Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR HEATING AN ULTRASONIC TRANSDUCER AND ULTRASONIC TRANSDUCER
Document Type and Number:
WIPO Patent Application WO/2016/206828
Kind Code:
A1
Abstract:
The invention relates to a method for heating an ultrasonic transducer (10), in which an interior space (16) of the ultrasonic transducer (10) together with a membrane element (12) is heated by thermal emission of a component, wherein the temperature of the membrane element (12) is increased to a temperature above the freezing point. According to the invention, it is provided that the heating is achieved by a component that serves in a first operating mode for performing a transmitting and/or receiving operation of the ultrasonic transducer (10) and in a second operating mode is operated in such a way that the component has increased electrical power loss in comparison with the first operating mode.

Inventors:
TREPTOW, Thomas (Goldaeckerstr. 3/2, Leonberg, 71229, DE)
SCHUMANN, Michael (Leinfeldener Str. 60A, Stuttgart, 70597, DE)
SCHERWATH, Bernd (In den Ziegelwiesen 38/1, Leonberg, 71229, DE)
Application Number:
EP2016/058956
Publication Date:
December 29, 2016
Filing Date:
April 22, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ROBERT BOSCH GMBH (Postfach 30 02 20, Stuttgart, 70442, DE)
International Classes:
G01S15/93; G01S7/52; G01S7/521; H04R17/00
Foreign References:
DE102013211419A12014-12-18
DE102011115823A12012-05-16
DE102010028009A12011-10-27
DE102005045019A12007-03-22
DE3013060A11981-10-08
Download PDF:
Claims:
Verfahren zum Beheizen eines Ultraschallwandlers (10), bei dem ein Innenraum (16) des Ultraschallwandlers (10) zusammen mit einem

Membranelement (12) durch Wärmeabstrahlung eines Bauteils erwärmt wird, wobei die Temperatur des Membranelements (12) auf eine Temperatur oberhalb des Gefrierpunkts erhöht wird, dadurch gekennzeichnet, dass die Erwärmung durch ein Bauteil erzielt wird, das in einem ersten Betriebsmodus dazu dient, einen Sende- und/oder Empfangsbetrieb des Ultraschallwandlers (10) auszuführen und in einem zweiten Betriebsmodus derart betrieben wird, dass das Bauteil eine gegenüber dem ersten

Betriebsmodus erhöhte elektrische Verlustleistung aufweist.

Verfahren nach Anspruch 1 ,

dadurch gekennzeichnet,

dass der zweite Betriebsmodus ein Aussenden von gegenüber dem ersten Betriebsmodus verlängerten und/oder eine höhere Frequenz aufweisenden Sendepulsen eines Piezoelements (15) umfasst.

Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

dass der zweite Betriebsmodus ein Aussenden von Sendepulsen eines Piezoelements (15) außerhalb der Resonanzfrequenz des

Membranelements (12) und/oder des Piezoelements (15) umfasst.

Verfahren nach Anspruch 3,

dadurch gekennzeichnet,

dass zur Festlegung der Frequenz der Sendepulse vorab eine

Impedanzmessung an dem Membranelement (12) durchgeführt wird. Verfahren nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

dass der zweite Betriebsmodus einen Betrieb eines Rechnerkerns eines Mikrocontrollers umfasst, der zu einer erhöhten Auslastung des

Rechnerkerns führt.

Verfahren nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

dass die Bauteiltemperatur wenigstens eines an dem zweiten Betriebsmodus beteiligten Bauteils überwacht wird und der zweite Betriebsmodus nur unterhalb einer Temperaturschwelle ausgeführt wird.

Verfahren nach einem der Ansprüche 1 bis 6,

dadurch gekennzeichnet,

dass der zweite Betriebsmodus mit dem ersten Betriebsmodus abwechselt.

Verfahren nach einem der Ansprüche 1 bis 7,

dadurch gekennzeichnet,

dass der zweite Betriebsmodus in Abhängigkeit des Ergebnisses einer Impedanzmessung des Membranelements (12) gesteuert wird.

Ultraschallwandler (10), mit einem Membranelement (12), das mittels eines Piezoelements (15) zu Schwingungen anregbar ist sowie elektronischen Bauteilen (21 , 22) wie einem einen Rechnerkern aufweisenden

Mikrocontroller und einer Sendeendstufe zur Ansteuerung des

Piezoelements (15), wobei die elektronischen Bauteile (21 , 22) dazu ausgebildet sind, nach wenigstens einem der Ansprüche 1 bis 8 betrieben zu werden.

