Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR MAKING AN ELEVATOR AND SYSTEM FOR ELEVATOR DELIVERY
Document Type and Number:
WIPO Patent Application WO/2003/099696
Kind Code:
A1
Abstract:
Method for making an elevator, wherein the roping is selected according to the weight of the elevator car using the same drive machine, traction sheave and rope sheave regardless of the roping. For heavy elevators, Single Wrap roping is used, wherein the hoisting ropes are passed around the traction sheave and the rope sheave guides the ropes and dampens their vibrations, while for light elevators Double Wrap roping is used.

Inventors:
AULANKO ESKO (FI)
MUSTALAHTI JORMA (FI)
VALJUS PETTERI (FI)
Application Number:
PCT/FI2003/000394
Publication Date:
December 04, 2003
Filing Date:
May 23, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KONE CORP (FI)
AULANKO ESKO (FI)
MUSTALAHTI JORMA (FI)
VALJUS PETTERI (FI)
International Classes:
B66B11/08; B66B7/06; (IPC1-7): B66B11/08
Domestic Patent References:
WO1999043595A21999-09-02
Foreign References:
EP1327598A12003-07-16
EP0578237A11994-01-12
FR2640604A11990-06-22
US5957242A1999-09-28
US6035974A2000-03-14
Attorney, Agent or Firm:
KONE CORPORATION (P.O. Box 677, Hyvinkää, FI)
Download PDF:
Claims:
CLAIMS
1. Method for making an elevator, preferably an ele vator without machine room, said elevator compris ing at least an elevator car, a counterweight, hoisting ropes, an electric motor, a traction sheave and a rope sheave, characterized in that, in the method, the roping is selected according to the weight of the elevator car using the same drive machine, traction sheave and rope sheave re gardless of the roping, and Single Wrap roping wherein the hoisting ropes are passed around the traction sheave and the rope sheave guides the ropes and dampens their vibrations is used for heavy elevators and Double Wrap roping is used for light elevators.
2. Method for making an elevator according to claim 1, characterized in that the rope sheave is ar ranged to function as a dampening wheel for the hoisting ropes of the elevator.
3. Method for making an elevator according to claim 1, characterized in that an angle of contact of at least 180° between the traction sheave and the hoisting ropes is achieved.
4. Method for making an elevator according to claim 1, characterized in that the hoisting ropes are thin and have a substantially round crosssection.
5. Method for making an elevator according to claim 1, characterized in that the elevator car and/or the counterweight are/is suspended with a suspen sion ratio of 1: 1,2 : 1,3 : 1,4 : 1 or even with an greater suspension ratio.
6. Method for making an elevator according to claim 1, characterized in that the drive machine is of geared or gearless type.
7. Method for making an elevator according to claim 1, characterized in that the elevator is arranged to operate so that a mounting base, on which the drive machine with the traction sheave and at least one rope sheave are mounted, controls the positions of the rope sheave and traction sheave relative to each other and/or the distance between them.
8. Method for making an elevator according to claim 1, characterized in that at least the drive ma chine of the elevator, the traction sheave and the mounting base are fitted as a complete unit.
9. System for the delivery of an elevator, preferably an elevator without machine room, comprising at least light and heavy elevator cars, counter weights, hoisting ropes, an elevator drive ma chine, a traction sheave and preferably also a rope sheave adjacent to the elevator drive ma chine, characterized in that, when an elevator with a light elevator car is to be delivered, the roping is implemented as a Double Wrap roping ar rangement using the rope sheave adjacent to the elevator drive machine, and when an elevator with a heavy elevator car is to be delivered, the rop ing is implemented as a Single Wrap roping ar rangement of the elevator drive machine.
10. System according to claim 9 for the delivery of an elevator, characterized in that a rope sheave ad jacent to the elevator drive machine is delivered regardless of whether the elevator car is light or heavy, to be mounted in conjunction with or in the vicinity of the elevator drive machine, and that the hoisting ropes are arranged to run in contact with this rope sheave adjacent to the elevator car.
Description:
METHOD FOR MAKING AN ELEVATOR AND SYSTEM FOR ELEVATOR DELIVERY The present invention relates to a method for making an elevator as defined in the preamble of claim 1 and to an elevator delivery system as defined in the pre- amble of claim 8.

