp

405 410 415 Asp Leu Tyr Arg Thr Ala Phe Val Gin Ser Thr Gly His Cys Asn Phe 420 425 430

Thr Ala Ala Glu Ser Ser Ala Ala He Glu Val Met Met Gin Arg Leu 435 440 445

Asp Thr Gly Glu Trp Pro Ser Thr Glu Pro Asp Asp Leu Asn Ala He 450 455 460

Ala Glu Ala Ser Asn Thr Gly Thr Glu Ala Arg Phe Met Ala Leu Asp 465 470 475 480

Gly Trp Glu He Pro Glu Tyr Asn Arg Thr Trp Lys Pro Glu 485 490

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1620 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 136..1617 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGATCCTTAG GAATCTAAAC ATTCTGGTTG ACACTCCACA TTTTGAATGT CAGCATTTCG 60 GCCATGGCTG CTATGCAGCC TGTTATTGCA TTTGAAATGG AATAGATCAG CAAACTTATC 120

GGGAGGATGA GTATT ATG ATA ATC AAG GGT AGT GTA CCG GGT AAA GCC GGA 171 Met He He Lys Gly Ser Val Pro Gly Lys Ala Gly 1 5 10 GGA AAA CCT CGA GCG ACC ATC TTT CAT AGT TCT ATT GCA ACG CTA CTT 219 Gly Lys Pro Arg Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu 15 20 25

TTA ACC ACA GTC TCA CTG TCA GGA GTA GCG CCA GCA TTT GCA CAG GCG 267 Leu Thr Thr Val Ser Leu Ser Gly Val Ala Pro Ala Phe Ala Gin Ala 30 35 40

CCG TCT GTG CAC CAA CAC GTC GCC TTC ACT GAG GAA ATT GGA GAC CTT 315 Pro Ser Val His Gin His Val Ala Phe Thr Glu Glu He Gly Asp Leu 45 50 55 60

CCC GAC GGC TCA AGT TAC ATG ATC CGT GTG CCG GAG AAC TGG AAC GGC 363 Pro Asp Gly Ser Ser Tyr Met He Arg Val Pro Glu Asn Trp Asn Gly 65 70 75

GTG TTA ATT CGC GAC CTA GAC CTT GTC AGC GGC ACC AGC AAT TCT AAC 411 Val Leu He Arg Asp Leu Asp Leu Val Ser Gly Thr Ser Asn Ser Asn 80 85 90 GCC GCA AGG TAC GAA ACC ATG CTG AAA GAA GGT TTT GCC GTT GCT GGC 459 Ala Ala Arg Tyr Glu Thr Met Leu Lys Glu Gly Phe Ala Val Ala Gly 95 100 105

ACG GCG AGG CAT CCC CTT CGG CAA TGG CAA TAT GAC CCC GCT CAC GAG 507 Thr Ala Arg His Pro Leu Arg Gin Trp Gin Tyr Asp Pro Ala His Glu 110 115 120

ATT GAA AAC CTC AAT CAC GTG CTG GAC ACA TTC GAG GAA AAT TAC GGT 555 He Glu Asn Leu Asn His Val Leu Asp Thr Phe Glu Glu Asn Tyr Gly 125 130 135 140

TCA CCT GAA AGA GTT ATC CAG TAC GGT TGC TCG GGT GGG GCA CAC GTG 603 Ser Pro Glu Arg Val He Gin Tyr Gly Cys Ser Gly Gly Ala His Val 145 150 155

TCA CTA GCC GTG GCA GAG GAC TTC TCG GAC CGC GTA GAT GGC TCA GTT 651 Ser Leu Ala Val Ala Glu Asp Phe Ser Asp Arg Val Asp Gly Ser Val 160 165 170 GCT CTA GCT GCT CAT ACT CCT GTC TGG ATA ATG AAT TCT TTC TTG GAC 699 Ala Leu Ala Ala His Thr Pro Val Trp He Met Asn Ser Phe Leu Asp 175 180 185

GGA TGG TTT TCG CTG CAG TCT CTG ATC GGC GAG TAC TAT GTA GAA GCT 747 Gly Trp Phe Ser Leu Gin Ser Leu He Gly Glu Tyr Tyr Val Glu Ala 190 195 200

GGT CAC GGC CCA CTT TCG GAT CTC GCT ATT ACG AAA CTG CCC AAT GAT 795 Gly His Gly Pro Leu Ser Asp Leu Ala He Thr Lys Leu Pro Asn Asp 205 210 215 220

