Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF JOINING EXPANDABLE TUBULARS
Document Type and Number:
WIPO Patent Application WO/2004/007134
Kind Code:
A1
Abstract:
A method of joining expandable tubulars and expanding the joined tubulars comprises joining the tubulars by forge welding and flushing a reducing flushing gas around the heated tubular ends during at least part of the forge welding operation such that oxides are removed from the forge welded tubular ends and the amount of irregularities between the forge welded tubular ends is limited and radially expanding the joined tubulars.

Inventors:
ANDERSON MARK WILSON (NL)
DEN BOER JOHANNIS JOSEPHUS (NL)
COLE ANTHONY THOMAS (NL)
DIMITRIADIS KLISTHENIS (NL)
VOLLEBREGT JAN ERIK (NL)
ZIJSLING DJURRE HANS (NL)
Application Number:
PCT/EP2003/007781
Publication Date:
January 22, 2004
Filing Date:
July 17, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SHELL INT RESEARCH (NL)
SHELL CANADA LTD (CA)
ANDERSON MARK WILSON (NL)
DEN BOER JOHANNIS JOSEPHUS (NL)
COLE ANTHONY THOMAS (NL)
DIMITRIADIS KLISTHENIS (NL)
VOLLEBREGT JAN ERIK (NL)
ZIJSLING DJURRE HANS (NL)
International Classes:
B23K13/00; B23K13/01; B23K20/00; B23K20/02; B23P15/26; (IPC1-7): B23K13/00; B23K13/01; B23K20/00; B23K20/02
Domestic Patent References:
WO1998033619A11998-08-06
WO1998000626A11998-01-08
Foreign References:
EP1078709A22001-02-28
US4728760A1988-03-01
US2604569A1952-07-22
EP1167852A22002-01-02
US4566625A1986-01-28
Download PDF:
Claims:
CLAIMS
1. A method of joining expandable tubulars and expanding the joined tubulars, the method comprising: joining the tubulars by forge welding whilst flushing a reducing flushing gas around the heated tubular ends during at least part of the forge welding operation such that oxides are removed from the forge welded tubular ends and the amount of irregularities between the forge welded tubular ends is limited ; and radially expanding the joined tubulars.
2. The method of claim 1, wherein the tubulars comprise slots and/or other perforations at or near the forge welded ends, which slots and/or other perforations are filled with a heat resistant filler during the welding process.
3. The method of claim 2, wherein the tubular ends are heated by passing a high frequency current in circumferential direction through'the tubular walls near the tubular ends that are to be joined, and the heat resistant filler comprises an electrically conductive ceramic material.
4. The method of claim 2 in which slots and/or perforations which intersect the exposed tubular ends have an increased width at the tubular ends to mitigate against forging together of the side walls of the slots and/or perforations when the tubular ends are joined by forge welding.
5. The method of claim 1, wherein thetubular ends are both expanded and folded into a substantially similar dented or corrugated shape before the forge welding operation, whereupon the dented or corrugated tubular ends are forge welded together and are umfolded lllto a. substantially cylindrical shape during the subsequent tubeexpansion process.
6. The method of claim 5, wherein the tubulars have an unslotted, substantially continuous, wall in the region of the welded ends and comprise an array of staggered slots and/or other perforations away of the welded ends, such that when the tube is expanded the welded initially dented or corrugated tubular ends unfold to a substantially cylindrical shape and the slots and/or other perforations are widened.
7. The method of claim 1, wherein the ends of a pair of at least partially overlapping tubulars are joined by forge welding by heating the overlapping tubular ends to a forge welding temperature and pressing the heated partially overlapping tubular ends together whilst a reducing flushing gas is flushed around the heated tubular ends during at least part of the forge welding operation.
8. The method'of claim 7, wherein a forge welding device is inserted into the inner tubular which heats up the tubular end, flushes a reducing flushing gas into any gap remaining between the overlapping tubular ends and which subsequently presses the outer surface of the heated end of the inner tubular against the inner surface of the outer tubular to join said tubular ends by forge welding.
9. The method of any preceding claim, wherein the tubular ends are teethed or have a sinusoidal shape in order to alleviate forces to the forge welded tubular ends during the expansion and/or unfolding process.
10. The method of any preceding claim, wherein the flushing gas is a nonexplosive mixture of a substantially inert gas and a reducing gas.
11. The method of claim 10, wherein the flushing gas comprises more than 90% by volume of a substantially inert gas, such as nitrogen, helium or argon and more than 2% by volume of hydrogen.
Description:
REPORT 1 c r, | IHlTIElR FiAL S rsi lREIPO T k == ! s (PCT Article 18 and Rules 43 and 44) Applicant's or agents file reference FOR FURTHER see Notification of Transmittal of international Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below. TS 6380 PCT International application No. International filing date (daylmonfhlyear) (Earliest) Priority Date (day/month/year) PCT/EP 03/07781 17/07/2003 17/07/2002 Applicant SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B. V. This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau. This International Search Report consists of a total of 6 sheets. It is also accompanied by a copy of each prior art document cited in this report. 1. Basis of the report a. With regard to the language, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item. the international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23. 1 (b)). b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of the sequence listing : Q contained in the international application in written form. filed together with the international application in computer readable form. furnished subsequently to this Authority in written form. furnished subsequently to this Authority in computer readble form. the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished. the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished 2. g Certain claims were found unsearchable (See Box ì). 3. g Unity of invention is lacking (see Box II). 4. With regard to the title, the text is approved as submitted by the applicant. the text has been established by this Authority to read as follows : METHOD OF JOINING EXPANDABLE TUBULAR 5. With regard to the abstract, the text is approved as submitted by the applicant. I v I the text has been established, according to Rule 38. 2 (b), by this Authority as it appears in Box Ill. The applicant may, l"-J within one month from the date of mailing of this international search report, submit comments to this Authority. 6. The figure of the drawings to be published with the abstract is Figure No. as suggested by the applicant. Xij None of the figures. because the applicant failed to suggest a figure. because this figure better characterizes the invention.

