Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF MAKING A POWDER METAL COMPACT
Document Type and Number:
WIPO Patent Application WO/2013/019410
Kind Code:
A2
Abstract:
A method of making a selectively corrodible article is disclosed. The method includes forming a powder comprising a plurality of metallic powder particles, each metallic powder particle comprising a nanoscale metallic coating layer disposed on a particle core. The method also includes forming a powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles. In one embodiment, forming the powder compact includes compacting the powder particles into a billet, and forming the billet to provide the powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles.

More Like This:
WO/2013/081098EXCAVATION TOOL
JP4358164Bit for drilling
JP3591089Bit wear test method
Inventors:
XU ZHIYUE (US)
Application Number:
PCT/US2012/047167
Publication Date:
February 07, 2013
Filing Date:
July 18, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAKER HUGHES INC (US)
XU ZHIYUE (US)
International Classes:
E21B10/46; B22F1/16; B22F5/00
Foreign References:
US20110135530A12011-06-09
JP2009144207A2009-07-02
US20020187347A12002-12-12
US20020160195A12002-10-31
Download PDF:
Claims:
CLAIMS:

1. A method of making a selectively corrodible article, comprising:

forming a powder comprising a plurality of metallic powder particles, each metallic powder particle comprising a nanoscale metallic coating layer disposed on a particle core; and

forming a powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles.

2. The method of claim 1, wherein the coating layers of the substantially elongated particles are substantially discontinuous in the predetermined direction.

3. The method of claim 1, wherein forming the powder compact comprises extruding the powder.

4. The method of claim 1, wherein extruding is performed according to a predetermined reduction ratio.

5. The method of claim 3, wherein the predetermined reduction ratio is about 50 to about 2000.

6. The method of claim 1, wherein forming the powder compact is performed at a forming temperature that is less than a melting temperature of the powder compact..

7. The method of claim 6, wherein the forming temperature is about 20°C to about 300°C below the melting temperature of the powder compact.

8. The method of claim 1, wherein the particle core comprises a particle core material comprising Mg, Al, Zn or Mn, or a combination thereof.

9. The method of claim 1, wherein the metallic coating layer comprises a coating material comprising Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, carbide, nitride, intermetallic, or cermet thereof, or a combination of any of the

aforementioned materials, and wherein the coating material has a chemical composition and the particle core material has a chemical composition that is different than the chemical composition of the coating material.

10. The method of claim 8, wherein the metallic coating layer comprises a coating material comprising Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, carbide, nitride, intermetallic, or cermet thereof, or a combination of any of the

aforementioned materials, and wherein the coating material has a chemical composition and the particle core material has a chemical composition that is different than the chemical composition of the coating material.

11. The method of claim 10, wherein the particle core material comprises Mg and the metallic coating layer comprises Al or Ni, or a combination thereof.

12. The method of claim 10, wherein forming the powder compact is performed at a forming temperature of about 300°F to about 1000°F.

13. The method of claim 10, wherein the powder compact has an ultimate compressive strength greater than about 50 ksi.

14. The method of claim, wherein forming the powder compact comprises:

compacting the powder particles into a billet; and

deforming the billet to provide the powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles.

15. The method of claiml4, deforming the billet comprises extruding, roll forming or forging the billet.

16. The method of claim 14, wherein deforming the billet is performed according to a predetermined reduction ratio.

17. The method of claim 16, wherein the predetermined reduction ratio is about 5 to about 2000.

18. The method of claim 17, wherein the predetermined reduction ratio is about 50 to about 1000.

19. The method of claim 14, wherein compacting the powder particles into the billet comprises cold pressing the powder particles into the billet, wherein the billet comprises a green-state powder compact.

20. The method of claim 14, wherein compacting the powder particles into the billet comprises forging the powder particles into the billet.

21. The method of claim 14, wherein compacting the powder particles into the billet comprises roll forming the powder particles into the billet.

22. The method of claim 1, wherein the powder compact having the substantially elongated powder particles has a rate of corrosion in a predetermined wellbore fluid that is greater than a rate of corrosion of the billet.

23. The method of claim 22, wherein the predetermined wellbore fluid comprises water, an acid, an aqueous salt solution or a brine, or a combination thereof.

24. The method of claim 1, wherein the particle cores have an average diameter of about 50 nm to about 500 μιη and the metallic coating layers have an average thickness of about 25 nm to about 2500 nm.

25. The method of claim 1, wherein metallic coating layer comprises a plurality of metallic coating layers.

Description:
METHOD OF MAKING A POWDER METAL COMPACT

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Application No. 13/194,374 filed on July 29, 2011, which is incorporated herein by reference in its entirety.

[0002] This application contains subject matter related to the subject matter of copending applications, which are assigned to the same assignee as this application, Baker Hughes Incorporated of Houston, Texas. The below listed applications are hereby incorporated by reference in their entirety:

[0003] U.S. Patent Application Serial No. 12/633,686 filed December 8, 2009, entitled COATED METALLIC POWDER AND METHOD OF MAKING THE SAME;

[0004] U.S. Patent Application Serial No. 12/633,688 filed December 8, 2009, entitled METHOD OF MAKING A NANOMATRIX POWDER METAL COMPACT;

[0005] U.S. Patent Application Serial No. 12/633,678 filed December 8, 2009, entitled ENGINEERED POWDER COMPACT COMPOSITE MATERIAL;

[0006] U.S. Patent Application Serial No. 12/633,683 filed December 8, 2009, entitled TELESCOPIC UNIT WITH DISSOLVABLE BARRIER;

[0007] U.S. Patent Application Serial No. 12/633,662 filed December 8, 2009, entitled DISSOLVING TOOL AND METHOD;

[0008] U.S. Patent Application Serial No. 12/633,677 filed December 8, 2009, entitled MULTI-COMPONENT DISAPPEARING TRIPPING BALL AND METHOD FOR MAKING THE SAME;

[0009] U.S. Patent Application Serial No. 12/633,668 filed December 8, 2009, entitled DISSOLVING TOOL AND METHOD;

[0010] U.S. Patent Application Serial No. 12/633,682 filed December 8, 2009, entitled NANOMATRIX POWDER METAL COMPACT;

[0011] U.S. Patent Application Serial No. 12/913,310 filed October 27, 2010, entitled NANOMATRIX CARBON COMPOSITE;

[0012] U.S. Patent Application Serial No. 12/847,594 filed July 30, 2010, entitled NANOMATRIX METAL COMPOSITE; and

[0013] U.S. Patent Application Docket Number C&P4-52516-US filed on the same date as this application, entitled EXTRUDED POWDER METAL COMPACT. BACKGROUND

[0014] Oil and natural gas wells often utilize wellbore components or tools that, due to their function, are only required to have limited service lives that are considerably less than the service life of the well. After a component or tool service function is complete, it must be removed or disposed of in order to recover the original size of the fluid pathway for use, including hydrocarbon production, C0 2 sequestration, etc. Disposal of components or tools has conventionally been done by milling or drilling the component or tool out of the wellbore, which are generally time consuming and expensive operations.

[0015] In order to eliminate the need for milling or drilling operations, the removal of components or tools by dissolution or corrosion using controlled electrolytic materials having a cellular nanomatrix that can be selectively and controllably degraded or corroded in response to a wellbore environmental condition, such as exposure to a predetermined wellbore fluid, has been described in, for example, in the related applications noted herein.

[0016] While these materials are very useful, the further improvement of their strength, corrodibility and manufacturability is very desirable.

SUMMARY

[0017] An exemplary embodiment of a method of making a selectively corrodible article is disclosed. The method includes forming a powder comprising a plurality of metallic powder particles, each metallic powder particle comprising a nanoscale metallic coating layer disposed on a particle core. The method also includes forming a powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Referring now to the drawings wherein like elements are numbered alike in the several Figures:

[0019] FIG. 1 is a photomicrograph of a powder 10 as disclosed herein that has been embedded in an epoxy specimen mounting material and sectioned;

[0020] FIG. 2 is a schematic illustration of an exemplary embodiment of a powder particle 12 as it would appear in an exemplary section view represented by section 2-2 of FIG. 1; [0021] FIG. 3 is a schematic illustration of a second exemplary embodiment of a powder particle 12 as it would appear in a second exemplary section view represented by section 2-2 of FIG. 1;

[0022] FIG. 4 is a schematic illustration of a third exemplary embodiment of a powder particle 12 as it would appear in a third exemplary section view represented by section 2-2 of FIG. 1;

[0023] FIG. 5 is a schematic illustration of a fourth exemplary embodiment of a powder particle 12 as it would appear in a fourth exemplary section view represented by section 2-2 of FIG. 1;

[0024] FIG. 6 is a schematic illustration of a second exemplary embodiment of a powder as disclosed herein having a multi-modal distribution of particle sizes;

[0025] FIG. 7 is a schematic illustration of a third exemplary embodiment of a powder as disclosed herein having a multi-modal distribution of particle sizes;

[0026] FIG. 8 is a flow chart of an exemplary embodiment of a method of making a powder as disclosed herein;

[0027] FIG. 9 is a photomicrograph of an exemplary embodiment of a powder compact as disclosed herein;

[0028] FIG. 10 is a schematic of illustration of an exemplary embodiment of the powder compact of FIG. 9 made using a powder having single-layer coated powder particles as it would appear taken along section 10 - 10;

[0029] FIG. 11 is a schematic illustration of an exemplary embodiment of a powder compact as disclosed herein having a homogenous multi-modal distribution of particle sizes;

[0030] FIG. 12 is a schematic illustration of an exemplary embodiment of a powder compact as disclosed herein having a non-homogeneous, multi-modal distribution of particle sizes;

[0031] FIG. 13 is a schematic illustration of an exemplary embodiment of a powder compact as disclosed herein formed from a first powder and a second powder and having a homogenous multi-modal distribution of particle sizes;

[0032] FIG. 14 is a schematic illustration of an exemplary embodiment of a powder compact as disclosed herein formed from a first powder and a second powder and having a non-homogeneous multi-modal distribution of particle sizes.