GGT AGC TCT AAT TCG AGC GGT CAT GGA ATG GAA GGA GAT CTT CCT GCC 843

Gly Ser Ser Asn Ser Ser Gly His Gly Met Glu Gly Asp Leu Pro Ala

225 230 235

GCG TGG CGC AAC GCG TTC ACC GCT GCT AAC GCC ACA CCT GAG GGT CGC 891 Ala Trp Arg Asn Ala Phe Thr Ala Ala Asn Ala Thr Pro Glu Gly Arg 240 245 250 GCA CGC ATG GCA CTA GCC TTT GCG CTC GGT CAG TGG TCT CCG TGG TTG 939 Ala Arg Met Ala Leu Ala Phe Ala Leu Gly Gin Trp Ser Pro Trp Leu 255 260 265

GCC GAC AAC ACG CCC CAA CCT GAT CTC GAT GAT CCT GAG GCC ATC GCG 987 Ala Asp Asn Thr Pro Gin Pro Asp Leu Asp Asp Pro Glu Ala He Ala 270 275 280

GAT TCC GTA TAT GAG TCT GCC ATG CGA CTT GCA GGA AGC CCT GGG GGA 1035 Asp Ser Val Tyr Glu Ser Ala Met Arg Leu Ala Gly Ser Pro Gly Gly 285 290 295 300

GAA GCG CGC ATA ATG TTC GAG AAC GCC GCT CGA GGG CAA CAG CTC TCT 1083

Glu Ala Arg He Met Phe Glu Asn Ala Ala Arg Gly Gin Gin Leu Ser 305 310 315

TGG AAC GAC GAC ATC GAC TAT GCG GAT TTC TGG GAG AAC TCA AAC CCA 1131 Trp Asn Asp Asp He Asp Tyr Ala Asp Phe Trp Glu Asn Ser Asn Pro 320 325 330 GCC ATG AAG AGC GCC GTT CAG GAG CTG TAC GAC ACG GCC GGC CTT GAT 1179 Ala Met Lys Ser Ala Val Gin Glu Leu Tyr Asp Thr Ala Gly Leu Asp 335 340 345

CTG CAG TCC GAT ATA GAA ACG GTA AAT TCC CAG CCA CGC ATA GAG GCA 1227 Leu Gin Ser Asp He Glu Thr Val Asn Ser Gin Pro Arg He Glu Ala 350 355 360

TCG CAG TAT GCG CTC GAC TAC TGG AAC ACG CCA GGT CGC AAT GTC ATT 1275 Ser Gin Tyr Ala Leu Asp Tyr Trp Asn Thr Pro Gly Arg Asn Val He 365 370 375 380

GGC GAC CCC GAA GTT CCT GTG CTG CGC CTG CAT ATG ATA GGC GAC TAC 1323 Gly Asp Pro Glu Val Pro Val Leu Arg Leu His Met He Gly Asp Tyr 385 390 395

CAA ATT CCC TAT AGT CTT GTA CAG GGC TAC AGC GAT CTT ATC TCA GAG 1371 Gin He Pro Tyr Ser Leu Val Gin Gly Tyr Ser Asp Leu He Ser Glu 400 405 410 AAC AAC AAT GAT GAC TTG TAC AGA ACT GCT TTT GTG CAA TCC ACT GGA 1419 Asn Asn Asn Asp Asp Leu Tyr Arg Thr Ala Phe Val Gin Ser Thr Gly 415 420 425

CAC TGC AAT TTC ACA GCT GCA GAA AGT TCC GCT GCG ATT GAG GTC ATG 1467 His Cys Asn Phe Thr Ala Ala Glu Ser Ser Ala Ala He Glu Val Met 430 435 440

ATG CAA CGG CTT GAC ACG GGT GAG TGG CCG AGC ACC GAG CCG GAT GAT 1515 Met Gin Arg Leu Asp Thr Gly Glu Trp Pro Ser Thr Glu Pro Asp Asp 445 450 455 460

CTG AAT GCA ATT GCC GAA GCC TCA AAC ACC GGA ACT GAA GCA CGT TTC 1563

Leu Asn Ala He Ala Glu Ala Ser Asn Thr Gly Thr Glu Ala Arg Phe 465 470 475

ATG GCC CTA GAT GGC TGG GAA ATA CCC GAG TAC AAT CGT ACT TGG AAG 1611 Met Ala Leu Asp Gly Trp Glu He Pro Glu Tyr Asn Arg Thr Trp Lys 480 485 490

CCT GAA TAA 1620

Pro Glu

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3029 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE: (A) NAME/KEY: CDS

(B) LOCATION: 136..1617

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: GGATCCTTAG GAATCTAAAC ATTCTGGTTG ACACTCCACA TTTTGAATGT CAGCATTTCG 60

GCCATGGCTG CTATGCAGCC TGTTATTGCA TTTGAAATGG AATAGATCAG CAAACTTATC 120

GGGAGGATGA GTATT ATG ATA ATC AAG GGT AGT GTA CCG GGT AAA GCC GGA 171 Met He He Lys Gly Ser Val Pro Gly Lys Ala Gly

