Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR THE FERMENTATIVE PRODUCTION OF GAMMA GLUTAMYLCYSTEINE AND DERIVATIVES OF SAID DIPEPTIDE
Document Type and Number:
WIPO Patent Application WO/2015/036301
Kind Code:
A1
Abstract:
The invention relates to a method for the fermentative production of γ-glutamylcysteine and its derivatives bis-γ-glutamylcystine and γ-glutamylcystine, in which a prokaryotic microorganism strain suitable for producing γ-glutamylcystein is cultivated in a fermentation medium, characterised in that thiosulfuric acid is added to the fermentation medium.

Inventors:
THÖN MARCEL (DE)
BRUNNER MARKUS (DE)
Application Number:
PCT/EP2014/068721
Publication Date:
March 19, 2015
Filing Date:
September 03, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WACKER CHEMIE AG (DE)
International Classes:
C12P13/00
Foreign References:
US20120252076A12012-10-04
EP2143804A12010-01-13
EP1428873A22004-06-16
DE102011078481A12013-01-03
DE102013209274A2013-05-17
US20100203592A12010-08-12
Attorney, Agent or Firm:
POTTEN, Holger et al. (DE)
Download PDF:
Claims:
Patentansprüche

Verfahren zur fermentativen Herstellung von γ-Glutamyl- cystein und dessen Derivaten bis-y-Glutamylcystin und γ- Glutamylcystin bei dem ein zur γ-Glutamylcystein- Produktion geeigneter Mikroorganismenstamm in einem Fermentationsmedium kultiviert wird, dadurch gekennzeichnet, dass dem Fermentationsmedium Thioschwefelsäure oder ein Salz der Thioschwefelsäure einzeln oder als Gemisch zugesetzt werden.

Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass dem Fermentationsmedium ein Salz der Thioschwefelsäure zugesetzt wird.

Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass als Salz der Thioschwefelsäure Ammoniumthiosulfat oder Natri- umthiosulfat dem Fermentationsmedium zugesetzt wird.

Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass als Salz der Thioschwefelsäure Ammoniumthiosulfat dem Fermentationsmedium zugesetzt wird.

Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass Thioschwefelsäure oder ein Salz der Thioschwefelsäure während der Fermentation kontinuierlich mit einer Rate von 7 bis 18 mmol/1 pro Stunde dem Medium zudosiert werden.

Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Thioschwefelsäure oder ein Salz der Thioschwefelsäure während der Fermentation kontinuierlich mit einer Rate von 10 bis 15 mmol/1 pro Stunde dem Medium zudosiert werden.

Verfahren nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die Zellen des Mikroorganismenstammes aus dem Fermentationsmedium entfernt und die gewünschten Produkte aus dem Kulturmedium aufgereinigt werden.

Description:
Verfahren zur fermentativen Herstellung von Gamma-Glutamyl- cystein und Derivaten dieses Dipeptids

Die Erfindung betrifft ein Verfahren zur fermentativen Herstel- lung von γ-Glutamylcystein (yGC) und den Derivaten dieses Dipeptids, γ-Glutamylcystin und bis-y-Glutamylcystin.

Der Stand der Technik zur fermentativen Herstellung dieser Verbindungen ist in DE102013209274 ausführlich beschrieben.

Als prokaryotische Produzenten für γ-Glutamylcystein sind in der US20100203592A1 verschiedene E. coli-Stämme beschrieben, welche alle eine erhöhte gshÄ-Expression aufweisen. Darüber hinaus besitzen diese Stämme eine normale oder sogar erhöhte Glutathionsynthetase-Aktivität im Vergleich zum entsprechenden Ausgangsstamm. Die Ausbeuten mit diesen Stämmen liegen aber bei maximal 262 mg/L.