The capability of the traction sheave of an elevator to transmit motion to the elevator hoisting ropes, as well as its capability to brake the rope, in other words, the grip between the traction sheave and the hoisting ropes, is substantially dependent on the length of the arc of contact between the hoisting ropes and the traction sheave and on the force with which the hoisting ropes are pressed against the trac- tion sheave. In prior art, traction sheave elevator solutions are known in which the arc length used has been increased, e. g. by using a so-called Double Wrap roping arrangement or using an elevator car and coun- terweight of a relatively large weight in combination with the very common Single Wrap roping arrangement.

In general, Double Wrap roping is used if it unreason- able to increase the weight of the hoisting cage and counterweight. For example, in fast elevators for a large hoisting height, it is more reasonable to im- prove the grip instead of increasing the moving masses. This type of fast elevators for a large hoist- ing height often also have compensating ropes or equivalent, which increase the weight of the moving masses while compensating the imbalance caused by the weight of the rope portions going to the elevator car and to the counterweight. In slower elevators designed for a lower hoisting height, a simple way of increas- ing the grip is to increase the weight of the car and counterweight. As a practical consequence of this, the starting points in the design of different elevators are very different and the final product ranges are at

least to some degree non-uniform. Especially in slower elevators, relatively heavy elevator cars are needed even for small nominal loads.

The object of the invention is to reduce the diversity of components in the process of delivery of different elevators. The invention discloses a method wherein Single Wrap or Double Wrap roping is selected depend- ing on whether the elevator car is heavy or light, and a delivery system wherein Single Wrap or Double Wrap roping is selected depending on whether the elevator car is heavy or light. As for the features of the in- vention, reference is made to the claims presented be- low.

The grip between the ropes and the traction sheave is improved by increasing the rope angle. Double Wrap roping increases the rope angle by using a secondary sheave, providing an angle of contact between the traction sheave and the ropes that is typically 180 degrees larger than in a conventional Single Wrap so- lution with a rope angle of 180 degrees. In both Sin- gle Wrap and Double Wrap roping solutions, the rope angle may sometimes differ considerably from these values (180,360 degrees), but for the invention an important consideration is the use of a good grip achieved by Double Wrap roping to enable a light- weight elevator and, in cases where a sufficient grip is achieved otherwise due to a heavy elevator, to al- low elevators to be made using a substantially identi- cal configuration.

In the Double Wrap roping arrangement, the hoisting ropes are passed twice around the traction sheave. In Double Wrap roping, the number of rope grooves on the traction sheave must naturally be twice the number of ropes used. On the other hand, a light-weight elevator does not require so many ropes to support the elevator

car as a heavy elevator does. In a Single Wrap roping arrangement, a rope sheave, preferably of equal size with the traction sheave, functions as a so-called "tangential contact wheel", guiding the ropes and dampening their vibrations.

In Single Wrap roping, the rope sheave functions as a tangential contact wheel for the ropes going downward towards the car and counterweight and at the same time as a rope dampening wheel smoothing out rope vibra- tions. The ropes are passed once around the traction sheave and they only touch the rope sheave tangen- tially. In Double Wrap roping, the ropes are passed two and/or more times around the traction sheave at least once around the rope sheave. In Double Wrap rop- ing, too, the rope sheave also functions as a rope dampening wheel.

By increasing the angle of contact, the rope sheave can be used to increase the grip between the traction sheave and the hoisting ropes. In this manner, the weight and size of the car and counterweight can be reduced, thus increasing the space saving potential of the elevator. Alternatively or at the same time, it is possible to reduce the weight of the elevator car in relation to the weight of the counterweight. An angle of contact of over 180° between the traction sheave and the hoisting rope is achieved by utilizing a rope sheave or rope sheaves.