1 5 10

GGA AAA CCT CGA GCG ACC ATC TTT CAT AGT TCT ATT GCA ACG CTA CTT 219 Gly Lys Pro Arg Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu 15 20 25

TTA ACC ACA GTC TCA CTG TCA GGA GTA GCG CCA GCA TTT GCA CAG GCG 267 Leu Thr Thr Val Ser Leu Ser Gly Val Ala Pro Ala Phe Ala Gin Ala 30 35 40

CCG TCT GTG CAC CAA CAC GTC GCC TTC ACT GAG GAA ATT GGA GAC CTT 315 Pro Ser Val His Gin His Val Ala Phe Thr Glu Glu He Gly Asp Leu 45 50 55 60 CCC GAC GGC TCA AGT TAC ATG ATC CGT GTG CCG GAG AAC TGG AAC GGC 363 Pro Asp Gly Ser Ser Tyr Met He Arg Val Pro Glu Asn Trp Asn Gly 65 70 75

GTG TTA ATT CGC GAC CTA GAC CTT GTC AGC GGC ACC AGC AAT TCT AAC 411 Val Leu He Arg Asp Leu Asp Leu Val Ser Gly Thr Ser Asn Ser Asn

80 85 90

GCC GCA AGG TAC GAA ACC ATG CTG AAA GAA GGT TTT GCC GTT GCT GGC 459 Ala Ala Arg Tyr Glu Thr Met Leu Lys Glu Gly Phe Ala Val Ala Gly 95 100 105

ACG GCG AGG CAT CCC CTT CGG CAA TGG CAA TAT GAC CCC GCT CAC GAG 507 Thr Ala Arg His Pro Leu Arg Gin Trp Gin Tyr Asp Pro Ala His Glu 110 115 120

ATT GAA AAC CTC AAT CAC GTG CTG GAC ACA TTC GAG GAA AAT TAC GGT 555

He Glu Asn Leu Asn His Val Leu Asp Thr Phe Glu Glu Asn Tyr Gly

125 130 135 140 TCA CCT GAA AGA GTT ATC CAG TAC GGT TGC TCG GGT GGG GCA CAC GTG 603

Ser Pro Glu Arg Val He Gin Tyr Gly Cys Ser Gly Gly Ala His Val 145 150 155

TCA CTA GCC GTG GCA GAG GAC TTC TCG GAC CGC GTA GAT GGC TCA GTT 651 Ser Leu Ala Val Ala Glu Asp Phe Ser Asp Arg Val Asp Gly Ser Val

160 165 170

GCT CTA GCT GCT CAT ACT CCT GTC TGG ATA ATG AAT TCT TTC TTG GAC 699

Ala Leu Ala Ala His Thr Pro Val Trp He Met Asn Ser Phe Leu Asp 175 180 185

GGA TGG TTT TCG CTG CAG TCT CTG ATC GGC GAG TAC TAT GTA GAA GCT 747

Gly Trp Phe Ser Leu Gin Ser Leu He Gly Glu Tyr Tyr Val Glu Ala 190 195 200

GGT CAC GGC CCA CTT TCG GAT CTC GCT ATT ACG AAA CTG CCC AAT GAT 795

Gly His Gly Pro Leu Ser Asp Leu Ala He Thr Lys Leu Pro Asn Asp

205 210 215 220 GGT AGC TCT AAT TCG AGC GGT CAT GGA ATG GAA GGA GAT CTT CCT GCC 843

Gly Ser Ser Asn Ser Ser Gly His Gly Met Glu Gly Asp Leu Pro Ala 225 230 235

GCG TGG CGC AAC GCG TTC ACC GCT GCT AAC GCC ACA CCT GAG GGT CGC 891 Ala Trp Arg Asn Ala Phe Thr Ala Ala Asn Ala Thr Pro Glu Gly Arg

240 245 250

GCA CGC ATG GCA CTA GCC TTT GCG CTC GGT CAG TGG TCT CCG TGG TTG 939

Ala Arg Met Ala Leu Ala Phe Ala Leu Gly Gin Trp Ser Pro Trp Leu 255 260 265

GCC GAC AAC ACG CCC CAA CCT GAT CTC GAT GAT CCT GAG GCC ATC GCG 987

Ala Asp Asn Thr Pro Gin Pro Asp Leu Asp Asp Pro Glu Ala He Ala 270 275 280

GAT TCC GTA TAT GAG TCT GCC ATG CGA CTT GCA GGA AGC CCT GGG GGA 1035

Asp Ser Val Tyr Glu Ser Ala Met Arg Leu Ala Gly Ser Pro Gly Gly

285 290 295 300 GAA GCG CGC ATA ATG TTC GAG AAC GCC GCT CGA GGG CAA CAG CTC TCT 1083

Glu Ala Arg He Met Phe Glu Asn Ala Ala Arg Gly Gin Gin Leu Ser 305 310 315

TGG AAC GAC GAC ATC GAC TAT GCG GAT TTC TGG GAG AAC TCA AAC CCA 1131 Trp Asn Asp Asp He Asp Tyr Ala Asp Phe Trp Glu Asn Ser Asn Pro