[0033] FIG. 15 is a schematic of illustration of another exemplary embodiment of the powder compact of FIG. 9 made using a powder having multilayer coated powder particles as it would appear taken along section 10 - 10; [0034] FIG. 16 is a schematic cross-sectional illustration of an exemplary embodiment of a precursor powder compact;

[0035] FIG. 17 is a flow chart of an exemplary embodiment of a method of making a powder compact as disclosed herein;

[0036] FIG. 18 is a flow chart of an exemplary embodiment of a method of making a powder compact comprising substantially elongated powder particles as disclosed herein;

[0037] FIG. 19 is a photomicrograph of an exemplary embodiment of a powder compact comprising substantially elongated powder particles from a section parallel to the predetermined elongation direction as disclosed herein;

[0038] FIG. 20 is a photomicrograph of the powder compact of FIG. 27 taken from a section transverse to the predetermined elongation direction as disclosed herein

[0039] FIG. 21 is a schematic cross-sectional illustration of an exemplary embodiment of a powder compact comprising substantially elongated powder particles as disclosed herein;

[0040] FIG. 22 is a schematic cross- sectional illustration of another exemplary embodiment of a powder compact comprising substantially elongated powder particles as disclosed herein;

[0041] FIG. 23 is a schematic cross-sectional illustration of an extrusion die and an exemplary embodiment of a method of forming a powder compact comprising substantially elongated powder particles from a powder;

[0042] FIG. 24 is a schematic cross-sectional illustration of an extrusion die and an exemplary embodiment of a method of forming a powder compact comprising substantially elongated powder particles from a billet;

[0043] FIG. 25 is a plot of compressive stress as a function of strain illustrating the compressive strength of an exemplary embodiment of a powder compact comprising substantially elongated powder particles as disclosed herein;

[0044] FIG. 26 is a schematic cross-sectional illustration of an exemplary embodiment of articles formed from a powder compact comprising substantially elongated powder particles as disclosed herein; and

[0045] FIG. 27 is a schematic cross- sectional illustration of another exemplary embodiment of articles formed from a powder compact comprising substantially elongated powder particles as disclosed herein. DETAILED DESCRIPTION

[0046] Lightweight, high-strength metallic materials and a method of making these materials are disclosed that may be used in a wide variety of applications and application environments, including use in various wellbore environments to make various lightweight, high-strength articles, including downhole articles, particularly tools or other downhole components, which may be described generally as controlled electrolytic materials, and which are selectably and controllably disposable, degradable, dissolvable, corrodible or otherwise characterized as being removable from the wellbore. Many other applications for use in both durable and disposable or degradable articles are possible. In one embodiment these lightweight, high-strength and selectably and controllably degradable materials include fully-dense, sintered powder compacts formed from coated powder materials that include various lightweight particle cores and core materials having various single layer and multilayer nanoscale coatings. In another embodiment, these materials include selectably and controllably degradable materials may include powder compacts that are not fully-dense or not sintered, or a combination thereof, formed from these coated powder materials. These powder compacts are characterized by a micro structure wherein the compacted powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles, as described herein. The substantially elongated powder particles advantageously provide enhanced strength, including compressive strength, corrodibility or dissolvability and manufacturability as compared to similar powder compacts that do not substantially elongated powder particles. These powder compacts are made from coated metallic powders that include various electrochemically-active (e.g., having relatively higher standard oxidation potentials) lightweight, high-strength particle cores and core materials, such as electrochemically active metals, that are dispersed within a cellular nanomatrix formed from the various nanoscale metallic coating layers of metallic coating materials, and then subjected to substantial deformation sufficient to form substantially elongated powder particles, including the particle cores and the metallic coating layers, and to cause the metallic coating layers to become discontinuous and oriented in the predetermined direction of elongation.

[0047] These improved materials are particularly useful in wellbore applications. They provide a unique and advantageous combination of mechanical strength properties, such as compression and shear strength, low density and selectable and controllable corrosion properties, particularly rapid and controlled dissolution in various wellbore fluids, which are improved over cellular nanomatrix materials that do not have a micro structure with substantially elongated powder particles as described herein. For example, the particle core and coating layers of these powders may be selected to provide sintered powder compacts suitable for use as high strength engineered materials having a compressive strength and shear strength comparable to various other engineered materials, including carbon, stainless and alloy steels, but which also have a low density comparable to various polymers, elastomers, low-density porous ceramics and composite materials. As yet another example, these powders and powder compact materials may be configured to provide a selectable and controllable degradation or disposal in response to a change in an environmental condition, such as a transition from a very low dissolution rate to a very rapid dissolution rate in response to a change in a property or condition of a wellbore proximate an article formed from the compact, including a property change in a wellbore fluid that is in contact with the powder compact. The selectable and controllable degradation or disposal characteristics described also allow the dimensional stability and strength of articles, such as wellbore tools or other components, made from these materials to be maintained until they are no longer needed, at which time a predetermined environmental condition, such as a wellbore condition, including wellbore fluid temperature, pressure or pH value, may be changed to promote their removal by rapid dissolution.

[0048] These coated powder materials and powder compacts and engineered materials and articles formed from them, as well as methods of making them, are described further below.

[0049] Referring to FIGS. 1-5, a metallic powder 10 includes a plurality of metallic, coated powder particles 12. Powder particles 12 may be formed to provide a powder 10, including free-flowing powder, that may be poured or otherwise disposed in all manner of forms or molds (not shown) having all manner of shapes and sizes and that may be used to fashion precursor powder compacts 100 (FIG. 16) and powder compacts 200 (FIGS. 10-15), as described herein, that may be used as, or for use in manufacturing, various articles of manufacture, including various wellbore tools and components.

[0050] Each of the metallic, coated powder particles 12 of powder 10 includes a particle core 14 and a metallic coating layer 16 disposed on the particle core 14. The particle core 14 includes a core material 18. The core material 18 may include any suitable material for forming the particle core 14 that provides powder particle 12 that can be sintered to form a lightweight, high- strength powder compact 200 having selectable and controllable dissolution characteristics. Suitable core materials include electrochemically active metals having a standard oxidation potential greater than or equal to that of Zn, including as Mg, Al, Mn or Zn or a combination thereof. These electrochemically active metals are very reactive with a number of common wellbore fluids, which may be selectively determined or predetermined by selectively controlling the flow of fluids into or out of the wellbore using conventional control devices and methods. These predetermined wellbore fluids may include water, various aqueous solutions, including an aqueous salt solution or a brine, or various acids, or a combination thereof. The predetermined wellbore fluids may include any number of ionic fluids or highly polar fluids, such as those that contain various chlorides. Examples include fluids comprising potassium chloride (KC1), hydrochloric acid (HC1), calcium chloride (CaCl 2 ), calcium bromide (CaBr 2 ) or zinc bromide (ZnBr 2 ). Core material 18 may also include other metals that are less electrochemically active than Zn or non-metallic materials, or a combination thereof. Suitable non-metallic materials include ceramics, composites, glasses or carbon, or a combination thereof. Core material 18 may be selected to provide a high dissolution rate in a predetermined wellbore fluid, but may also be selected to provide a relatively low dissolution rate, including zero dissolution, where dissolution of the nano matrix material causes the particle core 14 to be rapidly undermined and liberated from the particle compact at the interface with the wellbore fluid, such that the effective rate of dissolution of particle compacts made using particle cores 14 of these core materials 18 is high, even though core material 18 itself may have a low dissolution rate, including core materials 20 that may be substantially insoluble in the wellbore fluid.

[0051] With regard to the electrochemically active metals as core materials 18, including Mg, Al, Mn or Zn, these metals may be used as pure metals or in any combination with one another, including various alloy combinations of these materials, including binary, tertiary, or quaternary alloys of these materials. These combinations may also include composites of these materials. Further, in addition to combinations with one another, the Mg, Al, Mn or Zn core materials 18 may also include other constituents, including various alloying additions, to alter one or more properties of the particle cores 14, such as by improving the strength, lowering the density or altering the dissolution characteristics of the core material 18.

[0052] Among the electrochemically active metals, Mg, either as a pure metal or an alloy or a composite material, is particularly useful, because of its low density and ability to form high- strength alloys, as well as its high degree of electrochemical activity, since it has a standard oxidation potential higher than Al, Mn or Zn. Mg alloys include all alloys that have Mg as an alloy constituent. Mg alloys that combine other electrochemically active metals, as described herein, as alloy constituents are particularly useful, including binary Mg-Zn, Mg-Al and Mg-Mn alloys, as well as tertiary Mg-Zn-Y and Mg-Al-X alloys, where X includes Zn, Mn, Si, Ca or Y, or a combination thereof. These Mg-Al-X alloys may include, by weight, up to about 85% Mg, up to about 15% Al and up to about 5% X. Particle core 14 and core material 18, and particularly electro chemically active metals including Mg, Al, Mn or Zn, or combinations thereof, may also include a rare earth element or combination of rare earth elements. As used herein, rare earth elements include Sc, Y, La, Ce, Pr, Nd or Er, or a combination of rare earth elements. Where present, a rare earth element or combination of rare earth elements may be present, by weight, in an amount of about 5% or less.

[0053] Particle core 14 and core material 18 have a melting temperature (Tp). As used herein, Tp includes the lowest temperature at which incipient melting or liquation or other forms of partial melting occur within core material 18, regardless of whether core material 18 comprises a pure metal, an alloy with multiple phases having different melting temperatures or a composite of materials having different melting temperatures.

[0054] Particle cores 14 may have any suitable particle size or range of particle sizes or distribution of particle sizes. For example, the particle cores 14 may be selected to provide an average particle size that is represented by a normal or Gaussian type unimodal distribution around an average or mean, as illustrated generally in FIG. 1. In another example, particle cores 14 may be selected or mixed to provide a multimodal distribution of particle sizes, including a plurality of average particle core sizes, such as, for example, a homogeneous bimodal distribution of average particle sizes, as illustrated generally and schematically in FIG. 6. The selection of the distribution of particle core size may be used to determine, for example, the particle size and interparticle spacing 15 of the particles 12 of powder 10. In an exemplary embodiment, the particle cores 14 may have a unimodal distribution and an average particle diameter of about 5μιη to about 300μιη, more particularly about 80μιη to about 120μιη, and even more particularly about Ι ΟΟμιη. In another exemplary embodiment, which may include a multi-modal distribution of particle sizes, the particle cores 14 may have average particle diameters of about 50nm to about 500μιη, more particularly about 500nm to about 300μιη, and even more particularly about 5μιη to about 300μιη.