METHOD OF JOINING EXPANDABLE TUBULARS Background of the Invention The invention relates to a method of joining expandable tubulars.

Expandable tubulars are increasingly used in oil and gas production wells and may comprise slots or other perforations which are widened as a. result of the expansion or may have a continuous un-slotted'wall which is circumferentially stretched by an expansion device such as an expansion cone and/or a set of rollers.

Expandable tubulars are generally joined by mechanical connectors since welding may create at least some strengthening and/or weakening of the pipe wall in the region of the weld, and strengthening will hamper or even disrupt the expansion process whereas weakening will result in a tube which will easily collapse, buckle and/or burst in the welding zone.

In addition, here it is required to weld slotted liners there are particular problems to overcome. In the first instance slotted expandable tubulars are difficult to'seal completely to allow flushing with non-oxidising or reducing-gases or gas mixtures and removal of air. In the second place welding the end of unprepared slotted liners will also cause the slots at the end of the tubular to be welded also. This impedes expansion and prevents proper functioning of the slotted expandable tubular.

It is known from International patent application WO. 98/33619 to connect expandable tubulars by amorphous bonding and from International patent application

WO Ov30bil to connect expandable tubulars by laser welding. However these connection techniques are time consuming and require a very precise positioning of the pipe ends relative to each other and machining the pipe ends into an extremely accurate flat shape that these technologies are not practical for use on for example a drilling rig, an offshore oil platform or pipe laying vessel.

It is an object of the present invention to provide a method of joining expandable tubulars by a relatively quick and simple welding operation, which can be carried out more easily on a drilling rig, offshore platform or pipe laying vessel than the prior art welding techniques and which generates a high quality weld that reduces variation of the pipe wall strength in the welding zone to a minimal level.

Summary of the Invention The method according to the invention comprises joining the tubulars by forge welding whilst flushing a reducing flushing gas around the heated tubular ends during at least part of the forge welding operation such that oxides are removed from the region of the forge welded tubular ends and the amount of irregularities between the forge welded tubular ends is limited, whereupon the thus joined tubulars are radially expanded.