320 325 330

GCC ATG AAG AGC GCC GTT CAG GAG CTG TAC GAC ACG GCC GGC CTT GAT 1179

Ala Met Lys Ser Ala Val Gin Glu Leu Tyr Asp Thr Ala Gly Leu Asp 335 340 345

CTG CAG TCC GAT ATA GAA ACG GTA AAT TCC CAG CCA CGC ATA GAG GCA 1227

Leu Gin Ser Asp He Glu Thr Val Asn Ser Gin Pro Arg He Glu Ala 350 355 360

TCG CAG TAT GCG CTC GAC TAC TGG AAC ACG CCA GGT CGC AAT GTC ATT 1275 Ser Gin Tyr Ala Leu Asp Tyr Trp Asn Thr Pro Gly Arg Asn Val He 365 370 375 380 GGC GAC CCC GAA GTT CCT GTG CTG CGC CTG CAT ATG ATA GGC GAC TAC 1323 Gly Asp Pro Glu Val Pro Val Leu Arg Leu His Met He Gly Asp Tyr 385 390 395

CAA ATT CCC TAT AGT CTT GTA CAG GGC TAC AGC GAT CTT ATC TCA GAG 1371 Gin He Pro Tyr Ser Leu Val Gin Gly Tyr Ser Asp Leu He Ser Glu 400 405 410

AAC AAC AAT GAT GAC TTG TAC AGA ACT GCT TTT GTG CAA TCC ACT GGA 1419 Asn Asn Asn Asp Asp Leu Tyr Arg Thr Ala Phe Val Gin Ser Thr Gly 415 420 425

CAC TGC AAT TTC ACA GCT GCA GAA AGT TCC GCT GCG ATT GAG GTC ATG 1467

His Cys Asn Phe Thr Ala Ala Glu Ser Ser Ala Ala He Glu Val Met 430 435 440

ATG CAA CGG CTT GAC ACG GGT GAG TGG CCG AGC ACC GAG CCG GAT GAT 1515

Met Gin Arg Leu Asp Thr Gly Glu Trp Pro Ser Thr Glu Pro Asp Asp 445 450 455 460 CTG AAT GCA ATT GCC GAA GCC TCA AAC ACC GGA ACT GAA GCA CGT TTC 1563 Leu Asn Ala He Ala Glu Ala Ser Asn Thr Gly Thr Glu Ala Arg Phe 465 470 475

ATG GCC CTA GAT GGC TGG GAA ATA CCC GAG TAC AAT CGT ACT TGG AAG 1611 Met Ala Leu Asp Gly Trp Glu He Pro Glu Tyr Asn Arg Thr Trp Lys 480 485 490

CCT GAA TAATCACCAT TCTGGAGGCT CACGTTCGCG AAGGGTTGCG GCGAAGAAAA 1667 Pro Glu

CATGCGCCGC AACCTATCCT CCAAACAAGG GCCAGTTCAA CGACGAACAA GCCAGACCGG 1727

CGCAAGCCGC GCTAATCTAA TTCACCGCTC CAACCCGCGA TCTCGCGACC GCCCGCGCTG 1787

CATGTCGAGC TTCTGTTGCT GCGCCCGCTC AAGCGTATAA TCACGCCGGA TAATCGTTTC 1847

CCGCGCTTTG TTCGTGATCC TTGCAACGTC CTTGATGCGA TCGACGTTAC GGGCTGTCTC 1907 TGAAGGCTGT GAGCGTGTGC GATCAAGCGC CTGATCGATA TCGCGATGAT TGCTTGATCC 1967

GAACCGGATC TGCATAGCCC GGGCAATACG TTTGGCTTCA TCAAGCGCCT GTTTGCCATC 2027

AGCCGTCTTT TCGAGCTGAT CGACAAAGCC CGTCCGTGCC TTCGCATCCT TGATCTGATC 2087

GAGCTGCCTG AGCAGGGTTT CGCTGCGAGG TGAGAGGCCA GGAATCTCGA CGCGATCATT 2147

ATTGTCACGC CGCCATTGTT CGGCTTCCTT TTCCTCGGCA AAGCGCCGCG TCCAGGTCTT 2207 CCCCGCCGCG TCCAGATGCG AACTCATCGC CTCGGCCCGC TTGAGGGCAT TTTTTGCGCT 2267