0. Ultraschallwandler nach Anspruch 9,

dadurch gekennzeichnet,

dass Mittel zur Erfassung der Bauteiletemperatur der elektronischen Bauteile (21 , 22) vorgesehen sind.

Description:
Beschreibung

Verfahren zum Beheizen eines Ultraschallwandlers und Ultraschallwandler

Stand der Technik

Die Erfindung betrifft ein Verfahren zum Beheizen eines Ultraschallwandlers nach dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung einen

Ultraschallwandler, der nach einem erfindungsgemäßen Verfahren betrieben werden kann.

Ein Ultraschallwandler nach dem Oberbegriff des Anspruchs 1 ist aus der DE 10 2005 045 019 A1 der Anmelderin bekannt. Der bekannte Ultraschallwandler dient, üblicherweise zusammen mit mehreren, im Bereich eines Stoßfängers eines Kraftfahrzeugs angeordneten Ultraschallwandlern dazu, Objekte, die vor bzw. hinter dem Kraftfahrzeug angeordnet sind, zu erfassen. Insbesondere sind derartige Ultraschallwandler Bestandteil eines Fahrerassistenzsystems, bei dem beispielsweise ein Einparkvorgang für den Fahrer unterstützt wird. Der ordnungsgemäße Betrieb derartiger Ultraschallwandler setzt voraus, dass insbesondere bei Temperaturen unterhalb des Gefrierpunkts das zur

Aussendung bzw. zum Empfang von Schallimpulsen dienende Membranelement frei von Eis ist. Hierzu ist es aus der eingangs genannten Schrift bekannt, innerhalb des Innenraums des Ultraschallwandlers ein durch ein zusätzliches

Bauteil gebildetes Heizelement anzuordnen, mit dem der Innenraum des

Ultraschallwandlers aufgeheizt wird. Durch Wärmeabstrahlung des Heizelements wird auch das Membranelement erwärmt, so dass ggf. vorhandenes Eis abschmelzen kann. Dadurch, dass das Heizelement ein zusätzliches Bauteil darstellt, wird zum einen der benötigte Bauraum für den Ultraschallwandler vergrößert, und zum anderen sind die Herstellkosten gegenüber einem

Ultraschallwandler, der keine derartige Heizelemente aufweist, erhöht.

Weiterhin ist es aus der DE 30 13 060 A1 bekannt, Freilandleitungen, wie sie der Stromführung zur Überbrückung großer Distanzen dienen, derart zu betreiben, dass durch Verschiebung eines Blindstroms erhöhte ohmsche Verluste und somit eine erhöhte Erwärmung der Freilandleitung auftritt, welche zum Abtauen von Eisansatz bei der Freilandleitung führt. Es wird somit bei der zuletzt genannten Schrift das unmittelbar von dem Eisansatz bedrohte Bauteil (Freilandleitung) selbst durch einen Betrieb mit erhöhten ohmschen Verlusten erwärmt.

Offenbarung der Erfindung

Ausgehend von dem dargestellten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Beheizen eines Ultraschallwandlers nach dem Oberbegriff des Anspruchs 1 derart weiterzubilden, dass der

vorrichtungstechnische Aufwand zur Herstellung des Ultraschallwandlers verringert wird. Insbesondere soll es ermöglicht werden, ohne zusätzliche bzw. separate Bauteile, welche dem Beheizen des Ultraschallwandlers dienen, eine hinreichend hohe Erwärmung des Ultraschallwandlers zu ermöglichen. Darüber hinaus ist es Aufgabe der Erfindung, durch den Verzicht auf zusätzlich Bauteile zum Beheizen einen möglichst kompakt bauenden Ultraschallwandler zu ermöglichen. Diese Aufgabe wird erfindungsgemäß bei einem Verfahren zum Beheizen eines

Ultraschallwandlers mit den kennzeichnenden Merkmalen des Anspruchs 1 dadurch gelöst, dass die Erwärmung durch ein Bauteil erzielt wird, das in einem ersten Betriebsmodus dazu dient, einen Sende- und/oder Empfangsbetrieb des Ultraschallwandlers auszuführen und in einem zweiten Betriebsmodus derart betrieben wird, dass das Bauteil eine gegenüber dem ersten Betriebsmodus erhöhte elektrische Verlustleistung aufweist.