The tubulars may comprise slots and/or other perforations at or near the forge welded ends, which slots and/or other perforations are filled with a heat resistant filler during the forge welding process.

Optionally, the tubular ends are heated by passing a high frequency current in circumferential direction through the tubular walls near the tubular ends that are to be joined, and the heat resistant filler comprises an

electrically conductive ceramic'material. In addition, where it is desirable to provide a gas seal around the weld area to allow flushing with non-oxidising or reducing gas or gas mixtures extended internal and external sealing regions are required.

The tubular ends that are to be joined may both be expanded and folded into a substantially similar dented or corrugated shape before the forge welding operation, whereupon the dented or corrugated tubular ends are forge welded together and are unfolded into a substantially cylindrical shape during the subsequent tube expansion process. In such case the tubulars may have an un- slotted, substantially continuous, wall in the region of the welded ends and comprise an array of staggered slots and/or other perforations away of the welded ends, such that when the tube is expanded the welded initially dented or corrugated tubular ends unfold to a substantially cylindrical shape and the slots and/or other perforations are widened The tubulars may be joined e. g. downhole in a well by forge welding wherein the tubular ends are heated to a forge welding temperature and pressed together whilst a reducing flushing gas is flushed around the heated tubular ends during at least part of the'forge welding operation. In such case the ends of the tubulars may at least partly overlap each other and a forge welding, device is inserted into the inner tubular which heats up the tubular end, flushes a reducing flushing gas into any gap remaining between the overlapping tubular ends and which subsequently presses the outer surface of the heated end of the inner tubular against the inner surface of the outer tubular to join said tubular ends by forge welding.

OpLivna1 ly, the-tubular ends are teethed or have a complementary sinusoidal shape in order to alleviate forces to the forge welded tubular ends during the expansion and/or unfolding process.

It is preferred that the flushing gas is a non- explosive mixture of a substantially inert gas and a reducing gas, which mixture may comprise more than 90% by volume of a substantially inert gas, such as nitrogen, helium or argon and more than 2% by volume of hydrogen.

A large variety of heating technologies may be used to make the pipe ends hot enough such that the metallurgical bond can be made. The heating techniques may involve electric, electromagnetic, induction, infrared, arcing and/or friction heating or combinations of these and/or other heating methods.

When used in this specification the term forge welding is intended to encompass all techniques which involve circumferential heating of pipe ends and subsequent metallurgical bonding the heated pipe ends, including welding techniques that are generally known as fusion welding, friction welding, flash welding and/or butt welding.

It is known from US patents 4,566, 625 ; 4, 736,084 ; 4,669, 650 and 5,721, 413 issued to Per H. Moe that it may be beneficial to flush the pipe ends just before and during the forge welding operation with a reducing flushing gas, such as hydrogen. or carbon monoxide, such that any oxygen skin is removed from the heated pipe ends and a metallurgical bond with a minimal amount of irregularities is obtained. It is also known-from US patents 2,719, 207 and 4,728, 760 to use non explosive mixtures comprising about 95% by volume of a substantially insert gas, such as argon,

nitrogen candi'or helium, and about 5% by volume of a reducing gas, such--as hydrogen and/or carbon monoxide for flash welding and induction butt welding.

Description of preferred embodiments Preferred embodiments of the method according to the invention will be described in more detail and by way of example with reference to the accompanying drawings, in which Fig. 1 depicts a partially longitudinal sectional and partially side view of a slotted tubular at the diameter after installation; Fig. 2 depicts a cross-sectional view of the tubular of Fig. 1 after the tubular end is folded into a corrugated shape; Fig. 3 is a side view of the tubular shown in Fig. 2 showing the transition from the slotted mid section towards the corrugated end, which is subsequently forge welded to a corrugated end of an adjacent tubular; Fig.. 4 is an illustration of the steps required in an embodiment of a technique to ensure that the slots or perforations created in various expandable tubulars are filled with a refractory material to allow the pipe ends to be forge welded without the slots or perforations being welded together ; Fig. 5 depicts a seal assembly for forge welding of a slotted or perforated expandable tubular in which internal and external sealing areas have been significantly extended beyond that used for non-slotted and non-perforated tubulars; Fig. 6 depicts a pair of expandable tubulars having intermeshing teethed ends that are joined by forge welding ;

Fig. 7 depicts a pair of expandable-tubulars having in circumferential direction sinusoidal intermeshing shaped ends that are joined by forge welding ; and Fig. 8 depicts a pair of expandable tubulars having overlapping sinusoidal ends that are joined by forge welding.

