Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF INCREASING UPTAKE AND WASHFASTNESS OF HAIR HEALTH COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2018/053096
Kind Code:
A1
Abstract:
Described herein is a method of increasing the uptake and lastingness of hair care benefit agents. The method includes applying to the hair a hair care composition including one or more hair health compounds, and rinsing the hair with water. The one or more hair health compounds each include a benefit agent, one or two permanent cations, and one to four incipient cations, and a hydrophobe, that may be used to attach the benefit agent to the incipient cation. The one to four incipient cations are pendant to the core structure and are neutral. The one or more hair health compounds enter the hair shaft after the hair care composition is applied to the hair. The composition has a pH of from about 3.5 to about 11. The pH of the hair after rinsing is from about 3.5 to about 6.

Inventors:
MURPHY BRYAN PATRICK (US)
ZHANG GUIRU (US)
Application Number:
PCT/US2017/051517
Publication Date:
March 22, 2018
Filing Date:
September 14, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PROCTER & GAMBLE (US)
International Classes:
A61K8/41; A61K8/49; A61Q5/00
Foreign References:
JP2001278750A2001-10-10
EP1304101A12003-04-23
JP2017052724A2017-03-16
US2528378A1950-10-31
Other References:
"International Cosmetics Ingredient Dictionary and Handbook", vol. 2, THE COSMETICS, TOILETRY, AND FRAGRANCE ASSOCIATION
AE MARTELL; RM SMITH: "Critical Stability Constants", vol. 1, 1974, PLENUM PRESS
AE MARTELL; RD HANCOCK: "Metal Complexes in Aqueous Solution", 1996, PLENUM PRESS
KIRK-OTHMER: "Encyclopedia of Chemical Technology", vol. 3, 1982, pages: 896 - 900
"ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY", vol. 15, pages: 439 - 458
E. A. MACGREGOR; C. T. GREENWOOD: "Polymers in Nature", 1980, JOHN WILEY & SONS, pages: 240 - 328
"Industrial Gums-Polysaccharides and their Derivatives", ACADEMIC PRESS INC.
M. R. PORTER: "Handbook of Surfactants", 1991, BLACKIE & SON, pages: 116 - 178
"CTFA dictionary", 1993
Attorney, Agent or Firm:
KREBS, Jay A. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1) A method of treating the hair, the method comprising:

a. applying to the hair a hair care composition comprising one or more hair health compounds, the one or more hair health compounds each comprising: i. a benefit agent;

ii. one or two permanent cations, wherein the permanent cations are pendant to the benefit agent or part of the benefit agent, and wherein the benefit agent and the permanent cations form a core structure;

iii. one to four ionizable amine groups, wherein each of the ionizable amine groups is pendant via a linker group to the core structure, and wherein the ionizable amine groups are neutral or protonated; and iv. one or more C5 - C9 hydrophobic moieties, wherein the one or more C5 - C9 hydrophobes are pendant to the core structure;

wherein the one or more hair health compounds enter the hair shaft after the hair health compound is applied to the hair; and

wherein the hair care composition has a pH of from 3.5 to 11;

b. rinsing the hair with water.

2) The composition according to the preceding claim, wherein the one or more C5 - C9 hydrophobic moieties are C5 - C6 hydrophobic moieties.

3) The composition according to anyone of the preceding claims, wherein the one or more hair health compounds each comprise two ionizable amine groups.

4) The composition according to anyone of the preceding claims, wherein the one or more hair health compounds each has a molecular weight of less than 1,000 g/mol.

5) The composition according to anyone of the preceding claims, wherein the hair care composition has a pH of from 4.5 to 6. 6) The composition according to anyone of the preceding claims, wherein the hair care composition has a pH of from 9 to 11.

7) The composition according to anyone of the preceding claims, wherein the hair care composition has a pH of from 6 to 9.

8) The composition according to anyone of the preceding claims, where the benefit agents are selected from the group consisting of niacinamide, panthenol, pantothenic acid, salicylic acid, chlorosalicylic acid, vitamin E, and mixtures thereof.

9) The composition according to anyone of the preceding claims, where the % uptake of the benefit agent is greater than 9%, preferably greater than 13%, and more preferred greater than 20%.

Description:
METHOD OF INCREASING UPTAKE AND WASHFASTNESS OF HAIR HEALTH

COMPOUNDS

TECHNICAL FIELD OF THE INVENTION

Provided is a method of imparting benefits with increased lastingness to the hair with one or more washfast hair health compounds. These compounds each have one to four ionizable amine groups and hydrophobic groups that promote attraction to, and diffusion into, hair fibers. The ionizable amine groups, attached to the benefit agent through hydrophobic linkers, allow better penetration of the hair health compounds into the hair fiber, rather than them remaining on the surface of the fiber.

BACKGROUND OF THE INVENTION

Although leave-on treatments can use long residence times to deliver benefit agents to hair, in general, the more frequently used products hair care products are designed to deliver meaningful concentrations of benefit agents to hair fibers during short residence times, i.e. during the duration of a shampoo or conditioning treatment. This typically means that either high concentrations are needed (relative to the desired amount to be delivered) or when lower concentrations are used, only small amounts can be delivered to the hair. In addition, there typically is minimal driving force for the hair to retain the materials, and they can be removed easily with water or shampoo. However, many consumers want more permanent results, and therefore default to leave-on treatments or long residence times to attempt to drive higher material concentrations in hair and increase the benefit.

It is well-known that benefit agents can improve the properties of hair and skin. For example, panthenol (pro- vitamin B5) and other moisturizing agents have been used for their beneficial moisture enhancing properties. Materials that exclude water from hair have been shown to reduce frizz. Chelants have been shown to bind metal ions in the hair so they are incapable of participating in radical generating reactions causing damage to hair and destruction of hair care ingredients. Likewise, salicylic acid is an effective anti-dandruff ingredient, and radical scavengers such as Vitamin E derivatives have been employed to prevent radical-induced damage to hair.

The challenges for all these benefit agents are getting efficacious levels into the formulations and/or, getting the benefit agents to penetrate into the hair. It is common to use formulation or carrier-based solutions to these overcome these challenges, but this has not been completely successful. However, small modifications of these benefit agents with functional groups that will enhance penetration into the substrate of interest have successfully increased penetration efficiency. These functional groups can either remain as a part of the benefit agent, or be removable and act only as carriers into the hair.

SUMMARY OF THE INVENTION

Described herein is a method of treating the hair, the method comprising (1) applying to the hair a hair care composition comprising one or more hair health compounds, the one or more hair health compounds each comprising: (a) a benefit agent; (b) one or two permanent cations, wherein the permanent cations are pendant to the benefit agent or part of the benefit agent, and wherein the benefit agent and the permanent cations form a core structure; (c) one to four ionizable amine groups, wherein each of the ionizable amine groups is pendant via a linker group to the core structure, and wherein the ionizable amine groups are neutral or protonated; and (d) one or more C5 - C9 hydrophobic moieties, wherein the one or more C5 - C9 hydrophobes are pendant to the core structure; wherein the one or more hair health compounds enter the hair shaft after the hair health compound is applied to the hair; and wherein the hair care composition has a pH of from about 3.5 to about 11; (b) rinsing the hair with water; wherein the pH of the hair after rinsing is from about 3.5 to about 6.

DETAILED DESCRIPTION OF THE INVENTION

While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description.

All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and therefore do not include solvents or by-products that may be included in commercially available materials, unless otherwise specified. When more than one composition is used during a treatment, the total weight to be considered is the total weight of all the compositions applied on the hair simultaneously (i.e. the weight found "on head") unless otherwise specified. The term "weight percent" may be denoted as "wt. %" herein.

As used herein, the term "hair" to be treated may be "living" i.e. on a living body or may be "non-living" i.e. in a wig, hairpiece or other aggregation of non-living keratinous fibers. Mammalian, particularly human, hair is preferred. However, wool, fur, and other keratin containing fibers are suitable substrates for the compositions according to the present invention.

As used herein, the term "pendant group" means a group of atoms attached to the core structure or benefit agent. The pendant group may be further classified as an anchoring group or a hydrophobic group. A hydrophobic group is typically a carbon chain. An anchoring group is a group attached to either a permanent cation or incipient cation; occasionally it is attached to both a permanent cation and one or more incipient cations.

As used herein, the term "benefit agent" means the part of the hair health compound responsible for the particular benefit.

As used herein, the term "core structure" means the benefit agent including one or two permanent cations that are pendant to the benefit agent or part of the benefit agent.

As used herein, the term "pendant" means when a functional group is linked to a core structure via covalent bond.

As used herein, the term "ionizable amine groups" means a functional group that can go from neutral to positively charged due to protonation caused by a decrease of pH.

With regards to the benefit agents and hair health compounds described herein, numerous tautomeric compounds may be involved. Thus, for example, niacinamide may be represented by tautomeric structures I and II.

(I) (II)

It is to be understood that when this development refers to a particular structure, all of the reasonable additional tautomeric structures are included. In the art, tautomeric structures are frequently represented by one single structure and the method described herein follows this general practice.

It is also understood that E, Z isomers may be involved. Thus, for example, (£)- diphenyldiazene (III) converts under known conditions to (Z)-diphenyldiazene (IV), which is also reversible.