Mit anderen Worten gesagt bedeutet dies, dass es erfindungsgemäß nicht vorgesehen sein muss, zusätzliche Bauteile, die speziell für die Erwärmung des Ultraschallwandlers ausgelegt/vorgesehen sind, zu verwenden. Vielmehr ist es gemäß der Erfindung vorgesehen, dass diejenigen Bauteile, die ansonsten während des Normalbetriebs (erster Betriebsmodus) zum Senden bzw.

Empfangen von Ultraschallsignalen dienen, in einem zweiten Betriebsmodus dazu genutzt werden, den Innenraum des Ultraschallwandlers zu erwärmen. Die Erwärmung des Innenraums des Ultraschallwandlers bewirkt durch

Wärmestrahlung eine Erwärmung des Membranelements und somit bei genügend großer Erwärmung auch ein Abtauen von ggf. an der Außenseite des Membranelements anhaftendem Eisbelag. Dadurch, dass keine zusätzlichen Bauteile zur Erwärmung des Innenraums des Ultraschallwandlers verwendet werden müssen, ermöglicht es das erfindungsgemäße Verfahren, einen besonders kompakt aufbauenden Ultraschallwandler auszubilden, der insbesondere gegenüber herkömmlichen Ultraschallwandlern keinen erhöhten Einbauraum benötigt. Darüber hinaus ermöglicht es das erfindungsgemäße Verfahren dadurch, dass der benötigte zweite Betriebsmodus durch eine entsprechende Ansteuerung der Bauteile, d.h. rein softwaremäßig, erfolgt, dass auch die Herstellkosten eines erfindungsgemäßen Ultraschallwandlers gegenüber dem Stand der Technik üblicherweise nicht erhöht sind.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens zum Beheizen eines Ultraschallwandlers sind in den Unteransprüchen aufgeführt.

Die grundsätzliche Idee, die zur Erwärmung bzw. zu erhöhten elektrischen Verlustleistungen des Bauteils führt, liegt darin, das betreffende Bauteil in dem zweiten Betriebsmodus in einem Betriebspunkt bzw. einem Zustand zu betreiben, bei dem das Bauteil einen geringeren Wrkungsgrad aufweist. Der geringere Wirkungsgrad hat die zur Abstrahlung der Wärme erforderliche erhöhte Verlustleistung zur Folge. Zur Erzielung einer derartigen erhöhten Verlustleistung ist es bei einer ersten erfindungsgemäßen Variante des Verfahrens vorgesehen, dass der zweite Betriebsmodus ein Aussenden von gegenüber dem ersten Betriebsmodus verlängerten und/oder eine höhere Frequenz aufweisenden Sendepulsen eines Piezoelements umfasst. Bei einem Aussenden von gegenüber dem ersten Betriebsmodus verlängerten Sendepulsen des

Piezoelements müssen jedoch bauteilabhängige Grenzen, die in der Regel einige Millisekunden nicht überschreiten dürfen, beachtet werden. Daher ist es besonders bevorzugt vorgesehen, im zweiten Betriebsmodus die Sendepulse mit einer erhöhten Frequenz zu betreiben, da dadurch die Sendepulse jeweils eine relativ geringe Dauer aufweisen können.

Weiterhin ist es bevorzugt vorgesehen, dass der zweite Betriebsmodus ein Aussenden von Sendepulsen eines Piezoelements außerhalb der

Resonanzfrequenz des Membranelements und/oder des Piezoelements umfasst.

Hintergrund hierfür ist, dass der Wrkungsgrad des Ultraschallwandlers in den außerhalb der Resonanzfrequenz liegenden Bereichen geringer ist, und die eingebrachte Leistung dadurch vermehrt in Wärme umgewandelt wird.

Weiterhin wird erwähnt, dass die angesprochene Resonanzfrequenz abhängig von dem auf dem Membranelement vorhandenen (Eis-)Belag und auch vom Ultraschallwandler bzw. dem Membranelement selbst ist. Daher ist es in

Weiterbildung des zuletzt genannten Vorschlags bevorzugt vorgesehen, dass zur Festlegung der Frequenz für die Sendepulse vorab eine Impedanzmessung an dem Membranelement durchgeführt wird. Dazu werden Frequenzbereiche mit hoher Impedanz aus der Impedanzkurve (Impedanz über der Frequenz) ermittelt.

