Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF FABRICATING 3D VACUUM INSULATED REFRIGERATOR STRUCTURE HAVING CORE MATERIAL
Document Type and Number:
WIPO Patent Application WO/2017/116579
Kind Code:
A1
Abstract:
A method of fabricating a vacuum insulated refrigerator structure includes positioning a first barrier film in a female mold cavity. Porous filler material is positioned on the barrier film, and a second barrier film is positioned over the porous filler material. A male mold is brought into contact with the second barrier film to deform and compress the porous filler material into a 3D shape. A vacuum is formed between the first and second barrier films, and the first and second peripheral edge portions are sealed together to form a vacuum insulated core. The vacuum insulated core may be positioned between a liner and a wrapper to form an insulated refrigerator cabinet, door, or other vacuum insulated component.

Inventors:
NAIK ABHAY (US)
RUSSELL CHRISTIAN MYLES (US)
Application Number:
PCT/US2016/062479
Publication Date:
July 06, 2017
Filing Date:
November 17, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WHIRLPOOL CO (US)
International Classes:
F16L59/06; F25D23/06; F25D11/00
Domestic Patent References:
WO2002052208A12002-07-04
WO2012044001A22012-04-05
Foreign References:
KR20090026045A2009-03-11
Other References:
See also references of EP 3397908A4
Attorney, Agent or Firm:
CALLAGHAN, Terry S. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method of fabricating a vacuum insulated refrigerator structure, the method comprising:

positioning a first ba rrier film having a first peripheral edge portion in a female mold cavity;

positioning porous filler materia l on the barrier film;

positioning a second barrier film having a second peripheral edge portion over the porous filler material whereby the porous filler material is disposed between the first and second barrier films;

utilizing a male mold that is in contact with the second barrier film to press the second barrier film a nd cause the porous filler material to deform into a 3D shape including a centra l portion and at least one sidewall portion extending transversely from the central portion;

forming a vacuum between the first and second barrier films;

sealing the first and second peripheral edge portions together to form a vacuum insulated core having porous filler material disposed in a vacuum.

2. The method of claim 1, wherein:

the female mold includes a generally planar central surface portion and at least one inwardly facing side wall surface portion that is generally orthogonal to the central surface portion.

3. The method of claim 1 or 2, wherein:

the male mold includes a generally pla nar central surface portion and at least one outwardly facing side wall surface portion that is generally orthogonal to the central surface portion of the male mold.

4. The method of claim 3, wherein:

the central surface portion of the female mold and the central surface portion of the male mold are rectangular.

5. The method of any of claims 1-4, wherein:

the first and second barrier films comprise multilayer films.

6. The method of any of claims 1-5, including:

causing the first and second peripheral edge portions to overlap prior to sealing the first and second peripheral edge portions together.

7. The method of any of claims 1-6, wherein:

the porous filler materia l comprises silica powder.

8. The method of any of claims 1-7, including:

positioning the vacuum insulated core between a wrapper and a liner;

connecting the wrapper to the liner to form a vacuum insulated refrigerator structure.

9. The method of any of claims 1-8, wherein:

the vacuum insulated refrigerator structure comprises a door.

10. The method of any of claims 1-8, wherein:

the vacuum insulated refrigerator structure comprises a refrigerator cabinet defining an insulated food storage compa rtment a nd an access opening that provides access to the insulated food storage compa rtment.

11. The method of claim 10, including:

movably mounting an insulated door to the refrigerator, wherein the door is configured to selectively close off at least a portion of the access opening when the insulated door is in a closed position.

12. A method of fabricating a vacuum insulated refrigerator structure, the method comprising:

positioning a first ba rrier film having a first peripheral edge portion in a female mold cavity;

positioning porous filler materia l on the barrier film;

positioning a second barrier film having a second peripheral edge portion onto a male mold;

moving the male mold and the second barrier film to press the second barrier film into contact with the porous filler material to deform the porous filler material into a 3D shape including a centra l portion and at least one sidewall portion extending transversely from the central portion;

forming a vacuum between the first and second barrier films;

sealing the first and second peripheral edge portions together to form a vacuum insulated core having porous filler material disposed in a vacuum.

13. The method of claim 12, wherein:

the female mold includes a generally planar central surface portion and four inwardly facing side wall surface portions that a re generally orthogonal to the central surface portion.

14. The method of claim 12 or 13, wherein:

the male mold includes a generally planar central surface portion and four outwardly facing side wall surface portions that are generally orthogonal to the central surface portion of the male mold.