[0055] Particle cores 14 may have any suitable particle shape, including any regular or irregular geometric shape, or combination thereof. In an exemplary embodiment, particle cores 14 are substantially spheroidal electrochemically active metal particles. In another exemplary embodiment, particle cores 14 are substantially irregularly shaped ceramic particles. In yet another exemplary embodiment, particle cores 14 are carbon or other nanotube structures or hollow glass microspheres.

[0056] Each of the metallic, coated powder particles 12 of powder 10 also includes a metallic coating layer 16 that is disposed on particle core 14. Metallic coating layer 16 includes a metallic coating material 20. Metallic coating material 20 gives the powder particles 12 and powder 10 its metallic nature. Metallic coating layer 16 is a nanoscale coating layer. In an exemplary embodiment, metallic coating layer 16 may have a thickness of about 25nm to about 2500nm. The thickness of metallic coating layer 16 may vary over the surface of particle core 14, but will preferably have a substantially uniform thickness over the surface of particle core 14. Metallic coating layer 16 may include a single layer, as illustrated in FIG. 2, or a plurality of layers as a multilayer coating structure, as illustrated in FIGS. 3-5 for up to four layers. In a single layer coating, or in each of the layers of a multilayer coating, the metallic coating layer 16 may include a single constituent chemical element or compound, or may include a plurality of chemical elements or compounds.

Where a layer includes a plurality of chemical constituents or compounds, they may have all manner of homogeneous or heterogeneous distributions, including a homogeneous or heterogeneous distribution of metallurgical phases. This may include a graded distribution where the relative amounts of the chemical constituents or compounds vary according to respective constituent profiles across the thickness of the layer. In both single layer and multilayer coatings 16, each of the respective layers, or combinations of them, may be used to provide a predetermined property to the powder particle 12 or a sintered powder compact formed therefrom. For example, the predetermined property may include the bond strength of the metallurgical bond between the particle core 14 and the coating material 20; the interdiffusion characteristics between the particle core 14 and metallic coating layer 16, including any interdiffusion between the layers of a multilayer coating layer 16; the interdiffusion characteristics between the various layers of a multilayer coating layer 16; the interdiffusion characteristics between the metallic coating layer 16 of one powder particle and that of an adjacent powder particle 12; the bond strength of the metallurgical bond between the metallic coating layers of adjacent sintered powder particles 12, including the outermost layers of multilayer coating layers; and the electrochemical activity of the coating layer 16.

[0057] Metallic coating layer 16 and coating material 20 have a melting temperature (Tc). As used herein, T c includes the lowest temperature at which incipient melting or liquation or other forms of partial melting occur within coating material 20, regardless of whether coating material 20 comprises a pure metal, an alloy with multiple phases each having different melting temperatures or a composite, including a composite comprising a plurality of coating material layers having different melting temperatures.

[0058] Metallic coating material 20 may include any suitable metallic coating material 20 that provides a sinterable outer surface 21 that is configured to be sintered to an adjacent powder particle 12 that also has a metallic coating layer 16 and sinterable outer surface 21. In powders 10 that also include second or additional (coated or uncoated) particles 32, as described herein, the sinterable outer surface 21 of metallic coating layer 16 is also configured to be sintered to a sinterable outer surface 21 of second particles 32. In an exemplary embodiment, the powder particles 12 are sinterable at a predetermined sintering temperature (Ts) that is a function of the core material 18 and coating material 20, such that sintering of powder compact 200 is accomplished entirely in the solid state and where T s is less than Tp and Tc. Sintering in the solid state limits particle core 14/metallic coating layer 16 interactions to solid state diffusion processes and metallurgical transport phenomena and limits growth of and provides control over the resultant interface between them. In contrast, for example, the introduction of liquid phase sintering would provide for rapid interdiffusion of the particle core 14/metallic coating layer 16 materials and make it difficult to limit the growth of and provide control over the resultant interface between them, and thus interfere with the formation of the desirable micro structure of particle compact 200 as described herein.

[0059] In an exemplary embodiment, core material 18 will be selected to provide a core chemical composition and the coating material 20 will be selected to provide a coating chemical composition and these chemical compositions will also be selected to differ from one another. In another exemplary embodiment, the core material 18 will be selected to provide a core chemical composition and the coating material 20 will be selected to provide a coating chemical composition and these chemical compositions will also be selected to differ from one another at their interface. Differences in the chemical compositions of coating material 20 and core material 18 may be selected to provide different dissolution rates and selectable and controllable dissolution of powder compacts 200 that incorporate them making them selectably and controllably dissolvable. This includes dissolution rates that differ in response to a changed condition in the wellbore, including an indirect or direct change in a wellbore fluid. In an exemplary embodiment, a powder compact 200 formed from powder 10 having chemical compositions of core material 18 and coating material 20 that make compact 200 is selectably dissolvable in a wellbore fluid in response to a changed wellbore condition that includes a change in temperature, change in pressure, change in flow rate, change in pH or change in chemical composition of the wellbore fluid, or a combination thereof. The selectable dissolution response to the changed condition may result from actual chemical reactions or processes that promote different rates of dissolution, but also encompass changes in the dissolution response that are associated with physical reactions or processes, such as changes in wellbore fluid pressure or flow rate.

[0060] In an exemplary embodiment of a powder 10, particle core 14 includes Mg, Al, Mn or Zn, or a combination thereof, as core material 18, and more particularly may include pure Mg and Mg alloys, and metallic coating layer 16 includes Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re, or Ni, or an oxide, nitride or a carbide, intermetallic, or a cermet thereof, or a combination of any of the aforementioned materials as coating material 20.

[0061] In another exemplary embodiment of powder 10, particle core 14 includes Mg, Al, Mn or Zn, or a combination thereof, as core material 18, and more particularly may include pure Mg and Mg alloys, and metallic coating layer 16 includes a single layer of Al or Ni, or a combination thereof, as coating material 20, as illustrated in FIG. 2. Where metallic coating layer 16 includes a combination of two or more constituents, such as Al and Ni, the combination may include various graded or co-deposited structures of these materials where the amount of each constituent, and hence the composition of the layer, varies across the thickness of the layer, as also illustrated in FIG. 2.

[0062] In yet another exemplary embodiment, particle core 14 includes Mg, Al, Mn or Zn, or a combination thereof, as core material 18, and more particularly may include pure Mg and Mg alloys, and coating layer 16 includes two layers as core material 20, as illustrated in FIG. 3. The first layer 22 is disposed on the surface of particle core 14 and includes Al or Ni, or a combination thereof, as described herein. The second layer 24 is disposed on the surface of the first layer and includes Al, Zn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or a combination thereof, and the first layer has a chemical composition that is different than the chemical composition of the second layer. In general, first layer 22 will be selected to provide a strong metallurgical bond to particle core 14 and to limit interdiffusion between the particle core 14 and coating layer 16, particularly first layer 22. Second layer 24 may be selected to increase the strength of the metallic coating layer 16, or to provide a strong metallurgical bond and promote sintering with the second layer 24 of adjacent powder particles 12, or both. In an exemplary embodiment, the respective layers of metallic coating layer 16 may be selected to promote the selective and controllable dissolution of the coating layer 16 in response to a change in a property of the wellbore, including the wellbore fluid, as described herein. However, this is only exemplary and it will be appreciated that other selection criteria for the various layers may also be employed. For example, any of the respective layers may be selected to promote the selective and controllable dissolution of the coating layer 16 in response to a change in a property of the wellbore, including the wellbore fluid, as described herein. Exemplary embodiments of a two-layer metallic coating layers 16 for use on particles cores 14 comprising Mg include first/second layer combinations comprising Al/Ni and Al/W.

[0063] In still another embodiment, particle core 14 includes Mg, Al, Mn or Zn, or a combination thereof, as core material 18, and more particularly may include pure Mg and Mg alloys, and coating layer 16 includes three layers, as illustrated in FIG. 4. The first layer 22 is disposed on particle core 14 and may include Al or Ni, or a combination thereof. The second layer 24 is disposed on first layer 22 and may include Al, Zn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, nitride, carbide, intermetallic or cermet thereof, or a combination of any of the aforementioned second layer materials. The third layer 26 is disposed on the second layer 24 and may include Al, Mn, Fe, Co, Ni or a combination thereof. In a three- layer configuration, the composition of adjacent layers is different, such that the first layer has a chemical composition that is different than the second layer, and the second layer has a chemical composition that is different than the third layer. In an exemplary embodiment, first layer 22 may be selected to provide a strong metallurgical bond to particle core 14 and to limit interdiffusion between the particle core 14 and coating layer 16, particularly first layer 22. Second layer 24 may be selected to increase the strength of the metallic coating layer 16, or to limit interdiffusion between particle core 14 or first layer 22 and outer or third layer 26, or to promote adhesion and a strong metallurgical bond between third layer 26 and first layer 22, or any combination of them. Third layer 26 may be selected to provide a strong metallurgical bond and promote sintering with the third layer 26 of adjacent powder particles 12. However, this is only exemplary and it will be appreciated that other selection criteria for the various layers may also be employed. For example, any of the respective layers may be selected to promote the selective and controllable dissolution of the coating layer 16 in response to a change in a property of the wellbore, including the wellbore fluid, as described herein. An exemplary embodiment of a three-layer coating layer for use on particles cores comprising Mg include first/second/third layer combinations comprising AI/AI 2 O 3 /AI.

[0064] In still another embodiment, particle core 14 includes Mg, Al, Mn or Zn, or a combination thereof, as core material 18, and more particularly may include pure Mg and Mg alloys, and coating layer 16 includes four layers, as illustrated in FIG. 5. In the four layer configuration, the first layer 22 may include Al or Ni, or a combination thereof, as described herein. The second layer 24 may include Al, Zn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni or an oxide, nitride, carbide, intermetallic or cermet thereof, or a combination of the aforementioned second layer materials. The third layer 26 may also include Al, Zn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, nitride, carbide, intermetallic or cermet thereof, or a combination of any of the aforementioned third layer materials. The fourth layer 28 may include Al, Mn, Fe, Co, Ni or a combination thereof. In the four layer configuration, the chemical composition of adjacent layers is different, such that the chemical composition of first layer 22 is different than the chemical composition of second layer 24, the chemical composition is of second layer 24 different than the chemical composition of third layer 26, and the chemical composition of third layer 26 is different than the chemical composition of fourth layer 28. In an exemplary embodiment, the selection of the various layers will be similar to that described for the three- layer configuration above with regard to the inner (first) and outer (fourth) layers, with the second and third layers available for providing enhanced interlayer adhesion, strength of the overall metallic coating layer 16, limited interlayer diffusion or selectable and controllable dissolution, or a combination thereof. However, this is only exemplary and it will be appreciated that other selection criteria for the various layers may also be employed. For example, any of the respective layers may be selected to promote the selective and controllable dissolution of the coating layer 16 in response to a change in a property of the wellbore, including the wellbore fluid, as described herein.