(III) (IV)

It is to be understood that when this development refers to a particular structure, all of the reasonable additional E, Z isomers are included.

Described herein is a method of treating the hair, the method comprising (a) applying to the hair a hair care composition comprising one or more hair health compounds; the one or more hair health compounds each comprising (i) a benefit agent; (ii) one or two permanent cations, wherein the permanent cations are pendant to the benefit agent or part of the benefit agent, and wherein the benefit agent and the permanent cations form a core structure; and (iii) one to four ionizable amine groups, wherein the one to four ionizable amine groups are pendant to the core structure, and a hydrophobe that may be used to attach the ionizable amine groups to the core structure, and wherein the ionizable amine groups are neutral or protonated depending on the pH of the application vehicle; wherein the one or more hair health compounds enter the hair shaft after the hair care composition is applied to the hair; and wherein the hair care composition has a pH of from about 3.5 to about 11; (b) rinsing the hair with water; wherein the pH of the hair after rinsing is from about 3.5 to about 6.

The one to four ionizable amine groups are attached to the benefit agent in addition to the existing permanent cation(s) to improve penetration and longevity of benefit agents. The hair health compound can carry one or two permanent positive charges such as quaternary ammonium salts, pyridinium, imidazolium, thiazolium, oxazolium, triazolium, pyrimidinium, triazinium, tetrazolium phenoxazinium, phenazinium or an analogous cation under conditions for typical hair treatment applications. The state of protonation of the amino group(s) would be dictated by the typical conditions of the treatment agent (generally ~pH 3-11) because the typical of aliphatic amines falls between 9-10.5. Once the application is done and hair is rinsed, pH inside hair assumes its natural pH, which is acidic, the amino group(s) attached to the benefit agent would be protonated to become an ammonium cation, which adds one or more binding sites to the benefit agent.

The hair health compounds may comprise one permanent cationic charge, alternatively two permanent cationic charges. The hair health compounds may be comprised of one to four terminal amino groups and derivatives thereof, alternatively two terminal amino groups and derivatives thereof, and alternatively one terminal amino group and derivatives thereof, according to the following formula:

The chemical formulas of the hair health compounds can be represented in the following ways, but not limited to what is shown below:

(L 2 ) y -B*(-Li-A)n Z- (V)

(Ai-Li-)nB*(-L2-A 2 ) m (L3) y Z- (VI) (Q*-L 3 -) x B(-Li-Ai) m (-L2-A 2 )n(L4) y (Z " )x or Z x (VII) (L 3 ) y -B(-Li-Q*(-L 2 -A) m )n (Z-)n or Z n" (VIII) (L 2 ) y -B*(-Li-Ai-(L3-A 2 )m)n Z- (IX) wherein

B benefit agent portion;

Q* is an organic cation;

* stands for a permanent cationic charge, it can also be part of a benefit agent bearing a cationic charge;

L is a linker or hydrophobic chain and;

A is the anchoring group, the fastness enhancer. It is typically a primary, secondary or tertiary amino group, in an embodiment a primary amine. It is also can be a switch to allow the anchor to go between neutral and charged states when the pH in the surrounding environment changes.

Z is a counter anion. It is typically a halide, sulfate, methylsulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, nitrate, perchlorate, tetrafluoroborate, hexafluorophosphate, triflate, acetate, formate or hydroxide,

n = 1-4; m = 1-4; n+m≤ 4; x = 1-2; y = 0-2.

In some embodiments, hair health compound is of formula X

wherein Ri - Ri3 are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and

The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof.

In some embodiments L is of formula (XI)

wherein

L can be covalently linked to the benefit agent B; L can be linked to B either by its left- hand or right-hand side.

a, c, e and g are each independently an integer from 0 - 3, provided that the sum of a, c, e and g is greater than or equal to 2; b, d and f are each independently either 0 or 1; R50, R51, R52, R53, R54, R55, R56 and R57 are each independently hydrogen or Ci- C2 alkyl group;

U is an aromatic ring, alkenyl or alkynyl moiety;

V is a hetero atom O, N or S;

W is a cyclic aliphatic ring.

In other

xii wherein

Ri - R24 are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof. la (XIII)

XIII

Ri - Ri7 are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and

The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof.

In other embodiments, the hair health compound is of formula (XIV)

Ri - R23 are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and

The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof. In other embodiments, the hair health compound is of formula (XV)

Ri - Rii are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and

The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof.

In other embodiments, the hair health compound is of formula (XVI)

Ri - Ri5 are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and

The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof. In other embodiments, the hair health compound is of formula (XVII)

Ri - Ri8 are each independently hydrogen, Ci-Cs alkyl, halogen substituted alkyl, alkenyl, alkynyl, aryl, hydroxyl alkyl, alkoxy, aryloxy, acyl, halogen, nitro, nitroso, cyano, a heterocyclic moiety, thioether or are attached to linker L that may have a terminal primary, secondary or tertiary amino group attached; and

The total number of amino groups attached is 1-4; the amino group can be primary, secondary or tertiary; and cosmetically acceptable salt thereof.

The following are additional examples of hair health compounds wherein one or more ionizable amine groups are present:

In an embodiment the following is an exemplary synthesis of a hair health compound comprising an analog of salicylic acid as the benefit agent: -(3-Aminopropyl)-4-carboxy-3-hydroxypyridin-l-ium trifluoroacetate.

3-Hydroxyisonicotinic acid (6.40 g) is transferred into a 250 mL round bottom flask and dissolved in DMF (50 mL). N-(3-bromopropyl)-2,2,2-trifluoroacetamide (11.8 g) is then added to the solution sequentially. The reaction mixture is heated to 75 °C and stirred magnetically overnight until HPLC indicates the full consumption of the starting isonicotinic acid. DMF is then removed under vacuum. The resulting reaction mixture is purified by reverse phase CombiFlash automated chromatography with water and acetonitrile to yield 4-carboxy-3- hydroxy-l-(3-(2,2,2-trifluoroacetamido)propyl)pyridin-l-ium bromide as a white slid (12.1 g). The trifluoroacetamide intermediate (2.0 g) is then dissolved in water (30 mL). Ammonium hydroxide (28% aq. solution) is then added to the solution. The reaction mixture is stirred at ambient temperature until all the trifluoroacetamide is cleaved. Water and excess ammonium hydroxide are removed under vacuum to afford l-(3-aminopropyl)-4-carboxy-3-hydroxypyridin- 1-ium bromide in quantitative yield (1.48 g).

II. Hair Care Compositions

In addition to the hair health compounds, the hair care compositions described herein may include optional ingredients in order to further enhance the properties of the hair care composition.

Optional Ingredients

Suitable optional ingredients include, but are not limited to: solvents; oxidizing agents; alkalizing agents; oxidative dye precursors, direct dyes; chelants; radical scavengers; pH modifiers and buffering agents; thickeners and/or rheology modifiers; carbonate ion sources; peroxymonocarbonate ion sources; anionic, cationic, nonionic, amphoteric or zwitterionic surfactants, and mixtures thereof; anionic, cationic, nonionic, amphoteric or zwitterionic polymers, and mixtures thereof; fragrances; enzymes; dispersing agents; peroxide stabilizing agents; antioxidants; natural ingredients (such as proteins, protein compounds, and plant extracts); conditioning agents (such as silicones and cationic polymers); ceramides; preserving agents; opacifiers and pearling agents (such as titanium dioxide and mica); and mixtures thereof.

Suitable further ingredients referred to above, but not specifically described below, are listed in the International Cosmetics Ingredient Dictionary and Handbook, (8th ed.; The Cosmetics, Toiletry, and Fragrance Association). Particularly, vol. 2, sections 3 (Chemical Classes) and 4 (Functions), which are useful in identifying specific adjuvants to achieve a particular purpose or multipurpose. A few of these ingredients are discussed hereinbelow, whose disclosure is of course non-exhaustive. Solvents

The hair care compositions described herein may further comprise a solvent. The solvent may be selected from water, or a mixture of water and at least one organic solvent to dissolve the compounds that would not typically be sufficiently soluble in water.

Suitable organic solvents include, but are not limited to: CI to C4 lower alkanols (such as ethanol, propanol, isopropanol); aromatic alcohols (such as benzyl alcohol and phenoxyethanol); polyols and polyol ethers (such as carbitols, 2-butoxyethanol, propylene glycol, propylene glycol monomethyl ether, diethylene glycol monoethyl ether, monomethyl ether, hexylene glycol, glycerol, ethoxy glycol, butoxydiglycol, ethoxydiglycerol, dipropyleneglocol, polygylcerol); propylene carbonate; and mixtures thereof.

In an embodiment, the solvent may be selected from the group consisting of water, ethanol, propanol, isopropanol, glycerol, 1 ,2-propylene glycol, hexylene glycol, ethoxy diglycol, and mixtures thereof.

The composition may comprise water as a main ingredient, particularly in a total amount ranging from at least 50%, alternatively from at least 60%, alternatively from at least 70%, by weight of the total composition. In an embodiment, the composition may comprise a total amount of organic solvents ranging from about 1% to about 30%, by weight of the total hair care composition.