15. The method of claim 14, wherein:

the central surface portion of the female mold and the central surface portion of the male mold are rectangular.

16. The method of any of claims 12-15, wherein:

the first and second barrier films comprise multilayer films.

17. The method of any of claims 12-16, including:

causing the first and second peripheral edge portions to overlap prior to sealing the first and second peripheral edge portions together.

18. The method of any of claims 12-16, including:

positioning the vacuum insulated core between a wrapper and a liner;

connecting the wrapper to the liner to form a vacuum insulated refrigerator structure.

19. The method of claim 18, wherein:

the vacuum insulated refrigerator structure comprises a door.

20. The method of claim 18, wherein:

the vacuum insulated refrigerator structure comprises a refrigerator cabinet defining an insulated food storage compa rtment a nd an access opening that provides access to the insulated food storage compa rtment.

Description:
METHOD OF FABRICATING 3D VACUUM INSULATED REFRIGERATOR STRUCTURE

HAVING CORE MATERIAL

BACKGROUND OF THE I NVENTION

[0001] Various types of vacuum insulated refrigerator cabinets, doors, and other such structures have been developed. However, known methods of forming vacuum insulated structures may suffer from various drawbacks and limitations.

SUMMARY OF THE INVENTION

[0002] A method of fabricating a vacuum insulated refrigerator structure includes

positioning a first ba rrier film in a female mold cavity. Porous filler material is positioned on the first barrier film, and a second barrier film is positioned over the porous filler material. The first and second barrier films have first and second peripheral edge portions, respectively. The porous filler material is disposed between the first and second barrier films. A male mold is brought into contact with the second barrier film to thereby cause the porous filler material to deform into a 3D shape including a central portion and at least one sidewall portion that extends transversely from the central portion. A vacuum is formed between the first and second barrier films, and the first and second peripheral edge portions are sealed together to form a vacuum insulated core having porous filler material disposed in a vacuum. The vacuum insulated core may be positioned between a liner and a wrapper to form an insulated refrigerator cabinet, door, or other insulated refrigerator component.

[0003] These and other features, advantages, and objects of the present disclosure will be further understood and a ppreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Fig. 1 is an isometric view of a refrigerator;

[0005] Fig. 2 is a pa rtially schematic view of a female mold part and first barrier film;

[0006] Fig. 3 is a partially schematic view showing porous insulation powder disposed over at least a portion of the first barrier film in the female mold part; [0007] Fig. 4 is a pa rtia lly schematic view of a ma le mold part having a second ba rrier film positioned on the ma le mold pa rt;

[0008] Fig. 5 is a pa rtia lly schematic view showing a core position between male a nd female mold pa rts;

[0009] Fig. 6 is a pa rtial ly schematic view showing the mold inside a vacuum chamber;

[0010] Fig. 7 is a pa rtial ly schematic view showing the mold inside a vacuum chamber as the peripheral edge portions of the first and second barrier films are sealed together;

[0011] Fig. 8 is a pa rtia lly schematic cross sectional view of a 3D vacuum insulated core disposed between a liner and wrappe r; a nd

[0012] Fig. 9 is a cross sectiona l view of a vacuum insulated refrigerator structure taken along the line IX-IX; FIG. 1.

DETAI LED DESCRI PTION

[0013] For purposes of description herein, the terms "upper," "lower," "right," "left,"

"rear," "front," "vertica l," "horizontal," and derivatives thereof shall relate to the disclosu re as oriented in Fig. 2. However, it is to be understood that the disclosu re may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached d rawings, and described in the following

specification, a re sim ply exemplary embodiments of the inventive conce pts defined in the appended claims. Hence, specific dimensions and other physica l cha racteristics relating to the embodiments disclosed herein a re not to be considered as limiting, unless the claims expressly state otherwise.

[0014] With reference to Fig. 1, a refrigerator 1 may include a vacuum insulated ca binet

2 forming a fresh food compa rtment 4 and a freezer compa rtment 6. Doors 8 and 10 are movably mounted to the ca binet 2, and selectively close off an access opening 12 that provides access to the fresh food compa rtment 4. A door or drawer 14 selectively closes off an access openi ng 16 that provides access to freezer compartment 6. A cooling system (not shown) includi ng a compressor, condenser, eva porator, a nd other related components may be positioned in a machi ne com partment 18 located at a lower rea r portion of cabinet 2. Door 8 may include a n ice/water dispenser 20. [0015] The cabinet 2 may comprise a vacuum insulated structure having an outer wrapper 22, an inner liner 24 that fits within the outer wrapper 22, a nd a vacuum insulated core structu re 26 that is disposed between the wrapper 22 and liner 24. One or more of the doors 8, 10, and 14 may also comprise vacuum insulated structures having an outer wrapper or panel, inner liner, and vacuu m insulated core disposed between the outer panel and the inner liner.