CGGCATTGGC ACCGAACAGG CCGAACTTGC CGCGCAGCTG TTGATTTCTG CTGAGAAGTG 2327

ACCCGGTATT GGAGTGAACC CCTGGGACTG GACCAGCGGG GAAGAAAAGC TGATACGCTC 2387

TGTGGGCCTT GAATGGAGAA GGTCCATGTC ACCAAGAGGT CCCTACCGCC GTCACTCGAT 2447

GCAGTTCAAG CGTAAGCGCC AAGCCTGGCC CGTCTGGTGA TGGCTGCCTT TGAGCGCTAT 2507

CGACACCCCG GAGTTAGTGA TGGGTGTCAT GTTCTATGTC TGCGACTATG CCTGCAGATA 2567

GAAGTTTCCA GTTGATCGAG GCGGTTCCGG ATCGGATGGA GGGCGCTCCG GTTGCGCGGC 2627

GACGCCGGTG GTCGGACGCG TTCAAGGCCG AGATGGTAGC GCGCAGCTTC GAACCTGGAA 2687

CGAATGTGTC GGCACTGGCG CGCGAGATCG GCATCCAGTC CTCGCAGTTG TTCGGCTGGC 2747

GCGCCGAGGC CCTCAAGCGC GGAGAGGTGG AAAGGCGCGA TGTTGATATC GTTGCAACGC 2807 AAGCCTCTCG CTTGGTGAGC GGGACGGTCG AGATCGCGGT CAACGACACG GTGATCCGGG 2867

TCGGCATTGA TATCGGGGAA GACCATTTGC GGCGCGTGAT CCGCGCTGTG CGGTCGGCAT 2927

GATCCCTGCG GGTGTGAAGG TCTATCTGGC CAGCCAGCCG GTAGACTTCA GGAAAGGTCC 2987

AGACGGCCTT GTTGGCCTGG TGCGCGATGC TGGAGCGGAT CC 3029

(2) INFORMATION FOR SEQ ID NO:7

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 135 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: GGATCCTTAG GAATCTAAAC ATTCTGGTTG ACACTCCACA TTTTGAATGT CAGCATTTCG 60 GCCATGGCTG CTATGCAGCC TGTTATTGCA TTTGAAATGG AATAGATCAG CAAACTTATC 120 GGGAGGATGA GTATT 135

(2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 126 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..126

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ATG ATA ATC AAG GGT AGT GTA CCG GGT AAA GCC GGA GGA AAA CCT CGA 48 Met He He Lys Gly Ser Val Pro Gly Lys Ala Gly Gly Lys Pro Arg

1 5 10 15

GCG ACC ATC TTT CAT AGT TCT ATT GCA ACG CTA CTT TTA ACC ACA GTC 96 Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu Leu Thr Thr Val 20 25 30

TCA CTG TCA GGA GTA GCG CCA GCA TTT GCA 126

Ser Leu Ser Gly Val Ala Pro Ala Phe Ala 35 40

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met He He Lys Gly Ser Val Pro Gly Lys Ala Gly Gly Lys Pro Arg 1 5 10 15

Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu Leu Thr Thr Val 20 25 30

Ser Leu Ser Gly Val Ala Pro Ala Phe Ala 35 40

(2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1409 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: TCACCATTCT GGAGGCTCAC GTTCGCGAAG GGTTGCGGCG AAGAAAACAT GCGCCGCAAC 60

CTATCCTCCA AACAAGGGCC AGTTCAACGA CGAACAAGCC AGACCGGCGC AAGCCGCGCT 120

AATCTAATTC ACCGCTCCAA CCCGCGATCT CGCGACCGCC CGCGCTGCAT GTCGAGCTTC 180

TGTTGCTGCG CCCGCTCAAG CGTATAATCA CGCCGGATAA TCGTTTCCCG CGCTTTGTTC 240

GTGATCCTTG CAACGTCCTT GATGCGATCG ACGTTACGGG CTGTCTCTGA AGGCTGTGAG 300 CGTGTGCGAT CAAGCGCCTG ATCGATATCG CGATGATTGC TTGATCCGAA CCGGATCTGC 360