Alkalizing agent

The hair care composition described herein may further comprise an alkalizing agent as known in the art. Any alkalizing agent known in the art may be used such as ammonia, alkanolamines for example monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, tripropanolamine, 2-amino-2-methyl- 1,3 -propanediol, 2- amino-2-methyl-l-propanol, and 2-amino-2-hydroxymethyl-l,3-propanediol, guanidium salts, alkali metal and ammonium hydroxides such as sodium hydroxide, alkali metal and ammonium carbonates, and mixtures thereof. In an embodiment, the alkalizing agent may be ammonia and/or monoethanolamine.

The hair care compositions described herein may comprise from about 0.1% to about

10%, alternatively from about 0.5% to about 6%, alternatively from about 1% to about 4% by weight of the alkalizing agent relative to the total weight of the composition.

The hair care compositions described above may have a pH of from 7 to 12, alternatively from 8 to 11. For embodiments comprising a peroxymonocarbonate ion, the pH may be up to and including pH 9.5, alternatively from 7.5 to 9.5, alternatively from 8.4 to 9.5, alternatively from 8.5 to 9.4, alternatively 9.0, and alternatively 9.3.

Any sub-components of the hair carecompositions, such as a tint composition or an oxidizing composition, may have a different pH from the hair care composition. For example, if the tint composition comprises an alkalizing agent, the tint composition will have an alkaline pH, such as higher than 7. In an embodiment, the oxidizing composition may comprise an acidic pH of less than 7.

When the hair care composition described herein is obtained by mixing a developer and a tint composition prior to use, the alkalizing agent is generally present in the tint composition. Chelants

The hair care composition described herein may further comprise chelants (also known as "chelating agent", "sequestering agent", or "sequestrant") in an amount sufficient to reduce the amount of metals available to interact with formulation components, particularly oxidizing agents, more particularly peroxides. Chelants are well known in the art and a non-exhaustive list thereof can be found in AE Martell & RM Smith, Critical Stability Constants, Vol. 1, Plenum Press, New York & London (1974) and AE Martell & RD Hancock, Metal Complexes in Aqueous Solution, Plenum Press, New York & London (1996), both incorporated herein by reference.

In an embodiment, the hair care composition may comprise a total amount of chelants ranging from at least about 0.01%, alternatively from about 0.01% to about 5%, alternatively from about 0.25% to about 3%, alternatively from about 0.5% to about 1%, by weight of the total composition. Suitable chelants include, but are not limited to: carboxylic acids (such as aminocarboxylic acids), phosphonic acids (such as aminophosphonic acids), polyphosphoric acids (such as linear polyphosphoric acids), their salts thereof, and mixtures thereof. By "salts thereof, it is meant - in the context of chelants - all salts comprising the same functional structure as the chelant they are referring to and including alkali metal salts, alkaline earth salts, ammonium salts, substituted ammonium salts, and mixtures thereof; alternatively sodium salts, potassium salts, ammonium salts, and mixtures thereof; alternatively monoethanolammonium salts, diethanolammonium salts, triethanolammonium salts, and mixtures thereof.

Suitable aminocarboxylic acid chelants comprise at least one carboxylic acid moiety (-COOH) and at least one nitrogen atom. Suitable aminocarboxylic acid chelants include, but are not limited to: diethylenetriamine pentaacetic acid (DTPA), ethylenediamine disuccinic acid (EDDS), ethylenediamine diglutaric acid (EDGA), 2-hydroxypropylenediamine disuccinic acid (HPDS), glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG), 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS), ethylenediaminetetraacetic acid (EDTA), ethylenedicysteic acid (EDC), ethylenediamine-N-N'- bis(ortho-hydroxyphenyl acetic acid) (EDDHA), diaminoalkyldi(sulfosuccinic acids) (DDS), N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), their salts thereof, and mixtures thereof. Other suitable aminocarboxylic type chelants include, but are not limited to: iminodiacetic acid derivatives such as N-2-hydroxyethyl N,N diacetic acid or glyceryl imino diacetic acid, iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N- carboxymethyl N-2-hydroxypropyl-3-sulfonic acid, -alanine-N,N'-diacetic acid, aspartic acid- Ν,Ν'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid chelants, ethanoldiglycine acid, their salts thereof, their derivatives thereof, and mixtures thereof. Further suitable aminocarboxylic type chelants include, but are not limited to: dipicolinic acid, 2- phosphonobutane-l,2,4-tricarboxylic acid, their salts thereof, their derivatives thereof, and mixtures thereof.

Suitable aminophosphonic acid chelants comprise an aminophosphonic acid moiety (- P03H2) or its derivative - P03R2, wherein R2 is a Ci to Ce alkyl or aryl radical and salts thereof. Suitable aminophosphonic acid chelants include, but are not limited to: aminotri-(l- ethylphosphonic acid), ethylene-diaminetetra-(l-ethylphosphonic acid), aminotri-(l- propylphosphonic acid), aminotri-(isopropylphosphonic acid), their salts thereof, and mixtures thereof; alternatively aminotri-(methylenephosphonic acid), ethylene-diamine-tetra- (methylenephosphonic acid) (EDTMP) and diethylene-triamine-penta-(methylenephosphonic acid) (DTPMP), their salts thereof, their derivatives thereof, and mixtures thereof.

Suitable alternative chelants include, but are not limited to: polyethyleneimines, polyphosphoric acid chelants, etidronic acid, methylglycine diacetic acid, N-(2- hydroxyethyl)iminodiacetic acid, minodisuccinnic acid, N,N-Dicarboxymethyl-L-glutamic acid, N-lauroyl-N,N',N"-ethylenediamine diacetic acid, their salts thereof, their derivatives thereof, and mixtures thereof.

In a specific embodiment, the composition comprises a chelant selected from the group consisting of diethylenetriamine-N,N',N"-polyacids, diethylenetriaminepentaacetic acid (DTPA), diethylenetriaminepenta(methylene phosphonic acid) (DTPMP), diamine-N,N'- dipolyacid, monoamine monoamide-N,N'-dipolyacid, ethylenediaminedisuccinic acid (EDDS), their salts thereof, their derivatives thereof, and mixtures thereof; alternatively ethylenediaminedisuccinic acid (EDDS). Radical Scavengers

The hair care compositions described herein may comprise a radical scavenger. As used herein the term radical scavenger refers to a species that can react with a radical, to convert the radical species by a series of fast reactions to an unreactive or less reactive species. The hair care composition described herein can comprise a radical scavenger from about 0.1% to about 10%, alternatively from about 1% to about 7% by weight of the radical scavenger relative to the total weight of the composition.

Suitable radical scavengers for use herein may be selected from the classes of alkanolamines, amino sugars, amino acids, esters of amino acids and mixtures thereof. Suitable compounds include 3-substituted-pyrazol-5-ones, 3-carboxy-lH-pyrazol-5-one, 3-methyl-l- phenyl-pyrazol-5-one, 3 -methyl- l-p-tolyl-pyrazol-5 -one, 3-methyl-l-(4-sulfophenyl)-pyrazol-5- one, 3-methyl-l-(4-sulfoamidophenyl)-pyrazol-5-one, 3-methyl-l-(3-sulfophenyl)-pyrazol-5- one, 3-methyl-l-(3-sulfoamidophenyl)-pyrazol-5-one, 3-methyl-l-(2-chloro-5-sulfophenyl)- pyrazol-5-one, 3-methyl-l-(2,5-dichloro-4-sulfophenyl)-pyrazol-5-one, 3-methyl-l-(4- chlorophenyl)-pyrazol-5-one, 3-methyl-l-(4-carboxyphenyl)-pyrazol-5-one, 3-carboxy-l-phenyl- pyrazol-5-one, 3-carboxy-l-(4-sulfophenyl)-pyrazol-5-one, l,3-diphenyl-pyrazol-5-one, methyl pyrazol-5-one-3-carboxylate, 3-amino-l-propanol, 4-amino-l-butanol,5-amino-l-pentanol, 1- amino-2-propanol, l-amino-2-butanol, l-amino-2-pentanol, l-amino-3-pentanol, l-amino-4- pentanol, 3-amino-2-methylpropan-l-ol, l-amino-2-methylpropan-2-ol, 3-aminopropane-l,2- diol, glucosamine, N-acetylglucosamine, glycine, arginine, lysine, proline, glutamine, histidine, sarcosine, serine, glutamic acid, tryptophan, or mixtures thereof, or the salts, such as the potassium, sodium, or ammonium salts thereof, or mixtures thereof. In some embodiments, the inventive compositions may comprise glycine, sarcosine, lysine, serine, 2-methoxyethylamine, glucosamine, glutamic acid, morpholine, piperidine, ethylamine, 3-amino-l-propanol, or mixtures thereof. pH Modifiers and buffering agents

The hair care compositions described herein may further comprise, in addition to the alkalizing agent discussed above, a pH modifier and/or buffering agent in an amount that is sufficiently effective to adjust the pH of the composition to fall within a range from about 3.5 to about 13, alternatively from about 8 to about 12, alternatively from about 9 to about 11, alternatively from about 3.5 to about 6, and alternatively from about 6 to about 9.