Besonders vorteilhaft ist es darüber hinaus, wenn der zweite Betriebsmodus einen Betrieb eines Rechnerkerns eines Mikrocontrollers umfasst, der zu einer erhöhten Auslastung des Rechnerkerns führt. Die stärkere Auslastung des Rechnerkerns führt zu einer erhöhten Stromaufnahme im Empfangsteil und damit zu einer Erhöhung der Chiptemperatur. Eine derartige erhöhte Auslastung des Rechnerkerns lässt sich beispielsweise durch eine Speicher- und rechenintensive Rechenvorschrift realisieren, die durch einen Sonderbefehl gestartet wird. Der Programmcode der Rechnervorschrift kann dabei sehr klein gehalten werden, wenn dieser in einer Schleife ausgeführt wird. Auch ein spezieller Betrieb eines ASICs kann zu einer erhöhten Bauteiletemperatur führen.

Unabhängig davon, in welcher Art und Weise das erfindungsgemäße Verfahren konkret ausgeführt wird bzw. welches Bauteil im zweiten Betriebsmodus dazu dient, die Temperatur im Innenraum des Schallwandlers zu erhöhen, ist es aus Gründen der Zuverlässigkeit des Schallwandlers wünschenswert, eine

Bauteilüberlastung zu vermeiden. Daher umfasst eine weitere vorteilhafte Ausgestaltung des Verfahrens, dass die Bauteiltemperatur wenigstens eines an dem zweiten Betriebsmodus beteiligten Bauteils überwacht wird und der zweite Betriebsmodus nur unterhalb einer Temperaturschwelle ausgeführt wird, wobei die Temperaturschwelle derart festgelegt wird, dass eine Schädigung oder Vorschädigung der im zweiten Betriebsmodus betriebenen Bauteile

ausgeschlossen wird. Insbesondere für den Fall, dass die Temperatur um den Gefrierpunkt beträgt und somit bei weiterem Absinken der Temperatur die Gefahr der Vereisung des Ultraschallwandlers an dem Membranelement besteht, kann es vorgesehen sein, dass der zweite Betriebsmodus mit dem ersten Betriebsmodus abwechselt. Dadurch ist zum einen der Betrieb des Ultraschallwandlers zumindest zeitweise gewährleistet und andererseits wird bei fallenden Temperaturen eine Vereisung des Membranelements vermieden.

Um zu erkennen, ob die Erwärmung des Schallwandlers zu dem gewünschten Resultat bzw. dem Abschmelzen von Belägen auf dem Membranelement geführt hat, ist es darüber hinaus vorgesehen, dass der zweite Betriebsmodus in Abhängigkeit des Ergebnisses einer Impedanzmessung des Membranelements gesteuert wird. Mit anderen Worten gesagt bedeutet dies, dass die

Impedanzmessung beispielsweise in gleichmäßigen Zeitabständen durchgeführt wird, und aus den Ergebnissen der Impedanzmessung auf das Vorhandensein von Belegen auf dem Membranelement geschlossen wird.

Die Erfindung umfasst auch einen Ultraschallwandler mit einem

Membranelement, das mittels eines Piezoelements zu Schwingungen anregbar ist sowie elektronische Bauteile wie einem in einem Rechnerkern aufweisenden Mikrocontroller und einer Sendeendstufe zur Ansteuerung des Piezoelements, wobei die elektronischen Bauteile dazu ausgebildet sind, nach einem

erfindungsgemäßen Verfahren betrieben zu werden. Ein derartiger

Ultraschallwandler weist dieselben Vorteile auf, wie diese bei den soweit beschriebenen erfindungsgemäßen Verfahren vorhanden sind. In einer bevorzugten Weiterbildung eines soweit beschriebenen

Ultraschallwandlers ist es vorgesehen, dass Mittel zur Erfassung der

Bauteiletemperatur der elektronischen Bauteile vorgesehen sind, um eine Beschädigung der am zweiten Betriebsmodus teilnehmenden Bauteile zu vermeiden.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung.

Diese zeigt in: Fig. 1 einen stark vereinfachten Längsschnitt durch einen Schallwandler, der mittels eines erfindungsgemäßen Verfahrens betrieben werden kann,

Fig. 2 ein Diagramm mit einer Darstellung der Impedanz über der Frequenz und

Fig. 3 ein Blockdiagramm zur Erläuterung des erfindungsgemäßen Betriebs des Schallwandlers. Gleiche Elemente bzw. Elemente mit gleicher Funktion sind in den Figuren mit den gleichen Bezugsziffern versehen.