For example, when a public building needs to be pro- vided with several elevators, some of which are for personal use and some for service use, it is very practical and economical, by simply changing the rop- ing, to provide all the elevators with identical trac- tion or rope sheaves and identical machines. A modular construction and the circumstance that the decision regarding the implementation of the roping of the ele-

vator can be made at the site of installation is lo- gistically very economical. In the case of moderniza- tion, too, it is economical e. g. to replace a plastic carpet with a stone floor, thus making the elevator car considerably heavier, and consequently it is only necessary to change the roping between the traction sheave and the rope sheave and increase the load- bearing capacity of the hoisting ropes by increasing the number of ropes.

A preferred embodiment of the elevator of the inven- tion is an elevator without machine room and with ma- chine above, in which the drive machine is provided with a coated traction sheave. The angle of contact between the hoisting ropes and the traction sheave of the elevator is greater than 180°. The elevator com- prises a unit containing a mounting base with the drive machine, the traction sheave and a rope sheave fitted on it.

By using the invention, the following advantages can be achieved, among others: - the grip between the ropes and the traction sheave is improved as the rope angle is increased, - the same machine covers a wide car weight range - in consequence of improved grip, the car and coun- terweight can be made lighter and smaller - the weight of the elevator car in relation to the weight of the counterweight can be reduced, - as the number of rope grooves needed in Double Wrap roping is twice the number of ropes, the number of rope grooves on the sheave is sufficient even for Single Wrap roping in the case of heavy cars - uniformity of components allows considerable cost savings to be achieved - the invention reduces the elevator installation time and total installation costs

- the elevator is economical to manufacture and in- stall because the uniformity of traction sheave, ma- chine and rope sheave reduces the number of differ- ent components, - although the invention is primarily intended for use in elevators without machine room, it can be applied for use in elevators with machine room as well - the invention can be applied in gearless and geared elevator motor solutions, - the use of the same machine, traction sheave and rope sheave means considerable cost savings.

The primary area of application of the invention is elevators designed for the transportation of people or freight. Another primary area of application of the invention is passenger elevators whose speed range is conventionally about 1.0 m/s or higher but may also be e. g. only about 0.5 m/s. In the case of freight eleva- tors, too, the speed is preferably at least about 0.5 m/s, although with greater loads even lower speeds may be used.

In the following, the invention will be described in detail by the aid of a few examples of its embodiments with reference to the attached drawings, wherein Fig. 1 presents a diagram representing an elevator implemented by the method of the invention, Fig. 2 presents a diagram representing another ele- vator implemented by the method of the in- vention, Fig. 3 presents a diagram representing a third ele- vator implemented by the method of the in- vention, Fig. 4 presents a traction sheave roping arrange- ment according to the invention, Fig. 5 presents another traction sheave roping ar- rangement according to the invention,

Fig. 6 presents an embodiment of the invention.

Fig. 1 is a diagrammatic representation of the struc- ture of an elevator. The elevator is preferably an elevator without machine room, with the drive machine 105 placed in the elevator shaft. The elevator pre- sented in the figure is a traction sheave elevator with machine above. The passage of the hoisting ropes 103 of the elevator is as follows: One end of the ropes is immovably fixed to an anchorage 111 located in the upper part of the shaft above the path of a counterweight 102 moving along counterweight guide rails 110. From the anchorage, the ropes run downward and are passed around rope sheaves 108 suspending the counterweight 102 and rotatably mounted on it, from which the rope sheaves 108 the ropes 103 run further upward to the traction sheave 107 of the drive machine 105, passing around the traction sheave along the rope grooves of the traction sheave. From the traction sheave 106, the ropes 103 run further downward back to a rope sheave 113, passing around it along the rope grooves of the rope sheave, after which they return back up to the traction sheave 106 and pass around it along the rope grooves of the traction sheave. From the traction sheave 106, the ropes 103 go again down- wards via the rope grooves of the rope sheave 113 to the elevator car 101 moving along the car guide rails 109 of the elevator, passing under the car via rope sheaves 104 used to suspend the elevator car on the ropes, and going then upwards again from the elevator car to an anchorage 112 in the upper part of the ele- vator shaft, where the second end of the ropes 103 is immovably fixed. The roping arrangement between the traction sheave 106 and the rope sheave 113 is re- ferred to as Double Wrap roping, wherein the hoisting ropes are wrapped around the traction sheave two and/or more times. In this way, the angle of contact