ATAGCCCGGG CAATACGTTT GGCTTCATCA AGCGCCTGTT TGCCATCAGC CGTCTTTTCG 420

AGCTGATCGA CAAAGCCCGT CCGTGCCTTC GCATCCTTGA TCTGATCGAG CTGCCTGAGC 480

AGGGTTTCGC TGCGAGGTGA GAGGCCAGGA ATCTCGACGC GATCATTATT GTCACGCCGC 540

CATTGTTCGG CTTCCTTTTC CTCGGCAAAG CGCCGCGTCC AGGTCTTCCC CGCCGCGTCC 600

AGATGCGAAC TCATCGCCTC GGCCCGCTTG AGGGCATTTT TTGCGCTCGG CATTGGCACC 660

GAACAGGCCG AACTTGCCGC GCAGCTGTTG ATTTCTGCTG AGAAGTGACC CGGTATTGGA 720

GTGAACCCCT GGGACTGGAC CAGCGGGGAA GAAAAGCTGA TACGCTCTGT GGGCCTTGAA 780

TGGAGAAGGT CCATGTCACC AAGAGGTCCC TACCGCCGTC ACTCGATGCA GTTCAAGCGT 840

AAGCGCCAAG CCTGGCCCGT CTGGTGATGG CTGCCTTTGA GCGCTATCGA CACCCCGGAG 900 TTAGTGATGG GTGTCATGTT CTATGTCTGC GACTATGCCT GCAGATAGAA GTTTCCAGTT 960

GATCGAGGCG GTTCCGGATC GGATGGAGGG CGCTCCGGTT GCGCGGCGAC GCCGGTGGTC 1020

GGACGCGTTC AAGGCCGAGA TGGTAGCGCG CAGCTTCGAA CCTGGAACGA ATGTGTCGGC 1080

ACTGGCGCGC GAGATCGGCA TCCAGTCCTC GCAGTTGTTC GGCTGGCGCG CCGAGGCCCT 1140

CAAGCGCGGA GAGGTGGAAA GGCGCGATGT TGATATCGTT GCAACGCAAG CCTCTCGCTT 1200 GGTGAGCGGG ACGGTCGAGA TCGCGGTCAA CGACACGGTG ATCCGGGTCG GCATTGATAT 1260

CGGGGAAGAC CATTTGCGGC GCGTGATCCG CGCTGTGCGG TCGGCATGAT CCCTGCGGGT 1320

GTGAAGGTCT ATCTGGCCAG CCAGCCGGTA GACTTCAGGA AAGGTCCAGA CGGCCTTGTT 1380

GGCCTGGTGC GCGATGCTGG AGCGGATCC 1409

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1362 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE: (A) NAME/KEY: CDS

(B) LOCATION: 1..1359

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: ATG CAG GCG CCG TCT GTG CAC CAA CAC GTC GCC TTC ACT GAG GAA ATT 48 Met Gin Ala Pro Ser Val His Gin His Val Ala Phe Thr Glu Glu He 1 5 10 15

GGA GAC CTT CCC GAC GGC TCA AGT TAC ATG ATC CGT GTG CCG GAG AAC 96 Gly Asp Leu Pro Asp Gly Ser Ser Tyr Met He Arg Val Pro Glu Asn

20 25 30

TGG AAC GGC GTG TTA ATT CGC GAC CTA GAC CTT GTC AGC GGC ACC AGC 144 Trp Asn Gly Val Leu He Arg Asp Leu Asp Leu Val Ser Gly Thr Ser 35 40 45

AAT TCT AAC GCC GCA AGG TAC GAA ACC ATG CTG AAA GAA GGT TTT GCC 192

Asn Ser Asn Ala Ala Arg Tyr Glu Thr Met Leu Lys Glu Gly Phe Ala 50 55 60

GTT GCT GGC ACG GCG AGG CAT CCC CTT CGG CAA TGG CAA TAT GAC CCC 240

Val Ala Gly Thr Ala Arg His Pro Leu Arg Gin Trp Gin Tyr Asp Pro 65 70 75 80 GCT CAC GAG ATT GAA AAC CTC AAT CAC GTG CTG GAC ACA TTC GAG GAA 288 Ala His Glu He Glu Asn Leu Asn His Val Leu Asp Thr Phe Glu Glu 85 90 95

AAT TAC GGT TCA CCT GAA AGA GTT ATC CAG TAC GGT TGC TCG GGT GGG 336 Asn Tyr Gly Ser Pro Glu Arg Val He Gin Tyr Gly Cys Ser Gly Gly 100 105 110

GCA CAC GTG TCA CTA GCC GTG GCA GAG GAC TTC TCG GAC CGC GTA GAT 384 Ala His Val Ser Leu Ala Val Ala Glu Asp Phe Ser Asp Arg Val Asp 115 120 125

