Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR FAST SHAPING CARBON SUPPORTED METAL CATALYST POWDERS INTO FLEXIBLE PLATES VIA SUBSEQUENT COLD AND HOT COMPRESSION MOULDING
Document Type and Number:
WIPO Patent Application WO/2017/093869
Kind Code:
A1
Abstract:
The proposed invention describes a manufacturing method for fast shaping of carbon supported metal catalysts into plates with required elasticity and hardness, by means of cold and hot press techniques and by using binders. Preparation of the plates occurs through four stages: (1) Preparation of a dry mixture of polymeric binder in powder form and carbon supported metal catalyst in powder form; (2) Homogenization of this mixture at high mixing speed; (3) Spreading the homogenized mixture over the mould as thin layer and pressing at ambient temperature for a short period of time; (4) Removing the plate from the mould and re-pressing at high temperature and under pressure for a short period of time after covering the cold pressed plate with a metallic foil.

Inventors:
SARIOĞLAN ŞERIFE (TR)
YÜZER HAYRETTIN (TR)
KORAL MURAT (TR)
KURULU OSMAN (TR)
YILMAZ ALAATTIN (TR)
Application Number:
PCT/IB2016/057132
Publication Date:
June 08, 2017
Filing Date:
November 25, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TUBITAK (TR)
International Classes:
B01J23/40; B01J37/00; B01J23/74; B29C51/00; B29C51/26; B29C51/44; H01M4/88; H01M4/90
Domestic Patent References:
WO2014148649A12014-09-25
Foreign References:
US4287032A1981-09-01
US20030104257A12003-06-05
US20040086774A12004-05-06
CN103804826A2014-05-21
US20100279209A12010-11-04
US3935029A1976-01-27
JP2001058807A2001-03-06
US4405544A1983-09-20
KR20120116256A2012-10-22
CN202412821U2012-09-05
JP2009179792A2009-08-13
Download PDF:
Claims:
CLAIMS

1 . A method of fast shaping for carbon supported metal catalysts with a suitable use of polymeric binder, by obtaining the flexible plates in a fast way with subsequent cold and hot press treatments of this catalyst-binder mixture in which the method includes the following processing steps,

i. Mixing metal catalyst powder containing the carbon based support material (1 ) with polymeric binder powder (2) at high rates (turns) per minute mixing rates under dry atmosphere (3)

ii. Spreading over this homogenized powder mixture, prepared by high rates (turns) per minute mixing rates (3), into the mould (4)

iii. Pressing (5) of the mould (4) at ambient temperature for a short period of time

iv. Displacement of cold pressed plate (5) from the mould, covering of the cold pressed plate (5) with aluminum folio and exposing to high temperature pressing for a short period of time (6)

v. After hot pressing (6), displacing the catalyst plate from the mould(7).

2. A method according to Claim 1 wherein, carbon based support material is selected from the group comprising activated carbon, char, silicon carbide or any kind of carbon support material as well known in use for a catalyst support can be chosen.

3. A method according to Claim 1 wherein, metal catalyst powder as an active metal on carbon based support can be chosen among all elements, well known in use as a heterogeneous catalyst and taking place in the 8B column of the periodic table like platinum, palladium, ruthenium, rhodium, nickel, iron etc.

4. A method according to Claim 1 wherein, polymeric binder powder is preferably teflone (politetraflouraethylene-PTFE).

5. A method according to Claim 1 wherein, the weight percentage of active metal loaded on carbon support material changes between 0% and 40%.

6. A method according to Claim 1 wherein, the weight percentage of teflone in powder form as a binder in carbon supported catalyst-polymeric binder mixture changes between 50% and 90%.

7. A method according to Claim 1 wherein, homogenization rate of the homogenized mixture in dry changes between 5000 turns per minute and 10 000 turns per minute and homogenization time changes between 30 seconds and 90 seconds.

8. A method according to Claim 1 wherein, after the carbon supported catalyst homogenized with a binder is spreaded over the mould, cold press is applied at ambient temperature under 0.5-2.0 tons/inche2 pressure for 30-90 seconds.