can be increased in two and/or more stages. For exam- ple, in the embodiment presented in Fig. 1, an angle of contact of 180° + 180°, i. e. 360 ° between the trac- tion sheave 106 and the hoisting ropes 103 is achieved. Fig. 1 represents the economical 2: 1 suspen- sion ratio. Other suspension solutions are possible in an embodiment according to the invention. The suspen- sion of the counterweight and elevator car may also be such that the counterweight is suspended with a sus- pension ratio of n: 1 while the car is suspended with a suspension ratio of m: 1, where m is an integer at least equal to 1 and n is an integer greater than m.

The elevator presented in the figure has automatic telescoping doors, but within the framework of the in- vention it is also possible to use other types of automatic doors or turning doors.

The drive machine 105 placed in the elevator shaft is preferably of flat construction, in other words, the machine has a small thickness dimension as compared with its width and/or height, or at least the machine is slim enough to be accommodated between the elevator car and a wall of the elevator shaft. The machine may also be placed differently, e. g. by disposing the slim machine partly or completely between an imaginary ex- tension of the elevator car and a shaft wall. The ele- vator shaft is advantageously provided with equipment required for the supply of power to the motor driving the traction sheave 106 as well as equipment needed for elevator control, both of which can be placed in a common instrument panel 107 or mounted separately from each other or integrated partly or wholly with the drive machine 105. The drive machine may be of geared or gearless type.

Fig. 2 presents a diagram representing another eleva- tor structure. The elevator is preferably an elevator

without machine room, with the drive machine 205 placed in the elevator shaft. The elevator shown in the figure is a traction sheave elevator with machine above. The passage of the hoisting ropes 203 of the elevator is as follows: One end of the ropes is im- movably fixed to an anchorage 211 located in the upper part of the shaft above the path of a counterweight 202 moving along counterweight guide rails 210. From the anchorage, the ropes run downward and are passed around rope sheaves 208 suspending the counterweight 202 and rotatably mounted on it, from which rope sheaves 208 the ropes 203 run further upward via the rope grooves of rope sheave 213 to the traction sheave 205 of the drive machine 205, passing around the trac- tion sheave along the traction sheave rope grooves.

From the traction sheave 206, the ropes 203 run fur- ther downward back to the rope sheave 213, passing around it along the rope grooves of the rope sheave, after which they return back up to the traction sheave 206 and pass around it along the rope grooves of the traction sheave. From the traction sheave 206, the ropes 103 run further downward via the rope grooves of the rope sheave 213 to the elevator car 201 moving along the car guide rails 209 of the elevator, passing under the car via rope sheaves 204 used to suspend the elevator car on the ropes, and going then upwards again from the elevator car 201 to an anchorage 212 in the upper part of the elevator shaft, where the second end of the ropes 203 is immovably fixed. In Fig. 2, an elevator according to the invention with a suspension ratio of 4: 1 is presented. The invention can also be implemented using other suspension solutions. The ele- vator presented in the figure has automatic telescop- ing doors, but within the framework of the invention it is also possible to use other types of automatic doors or turning doors.

The drive machine 205 placed in the elevator shaft is preferably of flat construction, in other words, the machine has a small thickness dimension as compared with its width and/or height, or at least the machine is slim enough to be accommodated between the elevator car and a wall of the elevator shaft. The machine may also be placed differently, e. g. by disposing the slim machine partly or completely between an imaginary ex- tension of the elevator car and a shaft wall. The ele- vator shaft is advantageously provided with equipment required for the supply of power to the motor driving the traction sheave 206, both of which can be placed in a common instrument panel 207 or mounted separately from each other or integrated partly or wholly with the drive machine 205. The drive machine may be of geared or gearless type.