GGC TCA GTT GCT CTA GCT GCT CAT ACT CCT GTC TGG ATA ATG AAT TCT 432

Gly Ser Val Ala Leu Ala Ala His Thr Pro Val Trp He Met Asn Ser 130 135 140

TTC TTG GAC GGA TGG TTT TCG CTG CAG TCT CTG ATC GGC GAG TAC TAT 480

Phe Leu Asp Gly Trp Phe Ser Leu Gin Ser Leu He Gly Glu Tyr Tyr 145 150 155 160 GTA GAA GCT GGT CAC GGC CCA CTT TCG GAT CTC GCT ATT ACG AAA CTG 528 Val Glu Ala Gly His Gly Pro Leu Ser Asp Leu Ala He Thr Lys Leu 165 170 175

CCC AAT GAT GGT AGC TCT AAT TCG AGC GGT CAT GGA ATG GAA GGA GAT 576 Pro Asn Asp Gly Ser Ser Asn Ser Ser Gly His Gly Met Glu Gly Asp 180 185 190

CTT CCT GCC GCG TGG CGC AAC GCG TTC ACC GCT GCT AAC GCC ACA CCT 624 Leu Pro Ala Ala Trp Arg Asn Ala Phe Thr Ala Ala Asn Ala Thr Pro 195 200 205

GAG GGT CGC GCA CGC ATG GCA CTA GCC TTT GCG CTC GGT CAG TGG TCT 672

Glu Gly Arg Ala Arg Met Ala Leu Ala Phe Ala Leu Gly Gin Trp Ser

210 215 220

CCG TGG TTG GCC GAC AAC ACG CCC CAA CCT GAT CTC GAT GAT CCT GAG 720

Pro Trp Leu Ala Asp Asn Thr Pro Gin Pro Asp Leu Asp Asp Pro Glu 225 230 235 240 GCC ATC GCG GAT TCC GTA TAT GAG TCT GCC ATG CGA CTT GCA GGA AGC 768 Ala He Ala Asp Ser Val Tyr Glu Ser Ala Met Arg Leu Ala Gly Ser 245 250 255

CCT GGG GGA GAA GCG CGC ATA ATG TTC GAG AAC GCC GCT CGA GGG CAA 816 Pro Gly Gly Glu Ala Arg He Met Phe Glu Asn Ala Ala Arg Gly Gin 260 265 270

CAG CTC TCT TGG AAC GAC GAC ATC GAC TAT GCG GAT TTC TGG GAG AAC 864 Gin Leu Ser Trp Asn Asp Asp He Asp Tyr Ala Asp Phe Trp Glu Asn 275 280 285

TCA AAC CCA GCC ATG AAG AGC GCC GTT CAG GAG CTG TAC GAC ACG GCC 912

Ser Asn Pro Ala Met Lys Ser Ala Val Gin Glu Leu Tyr Asp Thr Ala

290 295 300

GGC CTT GAT CTG CAG TCC GAT ATA GAA ACG GTA AAT TCC CAG CCA CGC 960 Gly Leu Asp Leu Gin Ser Asp He Glu Thr Val Asn Ser Gin Pro Arg 305 310 315 320 ATA GAG GCA TCG CAG TAT GCG CTC GAC TAC TGG AAC ACG CCA GGT CGC 1008 He Glu Ala Ser Gin Tyr Ala Leu Asp Tyr Trp Asn Thr Pro Gly Arg 325 330 335

AAT GTC ATT GGC GAC CCC GAA GTT CCT GTG CTG CGC CTG CAT ATG ATA 1056 Asn Val He Gly Asp Pro Glu Val Pro Val Leu Arg Leu His Met He 340 345 350

GGC GAC TAC CAA ATT CCC TAT AGT CTT GTA CAG GGC TAC AGC GAT CTT 1104 Gly Asp Tyr Gin He Pro Tyr Ser Leu Val Gin Gly Tyr Ser Asp Leu 355 360 365

ATC TCA GAG AAC AAC AAT GAT GAC TTG TAC AGA ACT GCT TTT GTG CAA 1152 He Ser Glu Asn Asn Asn Asp Asp Leu Tyr Arg Thr Ala Phe Val Gin 370 375 380

TCC ACT GGA CAC TGC AAT TTC ACA GCT GCA GAA AGT TCC GCT GCG ATT 1200 Ser Thr Gly His Cys Asn Phe Thr Ala Ala Glu Ser Ser Ala Ala He 385 390 395 400 GAG GTC ATG ATG CAA CGG CTT GAC ACG GGT GAG TGG CCG AGC ACC GAG 1248 Glu Val Met Met Gin Arg Leu Asp Thr Gly Glu Trp Pro Ser Thr Glu 405 410 415

CCG GAT GAT CTG AAT GCA ATT GCC GAA GCC TCA AAC ACC GGA ACT GAA 1296 Pro Asp Asp Leu Asn Ala He Ala Glu Ala Ser Asn Thr Gly Thr Glu 420 425 430