In der Fig. 1 ist stark vereinfacht ein Ultraschallwandler 10 dargestellt, wie er insbesondere als Bestandteil eines Fahrerassistenzsystems in einem

Kraftfahrzeug verwendet wird. Dabei sind üblicherweise mehrere

Ultraschallwandler 10 seitlich nebeneinander in entsprechenden

Einbauöffnungen eines Stoßfängers eingebaut. Hinsichtlich eines derartigen Einbaus eines Ultraschallwandlers 10 in den Stoßfänger eines Kraftfahrzeugs wird, da an sich bekannt und nicht erfindungswesentlich, auf die DE 10 2005 045 019 A1 der Anmelderin verwiesen, die insofern Bestandteil dieser Anmeldung sein soll.

Der Ultraschallwandler 10 weist ein üblicherweise aus mehreren Bauteilen bestehendes Wandlergehäuse 11 auf, das im Bereich einer Stirnseite des Ultraschallwandlers 10 ein Membranelement 12 ausbildet. Das Wandlergehäuse

10 und insbesondere das Membranelement 12 bestehen üblicherweise aus Metall, beispielsweise aus Aluminium, und sind zumindest teilweise im

Tiefziehverfahren hergestellt. Das Membranelement 12 ist dazu ausgebildet, in Richtung des Doppelpfeils 13, der senkrecht zur Membranebene verläuft, Schwingungen auszusenden und zu empfangen. Dieser Betriebszustand stellt einen ersten Betriebsmodus des Ultraschallwandlers 10 dar. Die

Schwingungsfähigkeit betrifft sowohl das Aussenden von im Ultraschallbereich liegenden Schallwellen als auch die Anregung des Membranelements 12 durch auf das Membranelement 12 von außen wirkende, im Ultraschallbereich liegenden Schallwellen. Beim Betrieb des Ultraschallwandlers 10 wird dieser derart betrieben, dass abwechselnd Schallimpulse innerhalb eines bestimmten Zeitfensters ausgestrahlt werden und anschließend während einer Wartepause Schallwellen empfangen werden können, um aus der Zeitdauer zwischen den ausgesendeten und empfangenen Schallwellen auf eine Distanz eines Objekts zum Ultraschallwandler 10 zu schließen.

Sowohl zum Erzeugen derartiger Schwingungen bzw. Schallwellen, als auch zum Empfangen derselben ist das Membranelement 12 in Wirkverbindung mit einem Piezoelement 15 angeordnet. Das Piezoelement 15 ist im Innenraum 16 des Wandlergehäuses 1 1 angeordnet und vorzugsweise über eine nicht dargestellte Klebeverbindung mit der dem Innenraum 16 zugewandten Seite des

Membranelements 12 verbunden. Über elektrische Anschlussleitungen 17, 18 ist das Piezoelement 15 mit einem Schaltungsträger 20, üblicherweise in Form einer Leiterplatte, verbunden. Auch der Schaltungsträger 20 befindet sich im

Innenraum 16 des Wandlergehäuses 1 1. Auf dem Schaltungsträger 20 sind elektronische Bauteile 21 , 22 angeordnet, wobei die elektronischen Bauteile 21 ,

22 beispielhaft, und nicht einschränkend, einen Mikrocontroller, einen ASIC (applikationsspezifisches integriertes Schaltungsbauteil), Sende- bzw.

Empfangsendstufen sowie Elemente zur Erfassung von Bauteiletemperaturen, wie Wärmesensoren, umfassen. Der soweit beschriebene Ultraschallwandler 10 ist über einen Steckeranschluss 23 elektrisch kontaktierbar.

Bei Temperaturen unterhalb des Gefrierpunkts besteht die Gefahr, dass an der Außenseite des Membranelements 12 auf der dem Innenraum 16 abgewandten Seite ein Belag 1 , insbesondere in Form einer Vereisung, auftritt. Ein derartiger Belag 1 verändert das Resonanzverhalten sowohl des Membranelements 12 als auch des mit dem Membranelement 12 gekoppelten Piezoelements 15. Zur Feststellung, ob ein Belag 1 auf dem Membranelement 12 vorhanden ist, ist es vorgesehen, entsprechend der Darstellung der Fig. 2 das Piezoelement 15 mit unterschiedlichen Frequenzen f anzusteuern und gleichzeitig die Impedanz I zu messen. Der in der Fig. 2 dargestellte Kurvenverlauf zeigt, dass in dem Punkt A eine relativ geringe Impedanz I vorhanden ist, während in den Punkten B die Impedanz I lokale Maxima aufweist. Der Punkt A kennzeichnet den Betriebspunkt des Membranelements 12, bei dem dieses in Resonanzfrequenz ist. Bei einer derartigen Resonanzfrequenz ist die zur Erzeugung von Schwingungen bzw. Wellen erforderliche Energie relativ gering. Demgegenüber ist in den Punkten B bzw. den entsprechenden Frequenzen f, bedingt durch die relativ hohe Impedanz, ein geringer Wirkungsgrad vorhanden. Das bedeutet, dass bei einer Ansteuerung des Membranelements 12 durch das Piezoelement 15 im Bereich der Frequenzen f der Punkte B in einem zweiten Betriebsmodus die Energie mit einem relativ hohen Anteil in Verlustwärme umgesetzt wird. Eine derartige erhöhte Verlustwärme führt zu einer Erwärmung des Innenraums 16 des