Fig. 3 presents a diagram of a roping arrangement ac- cording to the invention. In this elevator, the ropes go upwards from the machine. An elevator like this is in most cases a traction sheave elevator with machine below. The elevator car 301 and counterweight 302 are suspended on the elevator hoisting ropes 303. The drive machine unit 306 of the elevator is placed in the elevator shaft, preferably in the lower part of the elevator shaft. Mounted in a position near the drive machine unit 306 is a rope sheave 314, means makes it possible to achieve a sufficiently large an- gle of contact between the traction sheave 307 and the hoisting ropes 303. The hoisting ropes are passed over rope sheaves 304,305 placed in the upper part of the shaft to the car 301 and to the counterweight 302. The rope sheaves 304,305 in the upper part of the shaft are preferably separately mounted with bearings on the same axle to allow them to rotate independently of each other. The elevator in Fig. 3 is also an example of the application of Double Wrap roping in an eleva-

tor with machine below. The elevator car 301 and the counterweight 302 move in the elevator shaft along car and counterweight guide rails 310,311 guiding them.

The hoisting ropes run as follows: One end of the ropes is fixed to an anchorage 312 in the upper part of the shaft, from where they go downward to the coun- terweight 302. The counterweight is suspended on the ropes 303 via a rope sheave 309. From the counter- weight, the ropes go further upward to a first rope sheave 305 mounted on an elevator guide rail 310, and from the rope sheave 305 further via the rope grooves of rope sheave 314 to the traction sheave 307 driven by the drive machine 306. From the traction sheave, the ropes go again upwards to rope sheave 314, and having wrapped around it they go back to the traction sheave 307. From the traction sheave 307, the ropes go again upwards via the rope grooves of rope sheave 314 to rope sheave 304, and having wrapped around this sheave they pass via rope sheaves 308 mounted on the top of the elevator car and then go further to an an- chorage 313 in the upper part of the elevator shaft, where the other end of the hoisting ropes is fixed.

The elevator car is suspended on the hoisting ropes 303 by means of rope sheaves 308. In the hoisting ropes 303, one or more of the rope portions between the rope sheaves or between the rope sheaves and the traction sheave or between the rope sheaves and the anchorages may deviate from an exact vertical direc- tion, a circumstance that makes it easy to provide a sufficient distance between different rope portions or a sufficient distance between the hoisting ropes and the other elevator components. The traction sheave 307 and the hoisting machine 306 are preferably disposed somewhat aside of the path of movement of the elevator car 301 as well as that of the counterweight 302, so they can be easily placed almost at any height in the

elevator shaft below the rope sheaves 304 and 305. If the machine is not placed directly above or below the counterweight or elevator car, this will allow a sav- ing in shaft height. In this case, the minimum height of the elevator shaft is exclusively determined on the basis of the length of the paths of the counterweight and elevator car and the safety clearances needed above and below these. In addition, a smaller space at the top or bottom of the shaft will be sufficient due to the reduced rope sheave diameters as compared with earlier solutions, depending on how the rope sheaves are mounted on the elevator car and/or on the frame of the elevator car.

Fig. 4 presents a roping arrangement according to the invention. In the roping arrangement presented in Fig.

4, the ropes 401 run via the rope grooves of a rope sheave 402 to the traction sheave 404, passing around it along the rope grooves of the traction sheave. From the traction sheave 404, the ropes go further down- wards back to the rope sheave 402, passing around it along the rope grooves of the rope sheave and return- ing back up to the traction sheave 404, around which they pass along the rope grooves of the traction sheave. From the traction sheave 404, the ropes 401 go further downwards via the rope grooves of the rope sheave. The roping presented in the figure is a Double Wrap roping arrangement, where the hoisting ropes are passed around the traction sheave two and/or more times. This allows the angle of contact to be in- creased in two and/or more stages. At the same time, the rope sheave functions as a damper wheel, compen- sating rope vibrations.

Fig. 5 presents another roping arrangement according to the invention. In the roping arrangement presented in Fig. 5, the ropes 501 run via the rope grooves of a

rope sheave 502 to the traction sheave 504 of the drive machine 503, passing around it along the rope grooves of the traction sheave. From the traction sheave 504, the ropes 501 go again downwards, running via the grooves of the rope sheave 502. The roping ar- rangement presented in the figure is a Single Wrap roping arrangement, where the rope sheave functions as tangential rope sheave, i. e. as a vibration damper.