[0065] The thickness of the various layers in multi-layer configurations may be apportioned between the various layers in any manner so long as the sum of the layer thicknesses provide a nanoscale coating layer 16, including layer thicknesses as described herein. In one embodiment, the first layer 22 and outer layer (24, 26, or 28 depending on the number of layers) may be thicker than other layers, where present, due to the desire to provide sufficient material to promote the desired bonding of first layer 22 with the particle core 14, or the bonding of the outer layers of adjacent powder particles 12, during sintering of powder compact 200.

[0066] Powder 10 may also include an additional or second powder 30 interspersed in the plurality of powder particles 12, as illustrated in FIG. 7. In an exemplary embodiment, the second powder 30 includes a plurality of second powder particles 32. These second powder particles 32 may be selected to change a physical, chemical, mechanical or other property of a powder particle compact 200 formed from powder 10 and second powder 30, or a combination of such properties. In an exemplary embodiment, the property change may include an increase in the compressive strength of powder compact 200 formed from powder 10 and second powder 30. In another exemplary embodiment, the second powder 30 may be selected to promote the selective and controllable dissolution of in particle compact 200 formed from powder 10 and second powder 30 in response to a change in a property of the wellbore, including the wellbore fluid, as described herein. Second powder particles 32 may be uncoated or coated with a metallic coating layer 36. When coated, including single layer or multilayer coatings, the coating layer 36 of second powder particles 32 may comprise the same coating material 40 as coating material 20 of powder particles 12, or the coating material 40 may be different. The second powder particles 32 (uncoated) or particle cores 34 may include any suitable material to provide the desired benefit, including many metals. In an exemplary embodiment, when coated powder particles 12 comprising Mg, Al, Mn or Zn, or a combination thereof are employed, suitable second powder particles 32 may include Ni, W, Cu, Co or Fe, or a combination thereof. Since second powder particles 32 will also be configured for solid state sintering to powder particles 12 at the predetermined sintering temperature (Ts), particle cores 34 will have a melting temperature T AP and any coating layers 36 will have a second melting temperature T A c, where T s is less than T A p and T A c- It will also be appreciated that second powder 30 is not limited to one additional powder particle 32 type (i.e., a second powder particle), but may include a plurality of additional powder particles 32 (i.e., second, third, fourth, etc. types of additional powder particles 32) in any number.

[0067] Referring to FIG. 8, an exemplary embodiment of a method 300 of making a metallic powder 10 is disclosed. Method 300 includes forming 310 a plurality of particle cores 14 as described herein. Method 300 also includes depositing 320 a metallic coating layer 16 on each of the plurality of particle cores 14. Depositing 320 is the process by which coating layer 16 is disposed on particle core 14 as described herein.

[0068] Forming 310 of particle cores 14 may be performed by any suitable method for forming a plurality of particle cores 14 of the desired core material 18, which essentially comprise methods of forming a powder of core material 18. Suitable powder forming methods include mechanical methods; including machining, milling, impacting and other mechanical methods for forming the metal powder; chemical methods, including chemical decomposition, precipitation from a liquid or gas, solid-solid reactive synthesis and other chemical powder forming methods; atomization methods, including gas atomization, liquid and water atomization, centrifugal atomization, plasma atomization and other atomization methods for forming a powder; and various evaporation and condensation methods. In an exemplary embodiment, particle cores 14 comprising Mg may be fabricated using an atomization method, such as vacuum spray forming or inert gas spray forming.

[0069] Depositing 320 of metallic coating layers 16 on the plurality of particle cores 14 may be performed using any suitable deposition method, including various thin film deposition methods, such as, for example, chemical vapor deposition and physical vapor deposition methods. In an exemplary embodiment, depositing 320 of metallic coating layers 16 is performed using fluidized bed chemical vapor deposition (FBCVD). Depositing 320 of the metallic coating layers 16 by FBCVD includes flowing a reactive fluid as a coating medium that includes the desired metallic coating material 20 through a bed of particle cores 14 fluidized in a reactor vessel under suitable conditions, including temperature, pressure and flow rate conditions and the like, sufficient to induce a chemical reaction of the coating medium to produce the desired metallic coating material 20 and induce its deposition upon the surface of particle cores 14 to form coated powder particles 12. The reactive fluid selected will depend upon the metallic coating material 20 desired, and will typically comprise an organometallic compound that includes the metallic material to be deposited, such as nickel tetracarbonyl (Ni(CO) 4 ), tungsten hexafluoride (WF 6 ), and triethyl aluminum (C 6 Hi 5 Al), that is transported in a carrier fluid, such as helium or argon gas. The reactive fluid, including carrier fluid, causes at least a portion of the plurality of particle cores 14 to be suspended in the fluid, thereby enabling the entire surface of the suspended particle cores 14 to be exposed to the reactive fluid, including, for example, a desired organometallic constituent, and enabling deposition of metallic coating material 20 and coating layer 16 over the entire surfaces of particle cores 14 such that they each become enclosed forming coated particles 12 having metallic coating layers 16, as described herein. As also described herein, each metallic coating layer 16 may include a plurality of coating layers. Coating material 20 may be deposited in multiple layers to form a multilayer metallic coating layer 16 by repeating the step of depositing 320 described above and changing 330 the reactive fluid to provide the desired metallic coating material 20 for each subsequent layer, where each subsequent layer is deposited on the outer surface of particle cores 14 that already include any previously deposited coating layer or layers that make up metallic coating layer 16. The metallic coating materials 20 of the respective layers (e.g., 22, 24, 26, 28, etc.) may be different from one another, and the differences may be provided by utilization of different reactive media that are configured to produce the desired metallic coating layers 16 on the particle cores 14 in the fluidize bed reactor. [0070] As illustrated in FIGS. 1 and 9, particle core 14 and core material 18 and metallic coating layer 16 and coating material 20 may be selected to provide powder particles 12 and a powder 10 that is configured for compaction and sintering to provide a powder compact 200 that is lightweight (i.e., having a relatively low density), high-strength and is selectably and contra llably removable from a wellbore in response to a change in a wellbore property, including being selectably and controllably dissolvable in an appropriate wellbore fluid, including various wellbore fluids as disclosed herein. Powder compact 200 includes a substantially-continuous, cellular nanomatrix 216 of a nanomatrix material 220 having a plurality of dispersed particles 214 dispersed throughout the cellular nanomatrix 216. The substantially-continuous cellular nanomatrix 216 and nanomatrix material 220 formed of sintered metallic coating layers 16 is formed by the compaction and sintering of the plurality of metallic coating layers 16 of the plurality of powder particles 12. The chemical composition of nanomatrix material 220 may be different than that of coating material 20 due to diffusion effects associated with the sintering as described herein. Powder metal compact 200 also includes a plurality of dispersed particles 214 that comprise particle core material 218. Dispersed particle cores 214 and core material 218 correspond to and are formed from the plurality of particle cores 14 and core material 18 of the plurality of powder particles 12 as the metallic coating layers 16 are sintered together to form nanomatrix 216. The chemical composition of core material 218 may be different than that of core material 18 due to diffusion effects associated with sintering as described herein.

[0071] As used herein, the use of the term substantially-continuous cellular nanomatrix 216 does not connote the major constituent of the powder compact, but rather refers to the minority constituent or constituents, whether by weight or by volume. This is distinguished from most matrix composite materials where the matrix comprises the majority constituent by weight or volume. The use of the term substantially-continuous, cellular nanomatrix is intended to describe the extensive, regular, continuous and interconnected nature of the distribution of nanomatrix material 220 within powder compact 200. As used herein, "substantially-continuous" describes the extension of the nanomatrix material throughout powder compact 200 such that it extends between and envelopes substantially all of the dispersed particles 214. Substantially-continuous is used to indicate that complete continuity and regular order of the nanomatrix around each dispersed particle 214 is not required. For example, defects in the coating layer 16 over particle core 14 on some powder particles 12 may cause bridging of the particle cores 14 during sintering of the powder compact 200, thereby causing localized discontinuities to result within the cellular nanomatrix 216, even though in the other portions of the powder compact the nanomatrix is substantially continuous and exhibits the structure described herein. As used herein, "cellular" is used to indicate that the nanomatrix defines a network of generally repeating, interconnected, compartments or cells of nanomatrix material 220 that encompass and also interconnect the dispersed particles 214. As used herein, "nanomatrix" is used to describe the size or scale of the matrix, particularly the thickness of the matrix between adjacent dispersed particles 214. The metallic coating layers that are sintered together to form the nanomatrix are themselves nanoscale thickness coating layers. Since the nanomatrix at most locations, other than the intersection of more than two dispersed particles 214, generally comprises the interdiffusion and bonding of two coating layers 16 from adjacent powder particles 12 having nanoscale thicknesses, the matrix formed also has a nanoscale thickness (e.g., approximately two times the coating layer thickness as described herein) and is thus described as a nanomatrix. Further, the use of the term dispersed particles 214 does not connote the minor constituent of powder compact 200, but rather refers to the majority constituent or constituents, whether by weight or by volume. The use of the term dispersed particle is intended to convey the discontinuous and discrete distribution of particle core material 218 within powder compact 200.