[0016] With reference to Figs. 2-5, the cabinet 2 and/or doors 8, 10, and 14 may be

fabricated utilizing a female mold 30 and a male mold 40. The fema le mold 30 may include a genera lly plana r inte rior surface 32 and one or more inwardly facing side walls or surfaces 34 that together form a mold cavity 36. I n the illustrated example, the fema le mold 30 includes four generally plana r side surfaces 34 that are orthogonal relative to one another such that female mold 30 is generally bathtub-shaped.

[0017] A vacuum insulated core com ponent may be fa bricated by placing a first ba rrier film 38 in the mold cavity 36 with the first barrier film 38 positioned closely against surfaces 32 a nd 34. The first barrier film 38 includes peripheral edge portions 39 that a re positioned directly against edge surfaces 33 of female mold 30. With further reference to Fig. 3, porous filler material 50 is then positioned in the female mold cavity 36 over at least a portion of first ba rrier film 38. Porous filler material 50 may comprise silica powder, glass fibers, or other suitable material that is capable of being deformed as requi red for a pa rticular application.

[0018] With reference to Fig. 4, a ma le mold pa rt 40 includes a generally planar centra l portion 42, outwa rdly-facing side surfaces 44, and edge surface portions 43. Male mold part 40 may include four outwardly facing surfaces 44 that are orthogonal relative to one another. A second ba rrier film 48 is positioned over or on the male mold 40, and the fema le and ma le mold components 30 a nd 40 are then brought together as shown in Fig. 5 to compress the silica powder 50 between barrier films 38 and 48. Alternatively, second barrier film 48 may be positioned over female mold 30 as shown by dashed lines 48A rathe r than positioning second barrier film 48 on ma le mold 40. The peripheral edge portions 39 and 49 of barrier films 38 and 48 overlap one a nother, and may be pressed together by surfaces 33 and 43 of female a nd male mold parts 30 and 40, respectively.

[0019] With further reference to Fig. 6, the fema le a nd male mold pa rts 30 and 40 are then positioned within a vacuum chamber 52, and air is evacuated from the vacuum chamber 52 through a n opening or passageway 54 utilizing a vacuum pump (not shown) or other suitable mechanism to thereby form a vacuum in the space 56 inside vacuum chamber 52. With further reference to Fig. 7, the peripheral edge portions 39 and 49 of barrier films 38 and 48, respectively are then sealed along a seal line 58 utilizing heat sealing, adhesives, or other suitable known processes. The seal line 58 may include 4 substantially straight edge portions if the refrigerator component (e.g. cabinet 2, or doors 8, 10, or 14) have a rectangular perimeter. Barrier films 38 and 48 may comprise multilayer polymer and/or metal foil that is impervious to oxygen, nitrogen, carbon dioxide water vapor, and other gasses as may be required to maintain a vacuum.

[0020] With further reference to Figs. 8 and 9, vacuum insulated core 26 is then removed from the vacuum chamber 52, and the core 26 is positioned between a wrapper 22 and a liner 24 to form a 3D vacuum insulated refrigerator component 60. The wrapper 22 and liner 24 may be interconnected utilizing known structures and processes. A small gap or space 66 (Fig. 9) may be formed between vacuum insulated core 26 and outer wrapper 22. Similarly, a small gap or space 68 may be formed between liner 24 and vacuum insulated core 26. The gaps 66 and/or 68 may be filled with adhesive and/or

polyurethane foam (not shown) to interconnect the vacuum insulated core 26 to the wrapper 22 and liner 24, and to fill the gaps 66 and 68 to reduce or prevent flexing of wrapper 22 and liner 24. If the refrigerator component 60 comprises a cabinet 2, the forward edge 64 of the cabinet 2 may include an edge strip 62 that is sealingly connected to the wrapper 22 and liner 24.

[0021] It will be understood that the 3D vacuum core may have various shapes and sizes as required for a particular application. For example, the 3D vacuum core may be configured to be utilized in a refrigerator cabinet as described above, or it may be configured to be utilized in a refrigerator door or other com ponent.

It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.