9. A method according to Claim 1 wherein, after the plate received from the cold press is covered with the aluminum folio from its upper and lower planar sides, hot press is applied at 280-350°C under 0.5-2.0 tons/inche2 pressure for 30-90 seconds.

Description:
DESCRIPTION

METHOD FOR FAST SHAPING CARBON SUPPORTED METAL CATALYST POWDERS INTO FLEXIBLE PLATES VIA SUBSEQUENT COLD AND HOT COMPRESSION MOULDING

The proposed invention is related to a manufacturing method for fast shaping of carbon supported metal catalysts into plates with required elasticity and hardness, by means of cold and hot press techniques and by using binders.

Palladium as the metal and activated carbon as the support are used in the method of this invention. On the other hand, the method is not limited to activated carbon supported palladium catalyst. The catalytic metals, which the method of this invention can be applied to, include all elements taking place in the 8B column of periodic table like platinum, palladium, ruthenium, rhodium, nickel, iron etc. Catalyst supports to be used for saving the costs and increasing the number of active sites per unit volume are the materials chosen as to increase the active surface area and time to time to have additional catalytic effect. The catalyst supports based on carbon are activated carbon, char, silicon carbide and the like structures. In the method of this invention, all this carbon support materials are within the scope. Metal salts can be dispersed on support materials with different techniques (impregnation, ion exchange, precipitation etc.). This invention describes all steps of the method for fast shaping of carbon supported metal catalysts into plates, whatever being the catalyst preparation techniques in application.

Activated carbon used in the method of the invention is innocuous to human health and has high porosity and internal surface area. Activated carbon can attract molecules and ions in solution through its inner surfaces by means of its porous nature and therefore can be used a support material. Activated carbon like carbonaceous structures which can be pelletized by pressing after mixed up with a binder, can be easily used for gaseous phase applications on account of low pressure drop at the application medium, easy of transportation, high mechanical strength and low dusting characteristics.

In many previous works, different kinds of polymers were used as binder for peptization of carbon. In patents with numbers CN103804826 and US2010279209, polyvinylidene flouride (PVDF), phenolic and ureatane resin polymers were seen to be used for pelleting the carbon. For example, phenolic and ureatane resin polymers were mixed with activated carbon at an appropriate solution medium and then pressed into plates for the manufacture of bipolar plates which are used for fuel cell production. The application procedure for the manufacture of graphite-PTFE fuel cell electrode (US3935029) was the dispersion of powder form materials in an organic solvent, mixing, solvent removal and grinding, respectively. In patents with numbers WO2014148649 ve JP2001058807, phenolic resin was used for the manufacture of flexible conductive carbon plates and electrodes. In the patent US4405544, polymeric compound as binder was teflone for the manufacture of cathode and active plates from carbon black. In the description of electrode active plate production in this patent (US4405544), teflone was added to the activated carbon at an appropriate solvent medium and then the mixture was exposed to washing, drying and further mixing.

In the patent KR201201 16256, a dispersion method in a hydrophilic solvent was applied for the manufacture of carbon-polytetraflouraethylene electrode. In the patent work CN202412821 , PTFE was used a binder for the production of carbon fiber plates. In that work (CN202412821 ), high temperature and high pressure were applied for the production. In the patent JP2009179792, filtrated carbon particles in wet form were dispersed in PTFE by means of heating at 330-360°C.