Suitable pH modifiers and/or buffering agents include, but are not limited to: ammonia; alkanolamides (such as monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, tripropanolamine, tripropanolamine, 2-amino-2-methyl- 1-propanol, 2-amino-2-hydroxymethyl-l,3,-propandiol); guanidium salts; alkali metal and ammonium hydroxides and carbonates; and mixtures thereof.

Further pH modifiers and/or buffering agents include, but are not limited to: sodium hydroxide; ammonium carbonate; acidulents (such as inorganic and inorganic acids including for example phosphoric acid, acetic acid, ascorbic acid, citric acid or tartaric acid, hydrochloric acid); and mixtures thereof.

Thickeners and/or rheology modifiers

The hair care compositions described herein may further comprise a thickener..

In an embodiment, the hair care compositions may comprise a total amount of thickeners ranging from at least about 0.1%, alternatively at least about 1%, alternatively at least about 10%, alternatively at least about 20%, by weight of the total composition.

Suitable thickeners include, but are not limited to: associative polymers, polysaccharides, non-associative polycarboxylic polymers, and mixtures thereof.

As used herein, the expression "associative polymers" means amphiphilic polymers comprising both hydrophilic units and hydrophobic units, for example, at least one C8 to C30 fatty chain and at least one hydrophilic unit. Associative polymers are capable of reversibly combining with each other or with other molecules. Suitable associative thickeners include, but are not limited to: nonionic amphiphilic polymers comprising at least one hydrophilic unit and at least one fatty-chain unit; anionic amphiphilic polymers comprising at least one hydrophilic unit and at least one fatty-chain unit; cationic amphiphilic polymers comprising at least one hydrophilic unit and at least one fatty-chain unit; and amphoteric amphiphilic polymers comprising at least one hydrophilic unit and at least one fatty-chain unit, and mixtures thereof.

Suitable nonionic amphiphilic polymers comprising at least one fatty chain and at least one hydrophilic unit include, but are not limited to: celluloses modified with groups comprising at least one fatty chain (such as hydroxyethylcelluloses modified with groups comprising at least one fatty chain chosen from alkyl, alkenyl and alkylaryl groups); hydroxypropyl guars modified with groups comprising at least one fatty chain; polyether urethanes comprising at least one fatty chain (such as C8-C30 alkyl or alkenyl groups); copolymers of vinylpyrrolidone and of fatty- chain hydrophobic monomers; copolymers of C1-C6 alkyl acrylates or methacrylates and of amphiphilic monomers comprising at least one fatty chain; copolymers of hydrophilic acrylates or methacrylates and of hydrophobic monomers comprising at least one fatty chain, and mixtures thereof. Commercially available anionic materials include those sold as Sepigel 305 by Seppic.

Suitable nonionic amphiphilic polymers comprising at least one hydrophilic unit and at least one fatty-chain unit include, but are not limited to: those polymers comprising at least one fatty-chain allyl ether unit and at least one hydrophilic unit comprising an ethylenic unsaturated anionic monomeric unit (such as a vinylcarboxylic acid unit, particularly a unit chosen from units derived from acrylic acids, methacrylic acids, and mixtures thereof), wherein the fatty- chain allyl ether unit corresponds to the monomer of formula (XV) below

CH2=C(Rl)CH20BnR (XV)

in which Rl is chosen from H and CH3, B is an ethyleneoxy radical, n is chosen from zero and integers ranging from 1 to 100, R is chosen from hydrocarbon-based radicals chosen from alkyl, alkenyl, arylalkyl, aryl, alkylaryl and cycloalkyl radicals, comprising from 8 to 30 carbon atoms, and, further, for example, from 10 to 24 carbon atoms and even further, for example, from 12 to 18 carbon atoms.

Suitable anionic amphiphilic polymers include, but are not limited to: those polymers comprising at least one hydrophilic unit of unsaturated olefinic carboxylic acid type, and at least one hydrophobic unit of the type such as a (C8-C30) alkyl ester or (C8-C30) oxyethylenated alkyl ester of an unsaturated carboxylic acid, wherein the hydrophilic unit of unsaturated olefinic carboxylic acid type corresponds to, for example, the monomer of formula (XVI) below CH2=C(Rl)COOH (XVI)

in which Rl is chosen from H, CH3, C2H5 and CH2COOH (i.e. acrylic acid, methacrylic, ethacrylic and itaconic acid units); and wherein the hydrophobic unit of the type such as a (C8- C30) alkyl ester or (C8-C30) oxyethylenated alkyl ester of an unsaturated carboxylic acid corresponds to, for example, the monomer of formula (XVII) below

CH2=C(Rl)COOBnR2 (XVII)

in which Rl is chosen from H, CH3, C2H5 and CH2COOH (i.e. acrylate, methacrylate , ethacrylate and itaconate units), B is an ethyleneoxy radical, n is chosen from zero and integers ranging from 1 to 100, R2 is chosen from C8-C30 alkyl radicals, for example, C12-C22 alkyl radical. Anionic amphiphilic polymers may further be cross-linked. The crosslinking agent can be a monomer comprising a group (XVIII) below

CH2=C< (XVIII)

with at least one other polymerizable group whose unsaturated bonds are not conjugated with respect to one another. Mention may be made, for example, of polyallyl ethers such as polyallylsucrose and polyallyl pentaerythritol.

Suitable cationic amphiphilic polymers include, but are not limited to: quaternized cellulose derivatives and polyacrylates comprising amino side groups. The quaternized cellulose derivatives are, for example, chosen from quaternized celluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyl and alkylaryl groups comprising at least 8 carbon atoms, and mixtures thereof, quaternized hydroxyethylcelluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyl and alkylaryl groups comprising at least 8 carbon atoms, and mixtures thereof. The alkyl radicals borne by the above quaternized celluloses and hydroxyethylcelluloses, for example, contain from 8 to 30 carbon atoms. The aryl radicals, for example, are chosen from phenyl, benzyl, naphthyl and anthryl groups.

Suitable amphoteric amphiphilic polymers comprising at least one hydrophilic unit and at least one fatty-chain unit, may be made, for example, of methacrylamidopropyltrimethylammonium chloride/acrylic acid/C8-C30 alkyl methacrylate copolymers, wherein the alkyl radical is, for example, a stearyl radical.

In an embodiment, the associative polymers may comprise at least one hydrophilic unit which is unsaturated carboxylic acid or its derivatives, and at least one hydrophobic unit which is a C8 to C30 alkyl ester or oxyethylenated C8-C30 alkyl ester of unsaturated carboxylic acid. The unsaturated carboxylic acid can be acrylic acid, methacrylic acid or itaconic acid. Commercially available materials include those sold as Aculyn-22 by Rohm & Haas; Permulen TR1, Carbopol 2020, Carbopol Ultrez-21/-30 by Noveon, Structure 2001/3001 by National Starch. Other exemplary associative polymers include polyether polyurethane, commercially available as Aculyn-44/-46 by Rohm and Haas. Further exemplary associative polymers include cellulose modified with groups comprising at least one C8 - C30 fatty chain, commercially available under the trade name Natrosol Plus Grade 330 CS by Aqualon.

Suitable non-associative cross-linked polycarboxylic polymers include, but are not limited to: cross-linked acrylic acid homopolymers, copolymers of acrylic or (meth)acrylic acid and of C1-C6 alkyl acrylate or (meth)acrylate, and mixtures thereof. Commercially available materials include those sold as Carbopol 980/981/954/1382/2984/5984 by Noveon, Synthalen M/Synthalen L/Synthalen K Synthalen CR by 3V, Aculyn-33 by Rohm and Haas.

Suitable polysaccharides include, but are not limited to: glucans, modified and unmodified starches (such as those derived, for example, from cereals, for instance wheat, corn or rice, from vegetables, for instance yellow pea, and tubers, for instance potato or cassaya), amylose, amylopectin, glycogen, dextrans, celluloses and derivatives thereof (methylcelluloses, hydroxyalkylcelluloses, ethyl hydroxyethylcelluloses, and carboxymethylcelluloses), mannans, xylans, lignins, arabans, galactans, galacturonans, chitin, chitosans, glucuronoxylans, arabinoxylans, xyloglucans, glucomannans, pectic acids and pectins, alginic acid and alginates, arabinogalactans, carrageenans, agars, glycosaminoglucans, gum arabics, gum tragacanths, ghatti gums, karaya gums, carob gums, galactomannans, such as guar gums, and nonionic derivatives thereof (hydroxypropyl guar) and bio-polysaccharides, such as xanthan gums, gellan gums, welan gums, scleroglucans, succinoglycans, and mixtures thereof. Suitable polysaccharides are described in "Encyclopedia of Chemical Technology", Kirk-Othmer, Third Edition, 1982, volume 3, pp. 896-900, and volume 15, pp. 439-458, in "Polymers in Nature" by E. A. MacGregor and C. T. Greenwood, published by John Wiley & Sons, Chapter 6, pp. 240- 328,1980, and in "Industrial Gums— Polysaccharides and their Derivatives", edited by Roy L. Whistler, Second Edition, published by Academic Press Inc., all three being incorporated herein by reference. An exemplary polysaccharide is a bio-polysaccharide, particularly bio- polysaccharides selected from xanthan gum, gellan gum, welan gum, scleroglucan or succinoglycan; commercially available as Keltrol® T by Kelco and Rheozan® by Rhodia Chimie. Another exemplary polysaccharide is hydroxypropyl starch derivative, particularly hydroxypropyl starch phosphate, commercially available as Structure XL® by National Starch, a hydrophobically modified cellulose derivative, commercially available as Structure® Cel 500 HM by AkzoNobel.