Wandlergehäuses 1 1 und damit auch zu einem Abschmelzen des Belags 1.

Die Erhöhung der Temperatur innerhalb des Wandlergehäuses 11 in einem zweiten Betriebsmodus kann auch dadurch bewirkt werden, dass die

elektronische Bauteile 21 , 22 in dem zweiten Betriebsmodus derart betrieben werden, dass erhöhte Verlustleistungen auftreten.

In der Fig. 3 ist das erfindungsgemäße Betriebsverfahren für den

Ultraschallwandler 10 dargestellt: In einem ersten Schritt 101 erfolgt eine Prüfung des Membranelements 12 auf den Belag 1 mittels der angesprochenen

Impedanzmessung gemäß der Fig. 2. Ergibt die Impedanzmessung, dass die Frequenz f, bei der die geringste Impedanz I auftritt, bei einer Frequenz f liegt, die typischerweise ohne Beläge 1 vorhanden ist, so wird daraus geschlossen, dass kein Belag 1 an dem Membranelement 11 vorhanden ist. Daraufhin wird der Ultraschallwandler 10 in einem zweiten Schritt 102 in dem ersten Betriebsmodus betrieben, der dem normalen Messbetrieb entspricht.

Ergibt die Messung demgegenüber das Vorhandensein eines Belags 1 , so wird entsprechend des Schritts 103 der normale Messbetrieb, d.h. der erste

Betriebsmodus des Ultraschallwandlers 10 verlassen. Anschließend erfolgt in einem Schritt 104 eine Temperaturmessung der Umgebung, welche

beispielsweise durch einen üblicherweise in einem Kraftfahrzeug vorhandenen Temperatursensor erfolgt. Ergibt die Messung, dass die Temperatur mehr als 0°C beträgt, so wird entsprechend des Schritts 105 daraus geschlossen, dass der Ultraschallwandler 10 einen Defekt aufweist. Dies ergibt sich daraus, dass beim Vorhandensein einer Temperatur von mehr als 0°C üblicherweise kein Belag 1 vorhanden sein kann. Entsprechende Warnhinweise können an einen Bediener bzw. Fahrer ausgegeben werden, damit dieser darüber informiert ist, dass der Ultraschallwandler 10 nicht zur Verfügung steht. Ist hingegen die Temperatur der Umgebung geringer als 0°C, so wird der Ultraschallwandler 10 entsprechend des Schritts 106 in dem zweiten

Betriebsmodus betrieben, der die angesprochene Erwärmung des Innenraums 16 des Wandlergehäuses 1 1 bewirkt. Zur Überprüfung der Wirksamkeit der Maßnahmen des zweiten Betriebsmodus erfolgt anschließend wiederum entsprechend des ersten Schritts 101 eine Prüfung auf einen vorhandenen Belag 1.

Der soweit beschriebene Ultraschallwandler 10 sowie die Betriebsverfahren (erster und zweiter Betriebsmodus) können in vielfältiger Art und Weise abgewandelt bzw. modifiziert werden, ohne vom Erfindungsgedanken abzuweichen. So ist es beispielsweise denkbar, auf Impedanzmessungen zur Erfassung von Belägen 1 zu verzichten und den Betrieb im zweiten

Betriebsmodus alleine aufgrund einer erfassten Außentemperatur zu steuern. Auch können dann ggf. bestimmte Frequenzen f oder unterschiedlichen, nacheiander angesteuerte Frequenzen f vorgegeben sein, um Beläge 1 auch ohne Impedanzmessung zu entfernen.




 
Previous Patent: COOLING DEVICE

Next Patent: HAND-HELD MACHINE TOOL