Als weitere prokaryotische Produzenten für γ-Glutamylcystein sind in DE102013209274 verschiedene E. coli-Stämme beschrieben, welche alle eine verminderte Glutathionsynthetase-Aktivität besitzen, und zusätzlich eine höhere γ-Glutamylcystein- Synthetase-Aktivität aufweisen, als ein vergleichbarer Stamm mit einer ebenfalls verminderten Glutathionsynthetase- Aktivität. Diese Anmeldung beschreibt darüber hinaus, dass durch Fermentation der dort offenbarten E. coli-Stämme

γ-Glutamylcystein-Titer von 5,7 g/1 bis zu 21,8 g/1 erzielt werden können (siehe Tabellen 3 und 4 in DE102013209274) . Aufgrund laufend steigender Rohstoff- und Energiekosten ist es erstrebenswert, die Produkt-Ausbeute eines mikrobiellen Prozesses kontinuierlich zu steigern, um auf diese Weise die Wirtschaftlichkeit des entsprechenden Prozesses zu verbessern.

Neben der gentechnischen Veränderung von Mikroorganismen, wel- che als Basis für die Herstellung eines bestimmten Naturstoffs genutzt werden, spielt auch die Optimierung des entsprechenden Fermentationsverfahrens, d.h. die Art und Weise der Kultivie- rung der Zellen, eine wichtige Rolle bei der Entwicklung und Verbesserung eines Produktionsprozesses.

Aufgabe der vorliegenden Erfindung ist es daher, ein verbesser- tes Verfahren zur fermentativen Herstellung von γ-Glutamyl- cystein und dessen Derivaten bis-y-Glutamylcystin und γ- Glutamylcystin zur Verfügung zu stellen.

Diese Aufgabe wird dadurch gelöst, dass dem Fermentationsmedi- um, in dem ein zur γ-Glutamylcystein-Produktion geeigneter pro- karyotischer Mikroorganismenstamm kultiviert wird, Thioschwe- felsäure oder ein Salz der Thioschwefelsäure einzeln oder als Gemisch zugesetzt werden. Bevorzugt ist der Einsatz eines Salzes der Thioschwefelsäure .

Bei dem Salz der Thioschwefelsäure handelt es sich vorzugsweise um Ammoniumthiosulfat oder Natriumthiosulfat . Besonders bevorzugt ist der Einsatz in Form von Ammoniumthiosulfat . Vorzugsweise wird Thioschwefelsäure oder eines ihrer Salze während der Fermentation kontinuierlich mit einer Rate von 8 bis 17 mmol/1 pro Stunde dem Medium zudosiert. Besonders bevorzugt erfolgt die kontinuierliche Zugabe von Thioschwefelsäure oder eines ihrer Salze mit einer Dosierungsrate von 10 bis 15 mmol/1 pro Stunde.

Für das erfindungsgemäße Verfahren sind alle durch Fermentation kultivierbaren prokaryotischen Mikroorganismenstämme geeignet, die den Biosyntheseweg für γ-Glutamylcystein aufweisen, und die γ-Glutamylcystein und dessen Derivate bis-y-Glutamylcystin und γ-Glutamylcystin ins Medium ausschleusen. Beispiele solcher Stämme sind offenbart in US20100203592A1 und DE102013209274 , wobei die in DE102013209274 genannten Stämme bevorzugt eingesetzt werden.

Vorzugsweise werden die Zellen aus dem Fermentationsmedium entfernt und die gewünschten Produkte aus dem Kulturmedium aufgereinigt . Die Kultivierung (Fermentation) der prokaryotischen Mikroorganismenstämme erfolgt bevorzugt im technischen Maßstab nach üblichen, dem Fachmann bekannten Fermentationsverfahren in einem Bioreaktor (Fermenter) mit der erfindungswesentlichen Besonder- heit, dass dem Fermentationsmedium, wie beschrieben,

Thioschwefelsäure oder ein Salz der Thioschwefelsäure zugesetzt werden .

Die Fermentation findet vorzugsweise in einem üblichen Bioreak- tor, beispielsweise einem Rührkessel, einem Blasensäulen- Fermenter oder einem Airlift-Fermenter statt. Besonders bevorzugt ist ein Rührkessel-Fermenter. Unter technischem Maßstab ist dabei eine Fermentergröße von mindestens 2 1 zu verstehen. Bevorzugt sind Fermenter mit einem Volumen mehr als 5 1, beson- ders bevorzugt Fermenter mit einem Volumen von > 50 1.

Die Kultivierung der Zellen für eine γ-Glutamylcystein- Produktion wird unter aeroben Wachstumsbedingungen durchgeführt, wobei der Sauerstoff-Gehalt während der Fermentation bei maximal 50 % Sättigung eingestellt wird. Die Regulation der Sauerstoff-Sättigung in der Kultur erfolgt dabei automatisch über die Gaszufuhr und die Rührgeschwindigkeit.