Commercially available salt- tolerant thickeners include, but not limited to: xanthan, guar, hydroxypropyl guar, scleroglucan, methyl cellulose, ethyl cellulose (commercially available as Aquacote), hydroxyethyl cellulose (Natrosol), carboxymethyl cellulose, hydroxypropylmethyl cellulose, microcrystalline cellulose, hydroxybutylmethyl cellulose, hydroxypropyl cellulose (Klucel), hydroxyethyl ethyl cellulose, cetyl hydroxyethyl cellulose (Natrosol Plus 330), polyvinylpyrrolidone (Povidone, FlexiThix™), Acrylates/Ceteth-20 Itaconate Copolymer (Structure 3001), hydroxypropyl starch phosphate (Structure ZEA), polyethoxylated urethanes or polycarbamyl poly glycol ester such as PEG-150/Decyl/SMDI copolymer (Aculyn 44), PEG- 150/Stearyl/SMDI copolymer (Aculyn 46), trihydroxystearin (Thixcin), acrylates copolymer (Aculyn 33) or hydrophobically modified acrylate copolymers (such as Acrylates / Steareth-20 Methacrylate Copolymer as Aculyn 22), acrylates/steareth-20 methacrylate crosspolymer (Aculyn 88), acrylates/vinyl neodecanoate crosspolymer (Aculyn 38), acrylates/beheneth-25 methacrylate copolymer (Aculyn 28), acrylates/ClO-30 alkyl acrylate crosspolymer (Carbopol ETD 2020), non-ionic amphophilic polymers comprising at least one fatty chain and at least one hydrophilic unit selected from polyether urethanes comprising at least one fatty chain, blends of Ceteth - 10 phosphate, Dicetyl phosphate and Cetearyl alcohol (available as Crodafos CES), and mixtures thereof.

Salt

In an embodiment, cosmetically acceptable salt, such as ammonium, sodium or potassium salts with appropriate counter ions, may be added to the hair care compositions described herein. Conditioning agents

The hair care compositions described herein may further comprise a conditioning agent, and/or be used in combination with a composition comprising a conditioning agent.

In an embodiment, the hair care compositions may comprise a total amount of conditioning agents ranging from about 0.05% to about 20%, alternatively from about 0.1% to about 15%, alternatively from about 0.2% to about 10%, alternatively from about 0.2% to about 2%, alternatively from about 0.5% to 2%, by weight of the total composition. The conditioning agent may be included in a separate pre- and/or post-treatment composition. Suitable conditioning agents include, but are not limited to: silicones, aminosilicones, fatty alcohols, polymeric resins, polyol carboxylic acid esters, cationic polymers, cationic surfactants, insoluble oils and oil derived materials and mixtures thereof. Additional conditioning agents include mineral oils and other oils such as glycerin and sorbitol.

Particularly useful conditioning materials may be cationic polymers. Conditioners of cationic polymer type can be chosen from those comprising units of at least one amine group chosen from primary, secondary, tertiary and quaternary amine groups that may either form part of the main polymer chain, or be borne by a side substituent that is directly attached to the main polymer chain, described hereinafter.

Suitable silicones include, but are not limited to: polyalkylsiloxane oils, linear polydimethylsiloxane oils containing trimethylsilyl or hydroxy dimethylsiloxane endgroups, polymethylphenylsiloxane, polydimethylphenylsiloxane or polydimethyldiphenylsiloxane oils, silicone resins, organofunctional siloxanes having in their general structure one or a number of organofunctional group(s), the same or different, attached directly to the siloxane chain and mixtures thereof. Said organofunctional group(s) may be selected from: polyethyleneoxy and/or polypropyleneoxy groups, (per)fluorinated groups, thiol groups, substituted or unsubstituted amino groups, carboxylate groups, hydroxylated groups, alkoxylated groups, quaternium ammonium groups, amphoteric and betaine groups. The silicone can either be used as a neat fluid or in the form of a pre-formed emulsion. Suitable silicones also include: silicones containing groups that may be ionized into cationic groups, for example aminosilicones containing at least 10 repeating siloxane (Si(CH3)2-0) units within the polymer chain, with either terminal, graft, or a mixture of terminal and graft aminofunctional groups. Example functional groups are not limited to aminoethylaminopropyl, aminoethylaminoisobutly, aminopropyl. In the case of graft polymers, the terminal siloxane units can be (CH3)3Si-0, Ri2(CH3)2Si-0, where R12 can be either OH or OR13, where R13 is a C1-C8 alkyl group, or a mixture of both terminal groups. These silicones are also available as preformed emulsions. Commercially available aminosilicones include those sold as DC-2-8566, DC 7224, DC-2-8220 by Dow Corning; SF1708, SM2125 by GE Silicones; Wacker Belsil ADM 653/ADM 1100/ADM 1600/ADM 652/ADM 6057E/ADM 8020 by Wacker Silicones; DC929, DC939, DC949 by Dow Corning; SM2059 by GE Silicones. Suitable aminosilicones may also contain additional functional groups, particularly additional functional groups including polyoxyalkylene, the reaction product of amines and carbinols, and alky chains. Commercially available materials are known as methoxy PEG/PPG-7/3 Aminopropyl Dimethicone (e.g. Abil Soft AF100, by Degussa), or as Bis(C13-15 Alkoxy)PG Amodimethicone (e.g. DC 8500, by Dow Corning).

Suitable cationic polymers include, but are not limited to: polymers comprising units of at least one amine group chosen from primary, secondary, tertiary and quaternary amine groups that may either form part of the main polymer chain or be borne by a side substituent that is directly attached to the main polymer chain. Such cationic polymers generally have a number average molecular mass ranging from about 500 to about 5 x 10 6 , alternatively from about 1000 to about 3 x 10 6 . The cationic polymers can be selected from polymers of the polyamine, polyamino amide and polyquaternary ammonium type.

Suitable polymers of the polyamine, polyamino amide and polyquaternary ammonium type include, but are not limited to:

1) Homopolymers and copolymers derived from acrylic or methacrylic esters or amides. Copolymers of these polymers may also comprise at least one unit derived from comonomers which may be chosen from the family of acrylamides, methacrylamides, diacetone acylamides, acrylamides and methacrylicamides substituted on the nitrogen with at least one group chosen from lower (C1-C4) alkyls, acrylic and methacrylic acids and esters thereof, vinlylactams such as vinlypyrrolidone and vinylcaprolactam, and vinyl esters. Suitable examples include copolymers of acrylamide and of methacryloyloxyethyltrimethylammonium methosulfate, including polymers known as Polyquaternium-5 (e.g. commercially available under the trade name Reten 210/220/230/240/1104/1105/1006 by Hercules; Merquat 5/5 SF by Nalco); copolymers of vinylpyrrolidone and dimethylaminopropyl methacrylamide, including polymers known as Polyquaternium-28 (e.g. Gafquat HS-100 by ISP); coplolymers of vinyl pyrrolidone and dialkyaminoalkyl acrylates or methactylates, including polymers known as Polquaternium- 11 (see Gafquat 440/734/755/755N by ISP; Luviquat PQ11 PM by BASF; Polyquat-11 SL by Sino Lion); copolymers vinylpyrrolidone, dimethylaminopropyl methacrylamide and methacryloylaminopropyl lauryldimonium chloride, including polymers known as polyquaternium-55 (e.g. Styleze W-20 by ISP); copolymers of acrylic acid, acrylamide and methacrylamidopropyltrimonium chloride, including polymers known as Polyquaternium-53 (e.g. Merquat 2003 by Nalco); copolymers of dimethyaminopropylacrylate (DMAPA), acrylic acid and acrylonitrogens and diethyl sulphate, including polymers known as Polyquaternium-31 (e.g. Hypan QT100 by Lipo); copolymers of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate, and dimethyaminopropylacrylate (DMAPA), including polymers known as polyquaternium-43 (e.g. Bozequat 4000 by Clairant); copolymers of acrylic acid, methylacrylate and methacrylamidopropyltrimonium chloride, including polymers known as Polyquaternium-47 (e.g. Merquat 2001/200 IN by Nalco); copolymers of methacryloyl ethyl betaine, 2-hydroxyethyl methacrylate and methacryloyl ethyl trimethyl ammonium chloride, including polymers known as Polyquaternium-48 (e.g. Plascize L-450 by Goo Chemical); copolymers of acrylic acid diallyl dimethyl ammonium chloride and acrylamide, including polymers known as polyquaternium-39 (e.g. Merquat 3330/3331 by Nalco). Further suitable examples include copolymers of methacrylamide methacrylamido-propyltrimonium and methacryloylethyltrimethyl ammonium chloride and their derivatives, either homo or copolymerised with other monomers, including polymers known as Polyquaternium-8, Polyquaternium-9, Polyquaternium-12, Polyquaternium-13 Polyquaternium-14, Polyquaternium- 15 (e.g. Rohagit KF 720 F by Rohm), Polyquaternium-30 (e.g. Mexomere PX by Chimex), Polyquaternium-33, Polyquaternium-35, Polyquaternium-36 (e.g. Plex 3074 L by Rhon), Polyquaternium 45 (e.g. Plex 3073L by Rohn), Polyquaternium 49 (e.g. Plascize L-440 by Goo Chemicals), Polyquaternium 50 (e.g. Plascize L-441 by Goo Chemicals), Polyquaternium-52.