GCA CGT TTC ATG GCC CTA GAT GGC TGG GAA ATA CCC GAG TAC AAT CGT 1344 Ala Arg Phe Met Ala Leu Asp Gly Trp Glu He Pro Glu Tyr Asn Arg 435 440 445

ACT TGG AAG CCT GAA TAA 1362

Thr Trp Lys Pro Glu 450

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 453 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Gin Ala Pro Ser Val His Gin His Val Ala Phe Thr Glu Glu He 1 5 10 15

Gly Asp Leu Pro Asp Gly Ser Ser Tyr Met He Arg Val Pro Glu Asn 20 25 30

Trp Asn Gly Val Leu He Arg Asp Leu Asp Leu Val Ser Gly Thr Ser 35 40 45

Asn Ser Asn Ala Ala Arg Tyr Glu Thr Met Leu Lys Glu Gly Phe Ala 50 55 60 Val Ala Gly Thr Ala Arg His Pro Leu Arg Gin Trp Gin Tyr Asp Pro 65 70 75 80

Ala His Glu He Glu Asn Leu Asn His Val Leu Asp Thr Phe Glu Glu 85 90 95

Asn Tyr Gly Ser Pro Glu Arg Val He Gin Tyr Gly Cys Ser Gly Gly 100 105 110

Ala His Val Ser Leu Ala Val Ala Glu Asp Phe Ser Asp Arg Val Asp 115 120 125

Gly Ser Val Ala Leu Ala Ala His Thr Pro Val Trp He Met Asn Ser 130 135 140 Phe Leu Asp Gly Trp Phe Ser Leu Gin Ser Leu He Gly Glu Tyr Tyr 145 150 155 160

Val Glu Ala Gly His Gly Pro Leu Ser Asp Leu Ala He Thr Lys Leu 165 170 175

Pro Asn Asp Gly Ser Ser Asn Ser Ser Gly His Gly Met Glu Gly Asp 180 185 190

Leu Pro Ala Ala Trp Arg Asn Ala Phe Thr Ala Ala Asn Ala Thr Pro 195 200 205

Glu Gly Arg Ala Arg Met Ala Leu Ala Phe Ala Leu Gly Gin Trp Ser 210 215 220 Pro Trp Leu Ala Asp Asn Thr Pro Gin Pro Asp Leu Asp Asp Pro Glu

225 230 235 240

Ala He Ala Asp Ser Val Tyr Glu Ser Ala Met Arg Leu Ala Gly Ser 245 250 255

Pro Gly Gly Glu Ala Arg He Met Phe Glu Asn Ala Ala Arg Gly Gin 260 265 270

Gin Leu Ser Trp Asn Asp Asp He Asp Tyr Ala Asp Phe Trp Glu Asn 275 280 285

Ser Asn Pro Ala Met Lys Ser Ala Val Gin Glu Leu Tyr Asp Thr Ala

290 295 300 Gly Leu Asp Leu Gin Ser Asp He Glu Thr Val Asn Ser Gin Pro Arg

305 310 315 320

He Glu Ala Ser Gin Tyr Ala Leu Asp Tyr Trp Asn Thr Pro Gly Arg 325 330 335

Asn Val He Gly Asp Pro Glu Val Pro Val Leu Arg Leu His Met He 340 345 350

Gly Asp Tyr Gin He Pro Tyr Ser Leu Val Gin Gly Tyr Ser Asp Leu 355 360 365

He Ser Glu Asn Asn Asn Asp Asp Leu Tyr Arg Thr Ala Phe Val Gin 370 375 380 Ser Thr Gly His Cys Asn Phe Thr Ala Ala Glu Ser Ser Ala Ala He 385 390 395 400

Glu Val Met Met Gin Arg Leu Asp Thr Gly Glu Trp Pro Ser Thr Glu 405 410 415

Pro Asp Asp Leu Asn Ala He Ala Glu Ala Ser Asn Thr Gly Thr Glu 420 425 430

Ala Arg Phe Met Ala Leu Asp Gly Trp Glu He Pro Glu Tyr Asn Arg 435 440 445

Thr Trp Lys Pro Glu 450

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 81 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 2..78 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

T CGA GCG ACC ATC TTT CAT AGT TCT ATT GCA ACG CTA CTT TTA ACC 46 Arg Ala Thr He Phe His Ser Ser He Ala Thr Leu Leu Leu Thr 1 5 10 15

ACA GTC TCA CTG TCA GGA GTA GCG CCA GCA TTT GC 81

Thr Val Ser Leu Ser Gly Val Ala Pro Ala Phe

20 25 30

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 79 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: TAGCAAATGC TGGCGCTACT CCTGACAGTG AGACTGTGGT TAAAAGTAGC GTTGCAATAG 60 AACTATGAAA GATGGTCGC 79