Fig. 4 and 5 illustrate the method of the invention for making an elevator. In the method, the same ma- chine and the same traction and rope sheaves can be used with both heavy and light elevator cars by chang- ing the roping. Angle of the rope sheave can be changed to cause the ropes to run advantageously crosswise.

Fig. 6 presents an embodiment of the invention wherein the elevator drive machine 601 is fitted together with a rope sheave 602 on the same mounting base 603 in a ready-made unit 604, which can be fitted as such to form a part of an elevator according to the invention.

The unit 604 contains the elevator drive machine 601, the traction sheave 605 and the rope sheave 602 ready- fitted on the mounting base 603, the traction sheave and rope sheave being ready fitted at a correct operat- ing angle relative to each other, depending on the rop- ing arrangement used between the traction sheave 605 and the rope sheave 602. The unit 604 may comprise more than only one rope sheave 602, or it may only comprise the drive machine 601 fitted on the mounting base 603.

The unit can be mounted in an elevator according to the invention like a drive machine, the mounting arrange- ment being described in greater detail in connection with the previous figures. If necessary, the unit can be used together with both Double Wrap and Single Wrap roping arrangements. By fitting the above-described

unit as a part of an elevator according to the inven- tion, considerable savings can be achieved in installa- tion costs and in the time required for installation.

An advantageous solution is to build a complete unit comprising a mounting base carrying both a pre-fitted elevator drive machine with a traction sheave and a rope sheave for increasing the angle of contact and its bearings, fitted in a correct operating angle relative to the traction sheave. The mounting base de- fines the mutual position and/or distance between the traction sheave and the rope sheave. This unit can be mounted in place as a unitary aggregate in the same way as a drive machine. The drive machine may be fixed to a wall of the elevator shaft, to the ceiling, to a guide rail or guide rails or to some other structure, such as a beam or frame. In the case of an elevator with machine below, a further possibility is to mount the machine on the bottom of the elevator shaft.

It is obvious to the person skilled in the art that different embodiments of the invention are not limited to the examples described above, but that they may be varied within the scope of the following claims. For instance, the number of times the hoisting ropes are passed between the upper part of the elevator shaft and the counterweight or elevator car is not a very decisive question as regards the basic advantages of the invention, although it is possible to achieve some additional advantages by using multiple rope passages.

In general, embodiments should be so implemented that the ropes go to the elevator car at most as many times as to the counterweight. It is also obvious that the hoisting ropes need not necessarily be passed under the car; instead, they may also be passed over or sideways past the elevator car.

In accordance with the examples described above, the skilled person can vary the embodiment of the inven- tion, while the traction sheaves and rope sheaves, in- stead of being coated metal sheaves, may also be un- coated metal sheaves or uncoated sheaves made of some other material suited to the purpose. It is also obvi- ous that the metallic traction sheaves and rope sheaves used in the invention, which are coated with a non-metallic material at least in the area of their grooves, may be implemented using a coating material consisting of e. g. rubber, polyurethane or some other material suited to the purpose.

It is also obvious to the skilled person that the de- sign of the bearings may vary depending on the load and the intended use. It is also obvious that, instead of using ropes with a filler, the roping arrangement of the invention may be implemented using ropes with- out filler, either lubricated or unlubricated. The ropes may be twisted in many different ways, and they may be thin or thick or of some other size and they may be of a substantially round or some other shape in cross-section.

It is also obvious to the person skilled in the art that the elevator car, the counterweight and the ma- chine unit may be laid out in the cross-section of the elevator shaft in a manner differing from the lay-out described in the examples. Such a different lay-out might be e. g. one in which the machine and the coun- terweight are located behind the car as seen from the shaft door and the ropes are passed under the car di- agonally relative to the bottom of the car. Passing the ropes under the car in a diagonal or otherwise oblique direction relative to the form of the bottom provides an advantage when the suspension of the car on the ropes is to be made symmetrical relative to the center of mass of the elevator in other types of sus- pension lay-out as well.