2) Cationic polysaccharides, such as cationic celluloses and cationic galactomannan gums. Among the cationic polysaccharides that maybe mentioned, for example, are cellulose ether derivatives comprising quaternary ammonium groups and cationic cellulose copolymers or cellulose derivatives grafted with a water-soluble quaternary ammonium monomer and cationic galactomannan gums. Suitable examples include copolymers of hydroxy ethylcelluloses and diallyldimethyl ammonium chlorides, including polymers known as Polyquaternium-4 (e.g. Celquat L 200 and Celquat H 100 by National Starch); copolymers of hydroxyethylcelluloses and a trimethyl ammonium substituted epoxide, including polymers known as Polyquaternium- 10 (e.g. AEC Polyquaternium- 10 by A&E Connock; Catinal C-100/HC-35/HC-100/HC-200/LC- 100/LC-200 by Toho; Celquat SC-240C/SC-230M by National Starch; Dekaquat 400/3000 by Dekker; Leogard GP by Akzo Nobel; RITA Polyquat 400/3000 by RITA; UCARE Polymer JR- 125/JR-400/JR-30M/LK LR 400/LR 30M by Amerchol); copolymers of hydroxyethylcelluloses and lauryl dimethyl ammonium substituted epoxides, including polymers known as Polyquaternium- 24 (e.g. Quatrisoft polymer LM-200 by Amerchol); derivatives of hydroxypropyl guar, including polymers as guar hydroxypropyltrimonium chloride (e.g. Catinal CG-100, Catinal CG-200 by Toho; Cosmedia Guar C-261N, Cosmedia Guar C-261N, Cosmedia Guar C-261N by Cognis; DiaGum P 5070 by Freedom Chemical Diamalt; N-Hance Cationic Guar by Hercules/ Aqualon; Hi-Care 1000, Jaguar C-17, Jaguar C-2000, Jaguar C-13S, Jaguar C- 14S, Jaguar Excel by Rhodia; Kiprogum CW, Kiprogum NGK by Nippon Starch); hydroxypropyl derivatives of guar hydroxypropyltrimonium chloride, including polymers known as hydroxypropyl guar hydroxypropyltrimonium chloride (e.g. Jaguar C-162 by Rhodia).

3) Polyamino amide derivatives resulting from the condensation of polyalkylene polyamines with polycarboxylic acids followed by alkylation with difunctional agents. Among the derivative, mention may be made for example to adipic acid / dimethylaminohydroxypropyl / diethylenetriamine.

4) Polymers obtained by reaction of a polyalkylene polyamine comprising two primary amines groups and at last one secondary amine group with a decarboxylic acid chosen from diglycolic acids and saturated aliphatic dicarboxylic acids comprising from 3 to 8 carbon atoms. Suitable examples include the polymer adipic acid / epxoypropyl / diethylenetriamine.

5) Cyclopolymers of dialkdiallylamine or of dialkyldiallyammonium, including: Dimethyldially ammonium chloride polymers, including polymers known as Polyquaternium-6 (e.g. Merquat 100 by Nalco; Mirapol 100 by Rhodia; Rheocare CC6 by Cosmetic Rheologies; AEC polyquaternium-6 by A&E Connock; Agequat 400 by CPS; Conditioner P6 by 3V Inc.; Flocare C106 by SNF; Genamin PDAC by Clariant; Mackernium 006 by Mclntyre); copolymers of acrylamides and dimethyldiallylammonium chlorides monomers, including polymers known as Polyquaternium-7 (e.g. AEC Polyquaternium-7 by A&E Connock; Agequat-5008/C-505 by CPS; Conditioner P7 by 3V Inc.; Flocare C 107 by SNF; Mackernium 007/007S by Mclntyre; ME Polymer 09W by Toho; Merquat 550/2200/S by Nalco; Mirapol 550 by Rhodia; Rheocare CC7/CCP7 by Cosmetic Rheologies; Salcare HSP-7/SC10/ Super 7 by Ciba); copolymers of dimethyldiallylammoniumchlorides and acrylic acids, including polymers known as polyquaternary-22 (e.g. Merquat 280/Merquat 295 by Nalco).

6) Quaternary diammonium polymers comprising repeat units corresponding to [- N+(R1)(R2) - Al - N+(R3)(R4) - Bl -] [2X-], in which Rl, R2, R3 and R4, which may be identical or different, are chosen from aliphatic, alicyclic and arylaliphatic radicals comprising from 1 to 20 carbon atoms and from lower hydroxyalkylaliphatic radicals, or Rl, R2, R3 and R4, together or separately, constitute, with the nitrogen atoms to which they are attached, heterocycles optionally comprising a second heteroatom other then nitrogen, or Rl, R2, R3 and R4, are chosen from liner or branched C1-C6 alkyl radicals substituted with at least one group chosen from nitrile, ester, acyl and amide groups and groups of -CO-0-R5-D and -CO-NH- R5-D wherein R5 is chosen from alkylene groups and D is chosen from quaternary ammonium groups. Al and Bl, which may be identical or different, are chosen from linear and branched, saturated or unsaturated polymethylene groups comprising 2 to 20 carbon atoms. The polymethylene groups may comprise, linked to or intercalated in the main ring, at least one entity chosen from aromatic rings, oxygen and sulphur atoms and sulphoxide, sulphone, disulphide, amino, alkylamino, hydroxyl, quaternary, ammonium, ureido, amide and ester groups, and X- is an anion derived from inorganic and organic acids. D is chosen from a glycol residue, a bis- secondary diamine residue, a bis-primary diamine residue or a ureylene group. Suitable examples include polymers known as Hexadimethrine chloride, where Rl, R2, R3 and R4 are each methyl radicals, Al is (CH2)3 and Bl is (CH2)6 and X = CI; as polyquaternium-34 where Rland R2 are ethyl radicals and R3 and R4 are methyl radicals and Al is (CH2)3 and Bl is (CH2)3 and X = Br (e.g. Mexomere PAX by Chimax).

7) Polyquaternary ammonium polymers comprising repeating units of formula [-

N+(R6)(R7)-(CH2)r-NH-CO-(CH2)q-(CO)t-NH-(CH2)s-N+(R8)(R9) -A-][2X-], in which R6, R7, R8 and R9 which may be identical or different, are chosen from a hydrogen atom and a methyl, ethyl, propyl, hydroxyethyl, hydroxypropyl, and -CH2CH2(OCH2CH2)pOH radicals, wherein p is equal to 0 or an integer ranging from 1 to 6, wherein R6, R7, R8 and R9 do not all simultaneously represent a hydrogen atom. R and s which maybe identical or different are each an integer ranging from 1 to 6, q is equal to 0 or an integer ranging from 1 to 34 and X- is anion such as a halide. T is an integer chosen to be equal to 0 or 1. A is chosen from divalent radicals such as -CH2-CH2-0-CH2-CH2-. Suitable examples include: polymers known as polyquaternium-2, where r=s=3, q=0,t=0, R6, R7, R8 and R9 are methyl groups, and A is -CH2- CH2-0-CH2-CH2 (e.g. Ethpol PQ-2 from Ethox; Mirapol A- 15 by Rhodia); as polyquaternium- 17 where r=s=3, q=4, t=l R6, R7, R8 and R9 are methyl groups, and A is - CH2-CH2-0-CH2-CH2; as Polyquaternium 18, where r=s=3, q=7, t=l R6, R7, R8 and R9 are methyl groups, and A is -CH2-CH2-0-CH2-CH2; as the block copolymer formed by the reaction of Polyquaternium-2 with Polyquaternium- 17, which are known as Polyquaternium 27 (e.g. Mirapol 175 by Rhodia).

8) Copolymers of vinylpyrrolidones and of vinylimidazoles and optionally vinylcaprolactums, including polymers known as Polyquaternary- 16 formed from methylvinylimidazolium chlorides and vinylpyrrolidones (e.g. Luviquat FC370//FC550/FC905/HM-552 by BASF); copolymers of vinylcaprolactams and vinylpyrrolidones with methylvinylimidazolium methosulfates, including polymers known as Polyquaternium-46 (e.g. Luviquat Hold by BASF); copolymers of vinylpyrrolidones and quatemized imidazolines, including polymers known as polyquaternary 44 (e.g. Luviquat Care by BASF). 9) Polyamines such as Polyquart H sold by Cognis under the reference name polyethylene glycol (15) tallow polyamine.