[0072] Powder compact 200 may have any desired shape or size, including that of a cylindrical billet or bar that may be machined or otherwise used to form useful articles of manufacture, including various wellbore tools and components. The pressing used to form precursor powder compact 100 and sintering and pressing processes used to form powder compact 200 and deform the powder particles 12, including particle cores 14 and coating layers 16, to provide the full density and desired macroscopic shape and size of powder compact 200 as well as its micro structure. The micro structure of powder compact 200 includes an equiaxed configuration of dispersed particles 214 that are dispersed throughout and embedded within the substantially-continuous, cellular nanomatrix 216 of sintered coating layers. This microstructure is somewhat analogous to an equiaxed grain

microstructure with a continuous grain boundary phase, except that it does not require the use of alloy constituents having thermodynamic phase equilibria properties that are capable of producing such a structure. Rather, this equiaxed dispersed particle structure and cellular nanomatrix 216 of sintered metallic coating layers 16 may be produced using constituents where thermodynamic phase equilibrium conditions would not produce an equiaxed structure. The equiaxed morphology of the dispersed particles 214 and cellular network 216 of particle layers results from sintering and deformation of the powder particles 12 as they are compacted and interdiffuse and deform to fill the interparticle spaces 15 (FIG. 1). The sintering temperatures and pressures may be selected to ensure that the density of powder compact 200 achieves substantially full theoretical density.

[0073] In an exemplary embodiment as illustrated in FIGS. 1 and 9, dispersed particles 214 are formed from particle cores 14 dispersed in the cellular nanomatrix 216 of sintered metallic coating layers 16, and the nanomatrix 216 includes a solid-state

metallurgical bond 217 or bond layer 219, as illustrated schematically in FIG. 10, extending between the dispersed particles 214 throughout the cellular nanomatrix 216 that is formed at a sintering temperature (T s ), where T s is less than T c and T P . As indicated, solid-state metallurgical bond 217 is formed in the solid state by solid-state interdiffusion between the coating layers 16 of adjacent powder particles 12 that are compressed into touching contact during the compaction and sintering processes used to form powder compact 200, as described herein. As such, sintered coating layers 16 of cellular nanomatrix 216 include a solid-state bond layer 219 that has a thickness (t) defined by the extent of the interdiffusion of the coating materials 20 of the coating layers 16, which will in turn be defined by the nature of the coating layers 16, including whether they are single or multilayer coating layers, whether they have been selected to promote or limit such interdiffusion, and other factors, as described herein, as well as the sintering and compaction conditions, including the sintering time, temperature and pressure used to form powder compact 200.

[0074] As nanomatrix 216 is formed, including bond 217 and bond layer 219, the chemical composition or phase distribution, or both, of metallic coating layers 16 may change. Nanomatrix 216 also has a melting temperature (T M ). AS used herein, T M includes the lowest temperature at which incipient melting or liquation or other forms of partial melting will occur within nanomatrix 216, regardless of whether nanomatrix material 220 comprises a pure metal, an alloy with multiple phases each having different melting temperatures or a composite, including a composite comprising a plurality of layers of various coating materials having different melting temperatures, or a combination thereof, or otherwise. As dispersed particles 214 and particle core materials 218 are formed in conjunction with nanomatrix 216, diffusion of constituents of metallic coating layers 16 into the particle cores 14 is also possible, which may result in changes in the chemical

composition or phase distribution, or both, of particle cores 14. As a result, dispersed particles 214 and particle core materials 218 may have a melting temperature (T DP ) that is different than Tp. As used herein, T DP includes the lowest temperature at which incipient melting or liquation or other forms of partial melting will occur within dispersed particles 214, regardless of whether particle core material 218 comprise a pure metal, an alloy with multiple phases each having different melting temperatures or a composite, or otherwise. In one embodiment, powder compact 200 is formed at a sintering temperature (T s ), where T s is less than T C ,T P , T M and T D p, and the sintering is performed entirely in the solid-state resulting in a solid-state bond layer. In another exemplary embodiment, powder compact 200 is formed at a sintering temperature (Ts), where Ts is greater than or equal to one or more of T c ,Tp, T M or T D p and the sintering includes limited or partial melting within the powder compact 200 as described herein, and further may include liquid-state or liquid-phase sintering resulting in a bond layer that is at least partially melted and resolidified. In this embodiment, the combination of a predetermined Ts and a predetermined sintering time (ts) will be selected to preserve the desired micro structure that includes the cellular nanomatrix 216 and dispersed particles 214. For example, localized liquation or melting may be permitted to occur, for example, within all or a portion of nanomatrix 216 so long as the cellular nanomatrix 216/dispersed particle 214 morphology is preserved, such as by selecting particle cores 14, Ts and ts that do not provide for complete melting of particle cores.

Similarly, localized liquation may be permitted to occur, for example, within all or a portion of dispersed particles 214 so long as the cellular nanomatrix 216/dispersed particle 214 morphology is preserved, such as by selecting metallic coating layers 16, T s and t s that do not provide for complete melting of the coating layer or layers 16. Melting of metallic coating layers 16 may, for example, occur during sintering along the metallic layer 16 /particle core 14 interface, or along the interface between adjacent layers of multi-layer coating layers 16. It will be appreciated that combinations of Ts and ts that exceed the predetermined values may result in other micro structures, such as an equilibrium melt/resolidification

microstructure if, for example, both the nanomatrix 216 (i.e., combination of metallic coating layers 16) and dispersed particles 214 (i.e., the particle cores 14) are melted, thereby allowing rapid interdiffusion of these materials.

[0075] Dispersed particles 214 may comprise any of the materials described herein for particle cores 14, even though the chemical composition of dispersed particles 214 may be different due to diffusion effects as described herein. In an exemplary embodiment, dispersed particles 214 are formed from particle cores 14 comprising materials having a standard oxidation potential greater than or equal to Zn, including Mg, Al, Zn or Mn, or a combination thereof, may include various binary, tertiary and quaternary alloys or other combinations of these constituents as disclosed herein in conjunction with particle cores 14. Of these materials, those having dispersed particles 214 comprising Mg and the nanomatrix 216 formed from the metallic coating materials 16 described herein are particularly useful. Dispersed particles 214 and particle core material 218 of Mg, Al, Zn or Mn, or a combination thereof, may also include a rare earth element, or a combination of rare earth elements as disclosed herein in conjunction with particle cores 14.

[0076] In another exemplary embodiment, dispersed particles 214 are formed from particle cores 14 comprising metals that are less electrochemically active than Zn or non- metallic materials. Suitable non-metallic materials include ceramics, glasses (e.g., hollow glass microspheres) or carbon, or a combination thereof, as described herein.

[0077] Dispersed particles 214 of powder compact 200 may have any suitable particle size, including the average particle sizes described herein for particle cores 14.

[0078] Dispersed particles 214 may have any suitable shape depending on the shape selected for particle cores 14 and powder particles 12, as well as the method used to sinter and compact powder 10. In an exemplary embodiment, powder particles 12 may be spheroidal or substantially spheroidal and dispersed particles 214 may include an equiaxed particle configuration as described herein.

[0079] The nature of the dispersion of dispersed particles 214 may be affected by the selection of the powder 10 or powders 10 used to make particle compact 200. In one exemplary embodiment, a powder 10 having a unimodal distribution of powder particle 12 sizes may be selected to form powder compact 200 and will produce a substantially homogeneous unimodal dispersion of particle sizes of dispersed particles 214 within cellular nanomatrix 216, as illustrated generally in FIG. 9. In another exemplary embodiment, a plurality of powders 10 having a plurality of powder particles with particle cores 14 that have the same core materials 18 and different core sizes and the same coating material 20 may be selected and uniformly mixed as described herein to provide a powder 10 having a homogenous, multimodal distribution of powder particle 12 sizes, and may be used to form powder compact 200 having a homogeneous, multimodal dispersion of particle sizes of dispersed particles 214 within cellular nanomatrix 216, as illustrated schematically in FIGS. 6 and 11. Similarly, in yet another exemplary embodiment, a plurality of powders 10 having a plurality of particle cores 14 that may have the same core materials 18 and different core sizes and the same coating material 20 may be selected and distributed in a non-uniform manner to provide a non-homogenous, multimodal distribution of powder particle sizes, and may be used to form powder compact 200 having a non-homogeneous, multimodal dispersion of particle sizes of dispersed particles 214 within cellular nanomatrix 216, as illustrated schematically in FIG. 12. The selection of the distribution of particle core size may be used to determine, for example, the particle size and interparticle spacing of the dispersed particles 214 within the cellular nanomatrix 216 of powder compacts 200 made from powder 10.

[0080] As illustrated generally in FIGS. 7 and 13, powder metal compact 200 may also be formed using coated metallic powder 10 and an additional or second powder 30, as described herein. The use of an additional powder 30 provides a powder compact 200 that also includes a plurality of dispersed second particles 234, as described herein, that are dispersed within the nanomatrix 216 and are also dispersed with respect to the dispersed particles 214. Dispersed second particles 234 may be formed from coated or uncoated second powder particles 32, as described herein. In an exemplary embodiment, coated second powder particles 32 may be coated with a coating layer 36 that is the same as coating layer 16 of powder particles 12, such that coating layers 36 also contribute to the nanomatrix 216. In another exemplary embodiment, the second powder particles 232 may be uncoated such that dispersed second particles 234 are embedded within nanomatrix 216. As disclosed herein, powder 10 and additional powder 30 may be mixed to form a homogeneous dispersion of dispersed particles 214 and dispersed second particles 234, as illustrated in FIG. 13, or to form a non-homogeneous dispersion of these particles, as illustrated in FIG. 14. The dispersed second particles 234 may be formed from any suitable additional powder 30 that is different from powder 10, either due to a compositional difference in the particle core 34, or coating layer 36, or both of them, and may include any of the materials disclosed herein for use as second powder 30 that are different from the powder 10 that is selected to form powder compact 200. In an exemplary embodiment, dispersed second particles 234 may include Fe, Ni, Co or Cu, or oxides, nitrides, carbides, intermetallic or cermet thereof, or a combination of any of the aforementioned materials.