Expandable slotted tubulars as shown in Figures 1-8 may be used in oil'and gas wells to control e. g. sand production.

For this purpose the tubulars may wrapped with an assembly of screens with a specific mesh size to prevent sand from entering into the hole during production.

The tubulars with the screens wrapped around them are supplied to the well location in lengths of typically 10 m. It is known from US patent No. 5,924, 745 to connect the overlapping ends of expandable tubular sections by slotted thread connections.

The slots in both parts of the thread connections are aligned and locked during make-up of the tubular on the rig. Once the tubular has reached its target depth in the hole it is expanded by pushing a cone through the tubular to ensure an intimate contact between the outer wall of the expanded tubular and the formation or casing inner wall.

The slotted connections known from US patent No. 5,924, 745 are designed in such a way that the expansion force'required at the cone to expand the connection is similar to that of the slotted pipe itself.

This is essential because it enables the cone to be pushed down the hole without the risk of buckling the un- expanded pipe section below the cone.

However, the known slotted connections are expensive elements of the tubular and the make-up of the

while running the tubular into the hole critical operation.

The forge welding method according to the invention aims at replacing of the threaded connection known from US patent No. 5, 924, 745 by a welded connection to overcome the disadvantages of the threaded connections.

The method according to invention may be used to forge weld the ends of a partially slotted tubular 1 as shown in Fig 1 to the ends of adjacent partially slotted expandable tubulars (not shown).

The unexpanding tubular 1 has a diameter D2 which is at least 10% smaller to than the diameter of the expanded tubular (not shown) after expansion in the hole. The end faces 2 of the tubular are machined as per the requirements for the welding process to be applied on the rig site. The middle section of the tubular 3 is provided with slots 4 leaving solid sections 5 of pipe at both ends of the tubular.

Fig. 2 shows the solid, unslotted, end section 5 which is folded in such a way that the outer diameter of the section equals the diameter D1 of the unexpanded tubular while running into the. hole.

After that the middle section 3 is also reduced to the same diameter D1 by compressing the slots machined in the pipe body which is shown in Fig. 3. This implies that the middle section remains cylindrical. Finally the tubular 3 is provided with an expandable sand-screen assembly (not shown).

On the rig the corrugated end sections 5 of two tubular sections are welded together by forge welding whilst a reducing flushing gas is flushed around the heated tubular ends during at least part of the forge welding operation. Once the string of unexpanded tubulars

joined by forge welding has reached the target depth a cone is pushed-through the tubular string from top to bottom or vice versa. The slotted pipe body is thereby expanded to an enlarged diameter D2 and the corrugated end sections of the joints which are forge welded together are unfolded and reach their original diameter again, which is similar to the diameter D2 of the expanded slotted tubular sections.

Advantages of the forge welded connection are: Handling of the tubular joints on the rig site is drastically simplified because alignment of the tubular joints is easily done by aligning the corrugated end sections of the joints.

The end sections of the joints are not slotted which facilitates the heating process ; there is a continuous path for the current flow.

The cone force required to shape the solid end sections of the slotted tubulars is much lower than the force required to expand the section because the end sections are only"unfolded" no increase of the circumferential length of the tubular is required.

- A large diameter ratio between the tubular while running into the hole and after installation because this ratio is not limited by the maximum expansion ratio of solid tubulars.

The diameter ratio is governed by the percentage of the circumference of the tubular that is provided with slots.