10) Cross linked methacryloyloxy(Cl-C4)alkyltri(Cl-C4)alkylammonium salt polymers such as the polymers obtained by homopolymerisation of dimethylaminoethyl methacrylates quaternized with methyl chloride, or by copolymerisation of acrylamides with dimethylaminoethyl methacrylates quaternized with methyl chloride, the homo or copolymerisation being followed by crosslinking with a compound comprising olefinic unsaturation, such as methylenebisacrylamides, including polymers known as Polyquaternium- 37 (e.g. Synthalen CN/CR/CU sold by 3V sigma; or as a dispersion in another media such as Salcare SC95/SC96 by Ciba; Rheocare CTH(E) by Cosmetic Rheologies) and polymers known as Polyquaternium-32 (e.g. sold as a dispersion in mineral oil such as Salcare SC92 by Ciba).

11) Further examples of cationic polymers include polymers known as Polyquaternium 51 (e.g. Lipidure-PMB by NOF), as Polyquaternium 54 (e.g. Qualty-Hy by Mitsui), as Polyquaternium 56 (e.g. Hairrol UC-4 by Sanyo chemicals), as Polyquaternium 87 (e.g. Luviquat sensation by BASF).

12) Silicone polymers comprising cationic groups and/or groups which may be ionised into cationic groups. Suitable examples include cationic silicones of the general formula (R10- N+(CH3)2)-Rll-(Si(CH3)2-O)x-Rl l-(N+(CH3)2)-R10), where R10 is an alkyl derived from coconut oil, and Rl l is (CH2CHOCH20(CH2)3 and x is a number between 20 and 2000, including polymers known as Quaternium 80 (e.g. Abil Quat 3272/3474 sold by Goldschmidt); silicones containing groups which may be ionised into cationic groups, for example aminosilicones containing at least 10 repeating siloxane -(Si(CH3)2-0) units within the polymer chain, with either terminal, graft or a mixture of terminal and graft aminofunctional groups. Example functional groups are not limited to aminoethylaminopropyl, aminoethylaminoisobutly, aminopropyl. In the case of graft polymers, the terminal siloxane units can either be (CH3)3Si-0 or R12(CH3)2Si-0, where R12 can be either OH or OR13, where R13 is a C1-C8 alky group, or a mixture of both functional terminal groups. These silicones are also available as preformed emulsions. Polymer with terminal siloxane units of (CH3)3Si-0 examples includes polymers known as trimethylsilylamodimethicone (e.g. DC-2-8566, DC 7224, DC-2-8220 by Dow Corning; SF1708, SM 2125 GE Silicones; Wacker Belsil ADM 653 by Wacker silicones). Further examples include polymers with terminal siloxane units of (R120)(CH3)2Si-0 where R12 can be either OH or OR13, where R13 is a C1-C8 alky group, or a mixture of both functional terminal groups, known as amodimethicone (e.g. Wacker Belsil ADM 1100/ ADM 1600/ADM 652/ADM 6057E/ADM 8020 by Wacker Silicones; DC929, DC939, DC949 by Dow Corning; SM2059 by GE silicones). Silicones containing groups which may be ionised into cationic groups - for example silicones containing at least 10 repeating siloxane -(Si(CH3)2-0) units within the polymer chain, with either terminal, graft or a mixture of terminal and graft aminofunctional groups, together with additional functional groups. Additional functional groups can include polyoxyalkylene, the reaction product of amines and carbinols, alky chains. For example products known as methoxy PEG/PPG-7/3 Aminopropyl Dimethicone (e.g. Abil Soft AF100 by Degussa). For example products known as Bis (C13-15 Alkoxy) PG Amodimethicone (e.g. DC 8500 by Dow Corning).

In an embodiment, the cationic polymer is selected from the group consisting of polyquaternium 37, polyquaternium 7, polyquaternium 22, polyquaternium 87, and mixtures thereof; alternatively from the group consisting of polyquaternium 37, polyquaternium 22, and mixtures thereof. Surfactants

The hair care compositions described herein may further comprise a surfactant. Suitable surfactants generally have a lipophilic chain length of from about 8 to about 30 carbon atoms and can be selected from anionic surfactants, nonionic surfactants, amphoteric surfactants, cationic surfactants, and mixtures thereof.

In an embodiment, the hair care compositions may comprise a total amount of surfactants ranging from about 0.01% to about 60%, alternatively from about 0.05% to about 30%, alternatively from about 0.1% to about 25%, alternatively from about 0.1% to about 20%, by weight of the total composition.

The compositions may comprise a mixture of an anionic surfactant and an amphoteric surfactant with one or more nonionic surfactants. The composition may comprise a total amount of anionic surfactant ranging from about 0.01% to about 20%, alternatively from about 0.05% to about 15%, alternatively from about 0.1% to about 15%, by weight of the total composition; and a total amount of amphoteric and/or nonionic components, which may range independently from each other from about 0.01% to about 15%, alternatively from about 0.05% to about 10%, alternatively from about 0.1% to about 8%, by weight of the total composition.

Suitable anionic surfactants include, but are not limited to: salts (such as alkaline salts, for example, sodium salts, ammonium salts, amine salts, amino alcohol salts and magnesium salts) of the following compounds: alkyl sulphates, alkyl ether sulphates, alkylamido ether sulphates, alkylarylpolyether sulphates, monoglyceride sulphates; alkyl sulphonates, alkyl phosphates, alkylamide sulphonates, alkylaryl sulphonates, a-olefin sulphonates, paraffin sulphonates; alkyl sulphosuccinates, alkyl ether sulphosuccinates, alkylamide sulphosuccinates; alkyl sulphosuccinamates; alkyl sulphoacetates; alkyl ether phosphates; acyl sarcosinates; acyl isethionates; N-acyltaurates; and mixtures thereof. The alkyl or acyl radical of all of these various compounds, for example, comprises from 8 to 24 carbon atoms, and the aryl radical, for example, is chosen from phenyl and benzyl groups. Among the anionic surfactants, which can also be used, mention may also be made of fatty acid salts such as the salts of oleic, ricinoleic, palmitic and stearic acids, coconut oil acid or hydrogenated coconut oil acid; acyl lactylates in which the acyl radical comprises from 8 to 20 carbon atoms. Weakly anionic surfactants can also be used, such as alkyl-D-galactosiduronic acids and their salts, as well as polyoxyalkylenated (C6-C24) alkyl ether carboxylic acids, polyoxyalkylenated (C6-C24) alkylaryl ether carboxylic acids, polyoxyalkylenated (C6-C24) alkylamido ether carboxylic acids and their salts, for example, those comprising from 2 to 50 ethylene oxide groups, and mixtures thereof. Anionic derivatives of polysaccharides, for example carboxyalkyl ether of alkyl polyglucosides, can be also used.

Nonionic surfactants are compounds that are well known (see, for example, in this respect "Handbook of Surfactants" by M. R. Porter, published by Blackie & Son (Glasgow and London), 1991 , pp. 116- 178). Suitable non-ionic surfactants include, but are not limited to: polyethoxylated, polypropoxylated and polyglycerolated fatty acids, alkyl phenols, a-diols and alcohols comprising a fatty chain comprising, for example, from 8 to 18 carbon atoms, it being possible for the number of ethylene oxide or propylene oxide groups to range, for example, from 2 to 200 and for the number of glycerol groups to range, for example, from 2 to 30. Mention may also be made of copolymers of ethylene oxide and of propylene oxide, condensates of ethylene oxide and of propylene oxide with fatty alcohols; polyethoxylated fatty amides preferably having from 2 to 30 mol of ethylene oxide and their momoethanolamine and diethanolamine derivatives, polyglycerolated fatty amides, for example, comprising on average from 1 to 5, and such as from 1.5 to 4, glycerol groups; polyethoxylated fatty amines such as those containing from 2 to 30 mol of ethylene oxide; oxyethylenated fatty acid esters of sorbitan having from 2 to 30 mol of ethylene oxide; fatty acid esters of sucrose, fatty acid esters of polyethylene glycol, alkylpolyglycosides, N-alkylglucamine derivatives, amine oxides such as (Cio-Ci4)alkylamine oxides or N-acylaminopropylmorpholine oxides. Suitable amphoteric surfactants include, but are not limited to: aliphatic secondary and tertiary amine derivatives in which the aliphatic radical is chosen from linear and branched chains comprising from 8 to 22 carbon atoms and comprising at least one water-soluble anionic group (for example carboxylate, sulphonate, sulphate, phosphate or phosphonate); mention may also be made of (C8-C2o)alkylbetaines, sulphobetaines, (C8-C2o)alkylamido(Ci-C6)alkylbetaines or (C8-C2o)alkylamido(Ci-C6)alkylsulphobetaines. Among the amine derivatives, mention may be made of the products sold as Miranol, as described, for example, in U.S. Pat. No. 2,528,378 and having the structures of: R 2 -CON HCH 2 CH 2 — N + (R 3 )(R4)(CH 2 COO-), (XIX) in which: R 2 is chosen from alkyl radicals derived from an acid R 2 -COOH present in hydrolysed coconut oil, and heptyl, nonyl and undecyl radicals, R3 is a β-hydroxyethyl group and R 4 is a carboxymethyl group; and of R 5 -CONHCH 2 CH 2 — N(B)(C) (XX) wherein B represents— CH 2 CH 2 OX', C represents— (CH 2 ) Z — Y', with z=l or 2, X' is chosen from the— CH 2 CH 2 — COOH group and a hydrogen atom, Y' is chosen from— COOH and— CH 2 — CHOH— SO3H radicals, R5 is chosen from alkyl radicals of an acid R5-COOH present in coconut oil or in hydrolysed linseed oil, alkyl radicals, such as C 7 , C9, Cii and C13 alkyl radicals, a Cn alkyl radical and its iso form, and unsaturated C17 radical. These compounds are classified in the CTFA dictionary, 5 th edition, 1993, under the names disodium cocoamphodiacetate, disodium lauroamphodiacetate, disodium caprylamphodiacetate, disodium capryloamphodiacetate, disodium cocoamphodipropionate, disodium lauroamphodipropionate, disodium caprylamphodipropionate, disodium capryloamphodipropionate, lauroamphodipropionic acid, and cocoamphodipropionic acid. Salts of diethyl aminopropyl cocoaspartamid can be also used.