[0081] Nanomatrix 216 is a substantially-continuous, cellular network of metallic coating layers 16 that are sintered to one another. The thickness of nanomatrix 216 will depend on the nature of the powder 10 or powders 10 used to form powder compact 200, as well as the incorporation of any second powder 30, particularly the thicknesses of the coating layers associated with these particles. In an exemplary embodiment, the thickness of nanomatrix 216 is substantially uniform throughout the micro structure of powder compact 200 and comprises about two times the thickness of the coating layers 16 of powder particles 12. In another exemplary embodiment, the cellular network 216 has a substantially uniform average thickness between dispersed particles 214 of about 50nm to about 5000nm. [0082] Nanomatrix 216 is formed by sintering metallic coating layers 16 of adjacent particles to one another by interdiffusion and creation of bond layer 219 as described herein. Metallic coating layers 16 may be single layer or multilayer structures, and they may be selected to promote or inhibit diffusion, or both, within the layer or between the layers of metallic coating layer 16, or between the metallic coating layer 16 and particle core 14, or between the metallic coating layer 16 and the metallic coating layer 16 of an adjacent powder particle, the extent of interdiffusion of metallic coating layers 16 during sintering may be limited or extensive depending on the coating thicknesses, coating material or materials selected, the sintering conditions and other factors. Given the potential complexity of the interdiffusion and interaction of the constituents, description of the resulting chemical composition of nanomatrix 216 and nanomatrix material 220 may be simply understood to be a combination of the constituents of coating layers 16 that may also include one or more constituents of dispersed particles 214, depending on the extent of interdiffusion, if any, that occurs between the dispersed particles 214 and the nanomatrix 216. Similarly, the chemical composition of dispersed particles 214 and particle core material 218 may be simply understood to be a combination of the constituents of particle core 14 that may also include one or more constituents of nanomatrix 216 and nanomatrix material 220, depending on the extent of interdiffusion, if any, that occurs between the dispersed particles 214 and the nanomatrix 216.

[0083] In an exemplary embodiment, the nanomatrix material 220 has a chemical composition and the particle core material 218 has a chemical composition that is different from that of nanomatrix material 220, and the differences in the chemical compositions may be configured to provide a selectable and controllable dissolution rate, including a selectable transition from a very low dissolution rate to a very rapid dissolution rate, in response to a controlled change in a property or condition of the wellbore proximate the compact 200, including a property change in a wellbore fluid that is in contact with the powder compact 200, as described herein. Nanomatrix 216 may be formed from powder particles 12 having single layer and multilayer coating layers 16. This design flexibility provides a large number of material combinations, particularly in the case of multilayer coating layers 16, that can be utilized to tailor the cellular nanomatrix 216 and composition of nanomatrix material 220 by controlling the interaction of the coating layer constituents, both within a given layer, as well as between a coating layer 16 and the particle core 14 with which it is associated or a coating layer 16 of an adjacent powder particle 12. Several exemplary embodiments that demonstrate this flexibility are provided below. [0084] As illustrated in FIG. 10, in an exemplary embodiment, powder compact 200 is formed from powder particles 12 where the coating layer 16 comprises a single layer, and the resulting nanomatrix 216 between adjacent ones of the plurality of dispersed particles 214 comprises the single metallic coating layer 16 of one powder particle 12, a bond layer 219 and the single coating layer 16 of another one of the adjacent powder particles 12. The thickness (t) of bond layer 219 is determined by the extent of the interdiffusion between the single metallic coating layers 16, and may encompass the entire thickness of nanomatrix 216 or only a portion thereof. In one exemplary embodiment of powder compact 200 formed using a single layer powder 10, powder compact 200 may include dispersed particles 214 comprising Mg, Al, Zn or Mn, or a combination thereof, as described herein, and nanomatrix 216 may include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, carbide, nitride, intermetallic or cermet thereof, or a combination of any of the

aforementioned materials, including combinations where the nanomatrix material 220 of cellular nanomatrix 216, including bond layer 219, has a chemical composition and the core material 218 of dispersed particles 214 has a chemical composition that is different than the chemical composition of nanomatrix material 216. The difference in the chemical composition of the nanomatrix material 220 and the core material 218 may be used to provide selectable and controllable dissolution in response to a change in a property of a wellbore, including a wellbore fluid, as described herein. In a further exemplary embodiment of a powder compact 200 formed from a powder 10 having a single coating layer configuration, dispersed particles 214 include Mg, Al, Zn or Mn, or a combination thereof, and the cellular nanomatrix 216 includes Al or Ni, or a combination thereof.

[0085] As illustrated in FIG. 15, in another exemplary embodiment, powder compact 200 is formed from powder particles 12 where the coating layer 16 comprises a multilayer coating layer 16 having a plurality of coating layers, and the resulting nanomatrix 216 between adjacent ones of the plurality of dispersed particles 214 comprises the plurality of layers (t) comprising the coating layer 16 of one particle 12, a bond layer 219, and the plurality of layers comprising the coating layer 16 of another one of powder particles 12. In FIG. 15, this is illustrated with a two-layer metallic coating layer 16, but it will be understood that the plurality of layers of multi- layer metallic coating layer 16 may include any desired number of layers. The thickness (t) of the bond layer 219 is again determined by the extent of the interdiffusion between the plurality of layers of the respective coating layers 16, and may encompass the entire thickness of nanomatrix 216 or only a portion thereof. In this embodiment, the plurality of layers comprising each coating layer 16 may be used to control interdiffusion and formation of bond layer 219 and thickness (t).

[0086] In one exemplary embodiment of a powder compact 200 made using powder particles 12 with multilayer coating layers 16, the compact includes dispersed particles 214 comprising Mg, Al, Zn or Mn, or a combination thereof, as described herein, and nanomatrix 216 comprises a cellular network of sintered two-layer coating layers 16, as shown in FIG. 3, comprising first layers 22 that are disposed on the dispersed particles 214 and a second layers 24 that are disposed on the first layers 22. First layers 22 include Al or Ni, or a combination thereof, and second layers 24 include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or a combination thereof. In these configurations, materials of dispersed particles 214 and multilayer coating layer 16 used to form nanomatrix 216 are selected so that the chemical compositions of adjacent materials are different (e.g. dispersed particle/first layer and first layer/second layer).

[0087] In another exemplary embodiment of a powder compact 200 made using powder particles 12 with multilayer coating layers 16, the compact includes dispersed particles 214 comprising Mg, Al, Zn or Mn, or a combination thereof, as described herein, and nanomatrix 216 comprises a cellular network of sintered three-layer metallic coating layers 16, as shown in FIG. 4, comprising first layers 22 that are disposed on the dispersed particles 214, second layers 24 that are disposed on the first layers 22 and third layers 26 that are disposed on the second layers 24. First layers 22 include Al or Ni, or a combination thereof; second layers 24 include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, nitride, carbide, intermetallic or cermet thereof, or a combination of any of the aforementioned second layer materials; and the third layers include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or a combination thereof. The selection of materials is analogous to the selection considerations described herein for powder compact 200 made using two-layer coating layer powders, but must also be extended to include the material used for the third coating layer.

[0088] In yet another exemplary embodiment of a powder compact 200 made using powder particles 12 with multilayer coating layers 16, the compact includes dispersed particles 214 comprising Mg, Al, Zn or Mn, or a combination thereof, as described herein, and nanomatrix 216 comprise a cellular network of sintered four- layer coating layers 16 comprising first layers 22 that are disposed on the dispersed particles 214; second layers 24 that are disposed on the first layers 22; third layers 26 that are disposed on the second layers 24 and fourth layers 28 that are disposed on the third layers 26. First layers 22 include Al or Ni, or a combination thereof; second layers 24 include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, nitride, carbide, intermetallic or cermet thereof, or a combination of any of the aforementioned second layer materials; third layers include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, nitride, carbide, intermetallic or cermet thereof, or a combination of any of the aforementioned third layer materials; and fourth layers include Al, Mn, Fe, Co or Ni, or a combination thereof. The selection of materials is analogous to the selection considerations described herein for powder compacts 200 made using two-layer coating layer powders, but must also be extended to include the material used for the third and fourth coating layers.

[0089] In another exemplary embodiment of a powder compact 200, dispersed particles 214 comprise a metal having a standard oxidation potential less than Zn or a non- metallic material, or a combination thereof, as described herein, and nanomatrix 216 comprises a cellular network of sintered metallic coating layers 16. Suitable non-metallic materials include various ceramics, glasses or forms of carbon, or a combination thereof. Further, in powder compacts 200 that include dispersed particles 214 comprising these metals or non-metallic materials, nanomatrix 216 may include Al, Zn, Mn, Mg, Mo, W, Cu, Fe, Si, Ca, Co, Ta, Re or Ni, or an oxide, carbide, nitride, intermetallic or cermet thereof, or a combination of any of the aforementioned materials as nanomatrix material 220.

[0090] Referring to FIG. 16, sintered powder compact 200 may comprise a sintered precursor powder compact 100 that includes a plurality of deformed, mechanically bonded powder particles as described herein. Precursor powder compact 100 may be formed by compaction of powder 10 to the point that powder particles 12 are pressed into one another, thereby deforming them and forming interparticle mechanical or other bonds 110 associated with this deformation sufficient to cause the deformed powder particles 12 to adhere to one another and form a green-state powder compact having a green density that is less than the theoretical density of a fully-dense compact of powder 10, due in part to interparticle spaces 15. Compaction may be performed, for example, by isostatically pressing powder 10 at room temperature to provide the deformation and interparticle bonding of powder particles 12 necessary to form precursor powder compact 100.

[0091] Sintered and forged powder compacts 200 that include dispersed particles 214 comprising Mg and nanomatrix 216 comprising various nanomatrix materials as described herein have demonstrated an excellent combination of mechanical strength and low density that exemplify the lightweight, high-strength materials disclosed herein. Examples of powder compacts 200 that have pure Mg dispersed particles 214 and various nanomatrices 216 formed from powders 10 having pure Mg particle cores 14 and various single and multilayer metallic coating layers 16 that include Al, Ni, W or AI 2 O 3 , or a combination thereof, and that have been made using the method 400 disclosed herein, include Al, Ni+Al, W+Al and AI+AI 2 O 3 +AI. These powders compacts 200 have been subjected to various mechanical and other testing, including density testing, and their dissolution and mechanical property degradation behavior has also been characterized as disclosed herein. The results indicate that these materials may be configured to provide a wide range of selectable and controllable corrosion or dissolution behavior from very low corrosion rates to extremely high corrosion rates, particularly corrosion rates that are both lower and higher than those of powder compacts that do not incorporate the cellular nanomatrix, such as a compact formed from pure Mg powder through the same compaction and sintering processes in comparison to those that include pure Mg dispersed particles in the various cellular nanomatrices described herein. These powder compacts 200 may also be configured to provide substantially enhanced properties as compared to powder compacts formed from pure Mg particles that do not include the nanoscale coatings described herein. For example, powder compacts 200 that include dispersed particles 214 comprising Mg and nanomatrix 216 comprising various nanomatrix materials 220 described herein have demonstrated room temperature compressive strengths of at least about 37 ksi, and have further demonstrated room temperature compressive strengths in excess of about 50 ksi, both dry and immersed in a solution of 3% KC1 at 200°F. In contrast, powder compacts formed from pure Mg powders have a compressive strength of about 20 ksi or less. Strength of the nanomatrix powder metal compact 200 can be further improved by optimizing powder 10, particularly the weight percentage of the nanoscale metallic coating layers 16 that are used to form cellular nanomatrix 216. For example, varying the weight percentage (wt.%), i.e., thickness, of an alumina coating effects the room temperature compressive strength of a powder compact 200 of a cellular nanomatrix 216 formed from coated powder particles 12 that include a multilayer (AI/AI 2 O 3 /AI) metallic coating layer 16 on pure Mg particle cores 14. In this example, optimal strength is achieved at 4 wt% of alumina, which represents an increase of 21% as compared to that of 0 wt% alumina.