Als Kohlenstoffquelle dienen vorzugsweise Zucker, Zuckeralkoho- le, organische Säuren oder zuckerhaltige Pflanzenhydrolysate . Besonders bevorzugt werden im erfindungsgemäßen Verfahren als Kohlenstoffquelle Glucose, Fructose, Lactose, Glycerin oder Gemische, die zwei oder mehr dieser Verbindungen enthalten, eingesetzt. Bevorzugt wird die Kohlenstoffquelle der Kultur so zu- dosiert, dass der Gehalt der Kohlenstoffquelle im Fermenter während der Produktionsphase 10 g/1 nicht übersteigt. Bevorzugt ist eine maximale Konzentration von 2 g/1.

Als Stickstoff-Quelle werden im erfindungsgemäßen Verfahren vorzugsweise Ammoniak, Ammoniumsalze oder Proteinhydrolysate verwendet. Bei Verwendung von Ammoniak als Korrekturmittel zur pH-Stabilisierung wird während der Fermentation regelmäßig diese Stickstoff-Quelle nachdosiert. Als weitere Medienzusätze können Salze der Elemente Phosphor, Chlor, Natrium, Magnesium, Stickstoff, Kalium, Calcium, Eisen und in Spuren (d.h. in μΜ Konzentrationen) Salze der Elemente Molybdän, Bor, Kobalt, Mangan, Zink und Nickel zugesetzt werden.

Des Weiteren können organische Säuren (z.B. Acetat, Citrat) , Aminosäuren (z.B. L-Glutaminsäure, L-Cystein) und Vitamine (z.B. Bl, B6) dem Medium zugesetzt werden.

L-Glutaminsäure kann dabei entweder direkt als Säure oder in Form eines ihrer Salze, wie z.B. Kalium- oder Natrium-Glutamat , einzeln oder als Gemisch, eingesetzt werden. Bevorzugt ist der Einsatz in Form von Kalium-Glutamat .

Als komplexe Nährstoffquellen können z.B. Hefeextrakt, Mais- quellwasser, Sojamehl oder Malzextrakt zum Einsatz kommen.

Die Inkubationstemperatur für mesophile Mikroorganismen wie z.B. E. coli beträgt vorzugsweise 15 - 45 °C, besonders bevorzugt 30 - 37 °C.

Die Produktionsphase des erfindungsgemäßen Fermentationsverfahrens beginnt mit dem Zeitpunkt, ab dem erstmals γ-Glutamyl- cystein, bis-y-Glutamylcystin oder γ-Glutamylcystin in der Kulturbrühe nachgewiesen werden kann und dauert bis zum Ende der Kultivierung an. Der Nachweis von γ-Glutamylcystein, bis-γ- Glutamylcystin oder γ-Glutamylcystin in der Kulturbrühe erfolgt dabei wie in Bsp. 2 beschrieben. Typischerweise beginnt diese Phase ca. 8-12 h nach Inokulation des Produktionsfermenters (Hauptfermenters) mit einer Vorkultur.

Prokaryotische Mikroorganismen, die nach dem beschriebenen Verfahren fermentiert werden, sezernieren in einem Batch- oder Fedbatch-Prozess nach einer Anwachsphase in einem Zeitraum von mindestens 48 h Stunden γ-Glutamylcystein und die davon abgeleiteten Verbindungen γ-Glutamylcystin und Bis-y-Glutamylcystin mit hoher Effizienz in das Fermentationsmedium. Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung .

Beispiel 1 : yGC-Produktion (Fermentation)

A. Vorkultur 1 (Schüttelkolben) :

100 ml LB-Medium mit 15 mg/1 Tetracyclin wurden in einem 1 1- Erlenmeyerkolben mit Schikanen mit den E. coli-Stämmen

W3110AgshB/ptufB p -gshA ATG und W3110AgshB/ptufB p -gshA ATG -cysE14 - serA2040-orf306 von einer Agarkultur beimpft und für sieben

Stunden auf einem Schüttler bei 130 rpm und 32 °C inkubiert. Die Generierung der Stämme W3110AgshB/ptufB p -gshA ATG und

W3110AgshB/ptufB p -gshA ATG -cysE14-serA2040-orf306 ist in

DE102013209274 beschrieben (siehe DE10201320927 ; Beispiele 1 bis 7) ,

B. Vorkultur 2 (Vorfermenter) :

Ein Teil der jeweiligen Vorkultur 1 wurde in einen mit Fermentationsmedium gefüllten Fermenter des Typs Sixfors (Infors GmbH, Bottmingen, CH) überimpft, sodass zu Beginn eine optische Dichte von ca. 0,01 im Fermenter vorlag (gemessen bei 600 nm) . Der verwendete Fermenter hatte ein Gesamtvolumen von 1 1 und ein initiales Arbeitsvolumen von 0,7 1. Das Fermentationsmedium enthielt folgende Bestandteile: 3 g/1 (NH 4 ) 2 S0 4 , 1,7 g/1 KH 2 P0 , 0,25 g/1 NaCl, 0,6 g/1 MgS0 4 x 7 H 2 0, 0,03 g/1 CaCl 2 x 2 H 2 0,

0,15 g/1 FeS0 x 7 H 2 0, 1 g/1 Na 3 Citrat x 2 H 2 0, 5 g/1 Cornsteep Dry (CSD) und 3 ml/1 Spurenelementlösung (bestehend aus 2,5 g/1 H 3 BO 3 , 0,7 g/1 CoCl 2 x 6 H 2 0, 0,25 g/1 CuS0 4 x 5 H 2 0, 1,6 g/1 MnCl 2 x 4 H 2 0, 0,3 g/1 ZnS0 4 x 7 H 2 0, 0,15 g/1 Na 2 Mo0 4 x 2 H 2 0) . Nach Sterilisation dieses Grundmediums wurden unter sterilen Bedingungen folgende Bestandteile zudosiert: 40 g/1 Glukose, 0,018 g/1 Vitamin Bl, 0,09 g/1 Vitamin B6 und 15 mg/1 Tetracyclin. Der pH-Wert im Vorfermenter wurde durch Zugabe einer 25%- igen NH 4 OH-Lösung auf 7,0 eingestellt. Während der Fermentation wurde der pH-Wert durch automatische Korrektur mit einer 25%- igen NHOH-Lösung auf einem Wert von 7,0 gehalten. Die Kulturen wurden zu Beginn mit 400 rpm gerührt und mit einer Begasungsrate von 0,7 Volumen pro Volumen pro Minute (vvm) einer über ei- nen Sterilfilter entkeimten Druckluft begast. Unter diesen Startbedingungen war die Sauerstoff -Sonde vor der Inokulation auf 100% Sättigung kalibriert worden. Der Soll-Wert für die 0 2 - Sättigung während der Fermentation wurde auf 50% eingestellt. Nach Absinken der 0 2 -Sättigung unter den Soll-Wert wurde eine Regulationskaskade gestartet, um die 0 2 -Sättigung wieder an den Soll -Wert heranzuführen. Dabei wurde zunächst die Gaszufuhr kontinuierlich erhöht (auf max. 1,4 vvm) und anschließend die Rührgeschwindigkeit auf maximal 1.200 rpm kontinuierlich gesteigert .

Die Fermentation wurde bei einer Temperatur von 32 °C so lange durchgeführt, bis eine optische Dichte von 30 bis 40 erreicht wurde (gemessen bei 600 nm) . Dies war in der Regel nach ca. 17 h der Fall .