Suitable cationic surfactants include, but are not limited to, the quaternary ammonium salts A) to D) as defined hereinafter:

y ammonium salts of general formula (XXI) below:

wherein X " is an anion chosen from halides (chloride, bromide and iodide), (C 2 -C 6 )alkyl sulphates, such as methyl sulphate, phosphates, alkyl and alkylaryl sulphonates, and anions derived from organic acids, such as acetate and lactate, and wherein Ri to R 4 are as below in i) or ii).

i) Radicals Ri to R3, which may be identical or different, are chosen from linear and branched aliphatic radicals comprising from 1 to 4 carbon atoms, and aromatic radicals such as aryl and alkylaryl. The aliphatic radicals may comprise at least one hetero atom such as oxygen, nitrogen, sulphur and halogens. The aliphatic radicals may be chosen from: alkyl, alkoxy and alkylamide radicals. R 4 is chosen from linear and branched alkyl radicals comprising from 16 to 30 carbon atoms. A suitable cationic surfactant is, for example, a behenyltrimethylammonium salt (for example chloride).

ii) Radicals Ri and R2, which may be identical or different, are chosen from linear and branched aliphatic radicals comprising from 1 to 4 carbon atoms, and aromatic radicals such as aryl and alkylaryl. The aliphatic radicals may comprise at least one hetero atom such as oxygen, nitrogen, sulphur and halogens. The aliphatic radicals may be chosen from alkyl, alkoxy, alkylamide and hydroxyalkyl radicals comprising from about 1 to 4 carbon atoms. Radicals R3 and R 4 , which may be identical or different, are chosen from linear and branched alkyl radicals comprising from 12 to 30 carbon atoms, the said alkyl radicals comprise at least one function chosen from ester and amide functions. R3 and R 4 may be chosen from (Ci2-C22)alkylamido(C2- C 6 )alkyl and (C12-C22) alkylacetate radicals. A suitable cationic surfactant is, for example, a dicetyldimethyl ammonium salt (for example chloride);

B) Quaternary ammonium salts of imidazolinium of formula (XXII) below: in which R5 is chosen from alkenyl and alkyl radicals comprising from 8 to 30 carbon atoms, for example fatty acid derivatives of tallow, R 6 is chosen from a hydrogen atom, Ci-C 4 alkyl radicals and alkenyl and alkyl radicals comprising from 8 to 30 carbon atoms, R7 is chosen from Ci-C 4 alkyl radicals, Rs is chosen from a hydrogen atom and Ci-C 4 alkyl radicals, and X " is an anion chosen from halides, phosphates, acetates, lactates, alkyl sulphates, alkyl sulphonates and alkylaryl sulphonates. In one embodiment, R5 and R 6 are, for example, a mixture of radicals chosen from alkenyl and alkyl radicals comprising from 12 to 21 carbon atoms, such as fatty acid derivatives of tallow, R7 is methyl and Rs is hydrogen. Such a product is, for example, Quaternium-27 (CTFA 1997) or Quaternium-83 (CTFA 1997), commercially available as "Rewoquat®" W75/W90/W75PG/W75HPG by Witco.

m salts of formula (XXIII): (XXIII) in which R9 is chosen from aliphatic radicals comprising from about 16 to 30 carbon atoms, Rio, R11, R12, Ri3 and R14, which may be identical or different, are chosen from hydrogen and alkyl radicals comprising from 1 to 4 carbon atoms, and X " is an anion chosen from halides, acetates, phosphates, nitrates and methyl sulphates. Such diquaternary ammonium salts, for example, include propanetallowdiammonium dichloride.

D) Quaternary ammonium salts comprising at least one ester function, of formula (XXIV) below:

O (C r H 2r O) z R 18

_ l l _ _

R-I7 C (OC n H 2 n) y N (CpH 2p O) x R 16 R 16 X

R 15 (XXIV)

in which: R15 is chosen from C1-C6 alkyl radicals and C1-C6 hydroxyalkyl and dihydroxyalkyl radicals; R16 is chosen from: a radical R19C(0)-, linear and branched, saturated and unsaturated C1-C22 hydrocarbon-based radicals R20, and a hydrogen atom, R18 is chosen from: a radical R21C(0)-, linear and branched, saturated and unsaturated C1-C6 hydrocarbon-based radicals R22, and a hydrogen atom, R17, R19 and R21 , which may be identical or different, are chosen from linear and branched, saturated and unsaturated C7-C21 hydrocarbon-based radicals; n, p and r, which may be identical or different, are chosen from integers ranging from 2 to 6; y is chosen from integers ranging from 1 to 10; x and z, which may be identical or different, are chosen from integers ranging from 0 to 10; X- is an anion chosen from simple and complex, organic and inorganic anions; with the proviso that the sum x+y+z is from 1 to 15, that when x is 0, then R16 is R20 and that when z is 0, then R18 is R22. In one embodiment, the ammonium salts of formula (XXXXI) can be used, in which: R15 is chosen from methyl and ethyl radicals, x and y are equal to 1 ; z is equal to 0 or 1 ; n, p and r are equal to 2; R16 is chosen from: a radical R19C(0)-,methyl, ethyl and C14-C22 hydrocarbon-based radicals, and a hydrogen atom; R17, R19 and R21 , which may be identical or different, are chosen from linear and branched, saturated and unsaturated C7-C21 , hydrocarbon-based radicals; R18 is chosen from: a radical R21C(0)- and a hydrogen atom. Such compounds are commercially available as Dehy quart by Cognis, Stepanquat by Stepan, Noxamium by Ceca, and Rewoquat WE 18 by Rewo-Witco. Exemplary Formulations

% by weight

Composition A

Hair Health Compound 0.05 - 5.0

Ammonium Hydroxide (aq. 28% active) 4.50

Water q.s. to 100

Composition B

Hair Health Compound 0.05 - 5.0

Ammonium carbonate 10.00

Water q.s. to 100

Composition C

Hair Health Compound 0.05 - 5.0

FlexiThix™ 3 5.00

Phenoxyethanol 0.30

Sodium Benzoate 0.30

Disodium EDTA 0.10

Ammonium Hydroxide (aq. 28% active) 4.00

Water q.s. to 100

Composition D

Hair Health Compound 0.05 - 5.0

Aculyn™ 46 4 15.80

Phenoxyethanol 0.30

Sodium Benzoate 0.30

Disodium EDTA 0.10

Ammonium Hydroxide (aq. 28% active) 4.00

Water q.s. to 100

Composition E

Hair Health Compound 0.05 - 5.0

Plantaren® 2000 N UP 2 20.00

Phenoxyethanol 0.30

Sodium Benzoate 0.30

Disodium EDTA 0.10

Ammonium Hydroxide (aq. 28% active) 4.00

Water q.s. to 100 Composition F

Hair Health Compound 0.05 - 5.0

Non-anionic foaming agent 5.00

Phenoxyethanol 0.30

Sodium Benzoate 0.30

Disodium EDTA 0.10

Ammonium Hydroxide (aq. 28% active) 4.00

Water q.s. to 100

Composition G

Hair Health Compound 0.05 - 5.0

Cetyl Alcohol 2.25

Stearyl Alcohol 2.25

Ceteareth 15 1.5

Tetrasodium EDTA 0.1

Phenoxyethanol 0.3

Sodium Benzoate 0.25

Water qs to 100

The compositions described herein may be formed as thick liquid, cream, gel, emulsion, foam, aerosol mousse or as a solid form to which water is added to form a thickened vehicle suitable for treating the hair.

DATA

Uptake:

5-10 mL of aq. 0.1-0.2 wt% solution of each of the compounds (adjusted to pH 7 with either NaHC03 or citric acid) is shaken vigorously with 1 g of hair (human virgin hair or bleached yak hair) in a scintillation vial for 5 minutes. The concentration of the active ingredient is measured before and after treatment by UPLC analysis. Examples A, B, and G are commercially available control compounds. Example E is an additional control compound. The remaining examples are embodiments of the hair health compounds described herein. Table 1. Uptake data

It is noted that terms like "preferably," "usually", "generally," "commonly," and "typically" are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present invention.

For the purposes of describing and defining the present invention it is additionally noted that the term "substantially" is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term "substantially" is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.

Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as preferred or particularly advantageous, it is contemplated that the present invention is not necessarily limited to these preferred aspects of the invention.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.