[0092] Powder compacts 200 comprising dispersed particles 214 that include Mg and nanomatrix 216 that includes various nanomatrix materials as described herein have also demonstrated a room temperature sheer strength of at least about 20 ksi. This is in contrast with powder compacts formed from pure Mg powders which have room temperature sheer strengths of about 8 ksi. [0093] Powder compacts 200 of the types disclosed herein are able to achieve an actual density that is substantially equal to the predetermined theoretical density of a compact material based on the composition of powder 10, including relative amounts of constituents of particle cores 14 and metallic coating layer 16, and are also described herein as being fully-dense powder compacts. Powder compacts 200 comprising dispersed particles that include Mg and nanomatrix 216 that includes various nanomatrix materials as described herein have demonstrated actual densities of about 1.738 g/cm 3 to about 2.50 g/cm 3 , which are substantially equal to the predetermined theoretical densities, differing by at most 4% from the predetermined theoretical densities.

[0094] Powder compacts 200 as disclosed herein may be configured to be selectively and controllably dissolvable in a wellbore fluid in response to a changed condition in a wellbore. Examples of the changed condition that may be exploited to provide selectable and controllable dissolvability include a change in temperature, change in pressure, change in flow rate, change in pH or change in chemical composition of the wellbore fluid, or a combination thereof. An example of a changed condition comprising a change in

temperature includes a change in well bore fluid temperature. For example, powder compacts 200 comprising dispersed particles 214 that include Mg and cellular nanomatrix 216 that includes various nanomatrix materials as described herein have relatively low rates of corrosion in a 3% KC1 solution at room temperature that ranges from about 0 to about 11 mg/cm 2 /hr as compared to relatively high rates of corrosion at 200°F that range from about 1 to about 246 mg/cm 2 /hr depending on different nanoscale coating layers 16. An example of a changed condition comprising a change in chemical composition includes a change in a chloride ion concentration or pH value, or both, of the wellbore fluid. For example, powder compacts 200 comprising dispersed particles 214 that include Mg and nanomatrix 216 that includes various nanoscale coatings described herein demonstrate corrosion rates in 15% HCl that range from about 4750 mg/cm 2 /hr to about 7432 mg/cm 2 /hr. Thus, selectable and controllable dissolvability in response to a changed condition in the wellbore, namely the change in the wellbore fluid chemical composition from KC1 to HCl, may be used to achieve a characteristic response such that at a selected predetermined critical service time (CST) a changed condition may be imposed upon powder compact 200 as it is applied in a given application, such as a wellbore environment, that causes a controllable change in a property of powder compact 200 in response to a changed condition in the environment in which it is applied. For example, at a predetermined CST changing a wellbore fluid that is in contact with powder contact 200 from a first fluid (e.g. KC1) that provides a first corrosion rate and an associated weight loss or strength as a function of time to a second wellbore fluid (e.g., HC1) that provides a second corrosion rate and associated weight loss and strength as a function of time, wherein the corrosion rate associated with the first fluid is much less than the corrosion rate associated with the second fluid. This characteristic response to a change in wellbore fluid conditions may be used, for example, to associate the critical service time with a dimension loss limit or a minimum strength needed for a particular application, such that when a wellbore tool or component formed from powder compact 200 as disclosed herein is no longer needed in service in the wellbore (e.g., the CST) the condition in the wellbore (e.g., the chloride ion concentration of the wellbore fluid) may be changed to cause the rapid dissolution of powder compact 200 and its removal from the wellbore. In the example described above, powder compact 200 is selectably dissolvable at a rate that ranges from about 0 to about 7000 mg/cm 2 /hr. This range of response provides, for example the ability to remove a 3 inch diameter ball formed from this material from a wellbore by altering the wellbore fluid in less than one hour. The selectable and controllable dissolvability behavior described above, coupled with the excellent strength and low density properties described herein, define a new engineered dispersed particle-nanomatrix material that is configured for contact with a fluid and configured to provide a selectable and controllable transition from one of a first strength condition to a second strength condition that is lower than a functional strength threshold, or a first weight loss amount to a second weight loss amount that is greater than a weight loss limit, as a function of time in contact with the fluid. The dispersed particle-nanomatrix composite is characteristic of the powder compacts 200 described herein and includes a cellular nanomatrix 216 of nanomatrix material 220, a plurality of dispersed particles 214 including particle core material 218 that is dispersed within the matrix. Nanomatrix 216 is characterized by a solid-state bond layer 219 which extends throughout the nanomatrix. The time in contact with the fluid described above may include the CST as described above. The CST may include a predetermined time that is desired or required to dissolve a predetermined portion of the powder compact 200 that is in contact with the fluid. The CST may also include a time corresponding to a change in the property of the engineered material or the fluid, or a combination thereof. In the case of a change of property of the engineered material, the change may include a change of a temperature of the engineered material. In the case where there is a change in the property of the fluid, the change may include the change in a fluid temperature, pressure, flow rate, chemical composition or pH or a combination thereof. Both the engineered material and the change in the property of the engineered material or the fluid, or a combination thereof, may be tailored to provide the desired CST response characteristic, including the rate of change of the particular property (e.g., weight loss, loss of strength) both prior to the CST (e.g., Stage 1) and after the CST (e.g., Stage 2).

[0095] Referring to FIG. 17, a method 400 of making a powder compact 200.

Method 400 includes forming 410 a coated metallic powder 10 comprising powder particles 12 having particle cores 14 with nanoscale metallic coating layers 16 disposed thereon, wherein the metallic coating layers 16 have a chemical composition and the particle cores 14 have a chemical composition that is different than the chemical composition of the metallic coating material 16. Method 400 also includes forming 420 a powder compact by applying a predetermined temperature and a predetermined pressure to the coated powder particles sufficient to sinter them by solid-phase sintering of the coated layers of the plurality of the coated particle powders 12 to form a substantially-continuous, cellular nanomatrix 216 of a nano matrix material 220 and a plurality of dispersed particles 214 dispersed within nanomatrix 216 as described herein.

[0096] Forming 410 of coated metallic powder 10 comprising powder particles 12 having particle cores 14 with nanoscale metallic coating layers 16 disposed thereon may be performed by any suitable method. In an exemplary embodiment, forming 410 includes applying the metallic coating layers 16, as described herein, to the particle cores 14, as described herein, using fluidized bed chemical vapor deposition (FBCVD) as described herein. Applying the metallic coating layers 16 may include applying single-layer metallic coating layers 16 or multilayer metallic coating layers 16 as described herein. Applying the metallic coating layers 16 may also include controlling the thickness of the individual layers as they are being applied, as well as controlling the overall thickness of metallic coating layers 16. Particle cores 14 may be formed as described herein.

[0097] Forming 420 of the powder compact 200 may include any suitable method of forming a fully-dense compact of powder 10. In an exemplary embodiment, forming 420 includes dynamic forging of a green-density precursor powder compact 100 to apply a predetermined temperature and a predetermined pressure sufficient to sinter and deform the powder particles and form a fully-dense nanomatrix 216 and dispersed particles 214 as described herein. Dynamic forging as used herein means dynamic application of a load at temperature and for a time sufficient to promote sintering of the metallic coating layers 16 of adjacent powder particles 12, and may preferably include application of a dynamic forging load at a predetermined loading rate for a time and at a temperature sufficient to form a sintered and fully-dense powder compact 200. In an exemplary embodiment, dynamic forging included: 1) heating a precursor or green-state powder compact 100 to a predetermined solid phase sintering temperature, such as, for example, a temperature sufficient to promote interdiffusion between metallic coating layers 16 of adjacent powder particles 12; 2) holding the precursor powder compact 100 at the sintering temperature for a predetermined hold time, such as, for example, a time sufficient to ensure substantial uniformity of the sintering temperature throughout the precursor compact 100; 3) forging the precursor powder compact 100 to full density, such as, for example, by applying a

predetermined forging pressure according to a predetermined pressure schedule or ramp rate sufficient to rapidly achieve full density while holding the compact at the predetermined sintering temperature; and 4) cooling the compact to room temperature. The predetermined pressure and predetermined temperature applied during forming 420 will include a sintering temperature, T s , and forging pressure, P F , as described herein that will ensure solid-state sintering and deformation of the powder particles 12 to form fully-dense powder compact 200, including solid-state bond 217 and bond layer 219. The steps of heating to and holding the precursor powder compact 100 at the predetermined sintering temperature for the predetermined time may include any suitable combination of temperature and time, and will depend, for example, on the powder 10 selected, including the materials used for particle core 14 and metallic coating layer 16, the size of the precursor powder compact 100, the heating method used and other factors that influence the time needed to achieve the desired temperature and temperature uniformity within precursor powder compact 100. In the step of forging, the predetermined pressure may include any suitable pressure and pressure application schedule or pressure ramp rate sufficient to achieve a fully-dense powder compact 200, and will depend, for example, on the material properties of the powder particles 12 selected, including temperature dependent stress/strain characteristics (e.g., stress/strain rate characteristics), interdiffusion and metallurgical thermodynamic and phase equilibria characteristics, dislocation dynamics and other material properties. For example, the maximum forging pressure of dynamic forging and the forging schedule (i.e., the pressure ramp rates that correspond to strain rates employed) may be used to tailor the mechanical strength and toughness of the powder compact. The maximum forging pressure and forging ramp rate (i.e., strain rate) is the pressure just below the compact cracking pressure, i.e., where dynamic recovery processes are unable to relieve strain energy in the compact microstructure without the formation of a crack in the compact. For example, for

applications that require a powder compact that has relatively higher strength and lower toughness, relatively higher forging pressures and ramp rates may be used. If relatively higher toughness of the powder compact is needed, relatively lower forging pressures and ramp rates may be used.