C. Hauptkultur (Produktionsfermenter , Hauptfermenter) :

Die Fermentationen wurden in Fermentern des Typs BIOSTAT B-DCU der Firma Sartorius Stedim GmbH (Göttingen, D) durchgeführt. Es wurde ein Kulturgefäß mit 2 1 Gesamtvolumen bei einem initialen Arbeitsvolumen von 1 1 verwendet. Das Fermentationsmedium enthält folgende Bestandteile: 3 g/1 (NH 4 ) 2 S0 4 , 1,7 g/1 KH 2 P0 4 , 0,25 g/1 NaCl, 0,6 g/1 MgS0 4 x 7 H 2 0, 0,03 g/1 CaCl 2 x 2 H 2 0, 0,15 g/1 FeS0 4 x 7 H 2 0, 1 g/1 Na 3 Citrat x 2 H 2 0, 15 g/1 Cornsteep Dry (CSD) und 3 ml/1 Spurenelementlösung (bestehend aus 2,5 g/1 H 3 BO 3 , 0,7 g/1 CoCl 2 x 6 H 2 0, 0,25 g/1 CuS0 4 x 5 H 2 0, 1,6 g/1 MnCl 2 x 4 H 2 0, 0,3 g/1 ZnS0 4 x 7 H 2 0, 0,15 g/1 Na 2 Mo0 4 x 2 H 2 0) . Nach Sterilisation dieses Grundmediums wurden unter sterilen Bedingungen folgende Bestandteile zudosiert: 10 g/1 Glukose, 0,018 g/1 Vitamin Bl, 0,09 g/1 Vitamin B6 und 15 mg/1 Tetracyclin.

Zum Animpfen der Hauptkultur wurden 100 ml der Vorkultur 2 in das Fermentergefäß überf hrt. Der pH-Wert im Fermenter wurde zu Beginn durch Zugabe einer 25%-igen NH 4 OH-Lösung auf 7,0 eingestellt und durch automatische Korrektur mit 25% NH0H auf diesem Wert gehalten. Die Kulturen wurden zu Beginn mit 400 rpm gerührt und mit 2 vvm einer über einen Sterilfilter entkeimten Druckluft begast. Unter diesen Startbedingungen war die Sauerstoff-Sonde vor der Inokulation auf 100% Sättigung kalibriert worden. Der Soll-Wert für die 0 2 -Sättigung während der Fermentation wurde auf 50% eingestellt. Nach Absinken der 0 2 - Sättigung unter den Soll-Wert wurde eine Regulationskaskade gestartet, um die 0 2 -Sättigung wieder an den Soll-Wert heranzu- führen. Dabei wurde zunächst die Gaszufuhr kontinuierlich erhöht (auf max. 5 vvm) und anschließend die Rührgeschwindigkeit auf maximal 1.500 rpm kontinuierlich gesteigert.

Die Fermentationen wurden bei einer Temperatur von 32 °C durchgeführt. Sobald der Glukose-Gehalt im Fermenter von anfänglich 10 g/1 auf ca. 2 g/1 abgesunken war, erfolgte eine kontinuierliche Zudosierung einer 60%- igen Glukose-Lösung. Die Fütterungsrate wurde so eingestellt, dass die Glukosekonzentration im Fermenter 2 g/1 fortan nicht mehr überstieg. Die Glukose- Bestimmung wurde mit einem Glukoseanalysator der Firma YSI (Yellow Springs, Ohio, USA) durchgeführt.

Die jeweils zusätzliche Schwefelquelle wurde der Hauptkultur, ausgehend von entsprechenden Stammlösungen 2,0 gS0 4 x 7 H 2 0 (Vergleichsbeispiel), 3,2 M (NH 4 ) 2 S0 (Vergleichsbeispiel), 2,0 M Na 2 S 2 0 3 x 5 H 2 0 (erfindungsgemäßes Beispiel) oder 1,5 M

(NH 4 ) 2 S 2 0 3 (erfindungsgemäßes Beispiel), nach 5 h Fermentations- zeit mit einer Rate von 8-17 mmol/1 pro Stunde (Durchschnitt = 11 mmol/1 pro Stunde) bis zum Fermentationsende zugesetzt.

Nach 16 h Fermentationszeit wurde der Hauptkultur zusätzlich Glutamat in Form einer sterilen 2,3 M Kaliumglutamat- Stammlösung mit einer Rate von 7,4 mmol/1 pro Stunde bis zum Fermentationsende zugesetzt.

Die Fermentationsdauer betrug 72 Stunden. Nach 24 h, 48 h und 72 h wurden Proben entnommen und nach Reduktion mit Dithioth- reitol (DTT) der Anteil an „Gesamt-y-Glutamylcystein" im Kul- turüberstand mittels HPLC-Analytik bestimmt (Vorgehen siehe Beispiel 2) .