An alternative process and embodiment of the welded slotted tubular comprises a tubular with an initial diameter equal to that required for running the tubular into the hole. Both end sections of this solid tubular are expanded to the diameter of the tubular after

both expanded end sections-are-provided with slots. Then the expanded end sections (solid and slotted part) are folded to reduce their diameter again to that of the slotted part of the tubular.

After this, the procedure is identical to that described above. The limitation of this process is that the maximum diameter ratio between pre and post expansion that can be achieved is governed by the maximum expansion ratio of the solid pipe.

To prevent the slots or perforations which are a necessary element in a variety of expandable tubulars welding together during the forge weld process it is necessary to fill the slots or perforations with a non-weld-able material which will not interfere with the welding and expansion processes.

Figure 4 illustrates the steps required to fill the slots or perforations with ceramic slurry that sets inside the slots or perforation. The first step in the operation, indicates a solid tubular 6 prepared for slotting or perforating. Slots or perforations 7 are then cut. In some variations of the technology slots and/or perforations are cut in a flat sheet which is then worked into tubulars. Both of these alternative methods may be used to produce slotted/perforated expandable tubulars.

For forge welding it is sometimes advantageous to increase the width of slots which intersect the free surface of the tube butt end for a distance of approximately 1-2mm from the butt end. Once the slots or perforations 7 are made a coffer (not shown) is positioned around the ends of the tubulars and the area is flooded with ceramic slurry 8. Vibration may be applied to ensure that the slurry completely fills the

perforations or slots 7. Tt is necessary for the coffer to encompass an area of the tubular 6 extending from above the tip of the tubular to a region covering at least two rows of perforations or slots. Typically this would require a depth of coverage of approximately 100mm.

Finally, excess ceramic is removed, leaving the slots or perforations 7 completely filled with ceramic filler 9.

During welding of the butted pipe ends it is often advantageous to flush the weld area with a reducing or non-oxidising gas or gas mixture. To accomplish this with slotted or perforated expandable tubulars it is necessary to ensure that the area containing the slots is completely sealed.

Figure 5 illustrates a simple method to accomplish this. A sealing device 12 is positioned inside the upper and lower pipes 10, 16. The sealing device 12 comprises sealing elements 13 that are of a sufficient length to completely cover at least two rows of slots or perforations 11. This configuration ensures that the internal area at the ends of the pipes 10,16 is sealed to allow gas flushing. In addition to the internal seal an external sealing chamber is also required. This sealing chamber has extended sealing elements 14, which are designed to completely cover at least two rows of slots or perforations 11.

The requirement to completely cover at least two rows of slots or perforations 11 as described above is the preferred embodiment however where. the slots or perforations do not overlap it is acceptable to cover only a single row, although this increases the risk of leakage.

Fig. 6 shows two expandable tubular 51,52 with complementary teethed end faces 53. The teethed end

faces 53 can be used to align"the tubulars 51, 52 in angular direction before the end faces 53 are heated and joined by forge welding. The joined tubulars 51,52 are then radially expanded as illustrated by arrows 54.

Fig. 7 shows two expandable tubulars 64, 65 with complementary non-planar end-faces 66 in this case of an in circumferential direction sinusoidal shape which is rotation symmetrical relative to the longitudional axis 67 of the tubulars 64,65.

Welding of the tubular ends 64, 65 together along the length of the contour of the non-planar end face 66 provides a total length of the weld which is larger than the total circumferential length of the pipes and thereby reduces the loading of the weld compared to that of the pipe body when the tubulars are radially expanded as illustrated by arrows 68.

Fig. 8 shows two expandable tubulars 77 and 78 which are partly overlapping. Both tubulars 77 and 78 are provided with a non-planar sinusoidal end face 79,80 which is in contact with the other tubular 78,77. Forge welding of the overlapping sections 81 of the tubulars 77,78 together yields a weld length which is larger than the length of the circumference of the tubulars and thereby reduces the loading of the weld compared to that of the tubular bodies. In addition, this configuration yields a gradual transfer of the loading from one tubular 77 to the other tubular 78 and supports the mitigation of stress concentrations in the overlapping zone 81 of the tubulars 77,78 when the tubulars 77,78 are radially expanded as illustrated by arrows 82.