In the method of this invention, teflone (ploytetraflouraethylene-PTFE) in powder form is used as a binder to bring activated carbon containing precious metal into flexible and soft plate. The utilization from the binding properties of teflone occurs at its softening temperature, in other words, by applying pressing process at high temperatures. Conventionally, the mixture in powder form is spreaded out in a thick metal mould and pressing procedure is applied at the softening temperature of the binder in order to have a plate with the requested dimensions. Long times are needed to be wait for heating up the mould to the teflon softening temperature and then cooling the mould after processing. Plate can be physically damaged if it is cracked during its displacement from the mould. In the developed method of this invention, spreaded material in the mould is exposed first to a shock cold press for a short period of time. After this treatment, plate can easily be displaced from the mould without any physical damage. Before applying the hot pressing, both upper and lower planar sides of the plates are covered with aluminum folio at the plate dimensions. The required flexibility and hardness is gained to the plate covered with aluminum folio by applying hot pressing onto it for a short period of time. The advantage of the method in this invention is to press the mixture of carbon-metal- PTFE in a fast way and without giving any physical damage to the plates during moulding. By changing the pressing conditions of the method in this invention (the time for cold and hot press, applied pressing pressure and hot press temperature), this method can be applicable to different binders and carbon powders and therefore the method of this invention is not limited to solely active carbon-PTFE plates. Another advantage of this method in this invention, the method of this invention does not involve any kind of energy intensive steps like solution of the polymer in a solvent, treatment of carbon powder with polymer solution and then drying the mixture with solvent removal. With the described method of the invention, carbon supported metal catalyst is mixed with the polymeric material, which is used as the binder, in dry and then pressed. With the described method of the invention, flexible catalyst plates can be manufactured both in a fast way and by consuming less energy.

The described procedure in the method of this invention; carbon supported metal catalyst in powder form and containing 0-30% metal (palladium, platinium) on weight basis (1 ), after adding powder teflon (2) reaching 40-80% teflon in the resulting mixture on weight basis, is placed in a blender (3). In the blender (3), the powder mixture of carbon supported metal catalyst-teflon is homogenized for 30-90 seconds in dry. Homogenized mixture (3) is spreaded over stainless steel mould (4) fabricated according to the requested plate dimensions. The mixture spreaded over the mould (4) is pressed (5) at ambient temperature under 0.5-2.0 tons/inche 2 pressure for 30- 90 seconds. Plate is displaced from the mould deliberately after cold pressing (5). The cold pressed plate (5) is covered with aluminum folio from its upper and lower planar sides and then hot press is applied to this plate (5) at 280-350°C under 0.5-2.0 tons/inche 2 pressure for 30-90 seconds. After hot pressing, flexible and undamaged plate (7) is uncovered from the folio. The flexible and soft catalyst plate becomes ready after the described procedure. Sample: 3.8 gram of powder form activated carbon supported metal catalyst containing 30% palladium (1 ) is taken. 8.9 g of powder form teflon (2) is added onto it (1 ). So prepared activated carbon supported palladium catalyst-teflon mixture in dry form is placed to the mixture (blender) with the name and the model, M20 IKA WERKE. The rate of the mixture (blender) is adjusted to 10 000 rate (turns) per minute and the dry mixture in the blender chamber is further mixed for 60 seconds by running the blender (3) at this set value. The homogenized mixture prepared at step (3) is spreaded over the stainless steel mould in length of 92 mm, width of 160 mm and depth of 1 mm with care and in a way of not leaving any space at the topside. The homogenized mixture (3) spreaded over the mould (4) is pressed at ambient temperature under 1 .0 tons/inche 2 pressure for 60 seconds (5). The mixture (3), pressed at ambient temperature (5), is displaced from the mould with care. The plate prepared by cold pressing (5) is covered with aluminium folio from its upper and lower planar sides and then hot press is applied at 320°C under 1 .0 tons/inche 2 pressure for 40 seconds (6). After hot pressing (6), the catalyst plate with the required dimensions and flexibility is ready for use (7).

The schematic flow diagram for the method of this invention is given in Figure 1 . Description of Drawings

Figure 1 . The schematic flow diagram for the preparation method of carbon supported catalyst plate

1 - Activated carbon powder containing metal

2- Binder (powder teflon)

3- Homogenization in dry condition at high turns per minute for 60 seconds

4- Spreading over a mould being at the requested dimensions

5- Pressing at ambient temperature for 60 seconds

6- Displacement from the mould and pressing at 320°C for 40 seconds after covering with aluminum folio

7- Catalyst plate ready for use