Die besseren Ausbeuten an γ-Glutamylcystein durch Fütterung der zur γ-Glutamylcystein-Produktion geeigneten E. coli-Stämme mit Thiosulfat (Na 2 S 2 0 3 oder (NH 4 ) 2 S 2 0 3 ) im Vergleich zu Sulfat (MgS0 4 oder (NH 4 ) 2 S0 4 ) sind in Tabelle 1 (für Stamm W3110ÄgshB/ptufB p - gshA ATG ) und Tabelle 2 (für Stamm W3110ÄgshB/ptufB p -gshA A G - cysE14-serA2040-orf306) zusammengefasst . Beispiel 2 : Analytik von γ-Glutamylcystein und den Derivaten

Unter dem Begriff „Gesamt-y-Glutamylcystein" sind γ-Glutamyl- cystein und die daraus gebildeten Oxidationsprodukte bis-γ- Glutamylcystin und γ-Glutamylcystin, die während der Fermentation entstehen und im Kulturüberstand akkumulieren, zusammenge- fasst .

Die Konzentrationen an „Gesamt-y-Glutamylcystein" im Fermentationsüberstand wurden mittels HPLC-Analytik bestimmt, nachdem die Proben mit Hilfe von Dithiothreitol (DTT) vollständig reduziert wurden.

A. Vorbehandlung der Proben

Für die zu vermessenen Fermenterproben wurden zunächst die Mik- roorganismen durch einen Zentrifugationsschritt und eine anschließende Sterilfiltration von der Fermentationsbrühe getrennt .

Für die exakte Bestimmung der „Gesamt-y-Glutamylcystein- Konzentration" wurden die γ-Glutamylcystein-Derivate in der zu vermessenden Probe 1 Stunde bei Raumtemperatur (22°C) mit einem molaren Überschuss an Dithiothreitol (DTT) reduziert. Da die reduzierende Wirkung von DTT nur bei neutralem bis alkalischem pH-Wert vollständig erfolgt, wurde der pH-Wert der Probe, wenn nötig, zuvor mit konzentrierter Kalilauge (KOH) auf einen pH- Wert > 7,0 eingestellt.

B . HPLC-Analytik

Nach Ansetzen entsprechender Verdünnungen mit vollentsalztem Wasser erfolgte die HPLC-Analytik mit der Säule Synergi 4μπι Hydro-RP 250 x 4,6 mm (Phenomenex Ltd., Aschaffenburg, D) bei

20°C. Als Fließmittel dienten 0,5% (v/v) Phosphorsäure (A) bzw. Acetonitril (B) .

Zur Trennung von γ-Glutamylcystein aus einem zellfreien und reduzierten Substanzgemisch wurde folgende Methode für die HPLC genutzt.

• Flussrate = 0,5 ml/min

• Detektion bei 200 nm mit Diodenarray-Detektor (DAD)

• Die Trennung erfolgt isokratisch bei 100% A. Durch einen Spülschritt bei 100% B wird die Säule nach jedem Lauf gereinigt .

Als Referenzsubstanz, zur Bestimmung der Retentionszeit von γ- Glutamylcystein und der finalen Konzentration in den zu vermessenen Proben, diente reduziertes γ-Glutamylcystein der Firma Sigma Aldrich GmbH (Steinheim, D) . Die Konzentration an „Gesamt-γ-Glutamylcystein" wurde anhand der Peakflachen im Chroma- togramm berechnet (siehe Fig. 1) .

Tabelle 1 : Einfluss der Schwefelquelle auf die γ- Glutamylcystein-Produktion mit dem Stamm W3110AgshB/ptufB p - gshA ATG . Gehalt von „Gesamt-y-Glutamylcystein" (yGC) nach Neutralisation der Fermenterbrühe und anschließender Reduktion der Oxidationsprodukte mit Dithiothreitol .

(V) Vergleichsbeispiel, (E) erfindungsgemäßes Beispiel

Tabelle 2 : Einfluss der Schwefelquelle auf die y- Glutamylcystein-Produktion mit dem Stamm W3110AgshB/ptufB p - gshA A G -cysE14-serA2040-orf306. Gehalt von „Gesamt-y- Glutamylcystein" (yGC) nach Neutralisation der Fermenterbrühe und anschließender Reduktion der Oxidationsprodukte mit Dithio threitol .

(V) Vergleichsbeispiel, (E) erfindungsgemäßes Beispiel