[0098] For certain exemplary embodiments of powders 10 described herein and precursor compacts 100 of a size sufficient to form many wellbore tools and components, predetermined hold times of about 1 to about 5 hours may be used. The predetermined sintering temperature, T s , will preferably be selected as described herein to avoid melting of either particle cores 14 and metallic coating layers 16 as they are transformed during method 400 to provide dispersed particles 214 and nanomatrix 216. For these embodiments, dynamic forging may include application of a forging pressure, such as by dynamic pressing to a maximum of about 80 ksi at pressure ramp rate of about 0.5 to about 2 ksi/second.

[0099] In an exemplary embodiment where particle cores 14 included Mg and metallic coating layer 16 included various single and multilayer coating layers as described herein, such as various single and multilayer coatings comprising Al, the dynamic forging was performed by sintering at a temperature, T s , of about 450°C to about 470 °C for up to about 1 hour without the application of a forging pressure, followed by dynamic forging by application of isostatic pressures at ramp rates between about 0.5 to about 2 ksi/second to a maximum pressure, Ps, of about 30 ksi to about 60 ksi, which resulted in forging cycles of 15 seconds to about 120 seconds. The short duration of the forging cycle is a significant advantage as it limits interdiffusion, including interdiffusion within a given metallic coating layer 16, interdiffusion between adjacent metallic coating layers 16 and interdiffusion between metallic coating layers 16 and particle cores 14, to that needed to form metallurgical bond 217 and bond layer 219, while also maintaining the desirable equiaxed dispersed particle 214 shape with the integrity of cellular nanomatrix 216 strengthening phase. The duration of the dynamic forging cycle is much shorter than the forming cycles and sintering times required for conventional powder compact forming processes, such as hot isostatic pressing (HIP), pressure assisted sintering or diffusion sintering.

[0100] Method 400 may also optionally include forming 430 a precursor powder compact by compacting the plurality of coated powder particles 12 sufficiently to deform the particles and form interparticle bonds to one another and form the precursor powder compact 100 prior to forming 420 the powder compact. Compacting may include pressing, such as isostatic pressing, of the plurality of powder particles 12 at room temperature to form precursor powder compact 100. Compacting 430 may be performed at room temperature. In an exemplary embodiment, powder 10 may include particle cores 14 comprising Mg and forming 430 the precursor powder compact may be performed at room temperature at an isostatic pressure of about 10 ksi to about 60 ksi.

[0101] Method 400 may optionally also include intermixing 440 a second powder 30 into powder 10 as described herein prior to the forming 420 the powder compact, or forming 430 the precursor powder compact.

[0102] Without being limited by theory, powder compacts 200 are formed from coated powder particles 12 that include a particle core 14 and associated core material 18 as well as a metallic coating layer 16 and an associated metallic coating material 20 to form a substantially-continuous, three-dimensional, cellular nanomatrix 216 that includes a nano matrix material 220 formed by sintering and the associated diffusion bonding of the respective coating layers 16 that includes a plurality of dispersed particles 214 of the particle core materials 218. This unique structure may include metastable combinations of materials that would be very difficult or impossible to form by solidification from a melt having the same relative amounts of the constituent materials. The coating layers and associated coating materials may be selected to provide selectable and controllable dissolution in a

predetermined fluid environment, such as a wellbore environment, where the predetermined fluid may be a commonly used wellbore fluid that is either injected into the wellbore or extracted from the wellbore. As will be further understood from the description herein, controlled dissolution of the nanomatrix exposes the dispersed particles of the core materials. The particle core materials may also be selected to also provide selectable and controllable dissolution in the wellbore fluid. Alternately, they may also be selected to provide a particular mechanical property, such as compressive strength or sheer strength, to the powder compact 200, without necessarily providing selectable and controlled dissolution of the core materials themselves, since selectable and controlled dissolution of the nanomatrix material surrounding these particles will necessarily release them so that they are carried away by the wellbore fluid. The micro structural morphology of the substantially-continuous, cellular nanomatrix 216, which may be selected to provide a strengthening phase material, with dispersed particles 214, which may be selected to provide equiaxed dispersed particles 214, provides these powder compacts with enhanced mechanical properties, including

compressive strength and sheer strength, since the resulting morphology of the

nanomatrix/dispersed particles can be manipulated to provide strengthening through the processes that are akin to traditional strengthening mechanisms, such as grain size reduction, solution hardening through the use of impurity atoms, precipitation or age hardening and strength/work hardening mechanisms. The nanomatrix/dispersed particle structure tends to limit dislocation movement by virtue of the numerous particle nanomatrix interfaces, as well as interfaces between discrete layers within the nanomatrix material as described herein. This is exemplified in the fracture behavior of these materials.. A powder compact 200 made using uncoated pure Mg powder and subjected to a shear stress sufficient to induce failure demonstrated intergranular fracture. In contrast, a powder compact 200 made using powder particles 12 having pure Mg powder particle cores 14 to form dispersed particles 214 and metallic coating layers 16 that includes Al to form nanomatrix 216 and subjected to a shear stress sufficient to induce failure demonstrated transgranular fracture and a substantially higher fracture stress as described herein. Because these materials have high-strength characteristics, the core material and coating material may be selected to utilize low density materials or other low density materials, such as low-density metals, ceramics, glasses or carbon, that otherwise would not provide the necessary strength characteristics for use in the desired applications, including wellbore tools and components.

[0103] Referring to FIG. 18, a method 500 of making selectively corrodible articles 502 from the materials described herein, including powders 10, precursor powder compacts 100 and powder compacts 200 is disclosed. The method 500 includes forming 510 a powder 10 comprising a plurality of metallic powder particles 12, each metallic powder particle comprising a nanoscale metallic coating layer 16 disposed on a particle core 14 as described herein. The method 500 also includes forming 520 a powder compact 522 of the powder particles 10, wherein the powder particles 512 of the powder compact 522 are substantially elongated in a predetermined direction 524 to form substantially elongated powder particles 512. In one embodiment, the coating layers 516 of the substantially elongated particles 512 are substantially discontinuous in the predetermined direction 524. By substantially discontinuous, it is meant that the elongated coating layers 516 and elongated particle cores 514 may be elongated, including being thinned, to the point that the elongated coating layers 516 (lighter particle phase), elongated particle cores 514 (darker phase), or a combination thereof, become separated or cracked or otherwise discontinuous in the predetermined direction 524 or direction of elongation, as shown in FIG. 19, which is a photomicrograph of a cross-section from a powder compact 522 parallel to the predetermined direction 524. FIG. 19 reveals the substantially discontinuous nature of coating layers 516 along the

predetermined direction 524. This micro structure of the articles 502 having this substantially discontinuous coating layer 16 structure may also be described, alternately, as an extruded structure comprising a matrix of the particle core material 18 having evenly dispersed particles of the coating layer 16 dispersed therein. The coating layers 516 may also retain some continuity, such that they may be substantially continuous perpendicular to the predetermined direction 524, similar to the microstructure shown in FIG. 9. However, FIG. 20, which is a photomicrograph of a cross-section from a powder compact 522 approximately perpendicular or transverse to the predetermined direction 524, reveals that the coating layers 516 may also be substantially discontinuous perpendicular to the predetermined direction 524. The nature of the elongated metallic layers 516, including whether they are substantially continuous or discontinuous, in both the predetermined direction 524, or in a direction transverse thereto, will generally be determined by the amount of deformation or elongation imparted to the powder compact 522, including the reduction ratio employed, with higher elongation ratios resulting in more deformation and resulting in a more discontinuous elongated metallic layer 516 in the predetermined direction, or transverse thereto, or both.

[0104] It will be understood that while the structure described above has been described with reference to the substantially elongated particles 512, that the powder compact 522 comprises a plurality of substantially elongated particles 512 that are joined to one another as described herein to form a network of interconnected substantially elongated particles 512 that define a substantially elongated cellular nano matrix 616 comprising a network of interconnected elongated cells of nanomatrix material 616 having a plurality of substantially elongated dispersed particle cores 614 of core material 618 disposed within the cells. Depending on the amount of deformation imparted to form elongated particles 512, the elongated coating layers and the nanomatrix may be substantially continuous in the predetermined direction 524 as shown in FIG. 21, or substantially discontinuous as shown in FIG. 22.

[0105] Referring again to FIGS. 18 and 23, forming 520 of the powder compact 522 of the powder particles 12 may be performed by directly extruding 530 a powder 10 comprising a plurality of powder particles 12. Extruding 530 may be performed by forcing the powder 10 and powder particles 12 through an extrusion die 526 as shown schematically in FIG. 23 to cause the consolidation and elongation of elongated particles 512 and formation of powder compact 522. Powder compact 522 may be consolidated to substantially full theoretical density based on the composition of the powder 10 employed, or less than full theoretical density, including any predetermined percentage of the theoretical density, including about 40 percent to about 100 percent of the theoretical density, and more particularly about 60 percent to about 98 percent of the theoretical density, and more particularly about 75 percent to about 95 percent of the theoretical density. Further, powder compact 522 may be sintered such that the elongated particles 512 are bonded to one another with metallic or chemical bonds and are characterized by interdiffusion between adjacent particles 512, including their adjacent elongated metallic layers 516, or may be unsintered such that the extrusion is performed at an ambient temperature and the elongated particles 512 are bonded to one another with mechanical bonds and associated intermixing associated with the mechanical deformation and elongation of the elongated particles 512.

[0106] Sintering may be performed by heating the extrudate. In one embodiment, heating may be performed during extrusion by preheating the particles before extrusion, or alternately heating them during extrusion using a heating device 536, or a combination thereof. In another embodiment, sintering may be performed by heating the extrudate after extrusion using any suitable heating device. In yet another embodiment, sintering may be accomplished by heating the particles before, or heating the extrudate during or after extrusion, or any combination of the above. Heating may be performed at any suitable temperature, and will generally be selected to be lower than a critical recrystallization temperature, and more particularly below a dynamic recrystallization temperature, of the elongated particles 512, so as to maintain the cold working and avoid recovery and grain growth within the deformed microstructure. However, in certain embodiments, heating may be performed at a temperature that is higher than a dynamic recrystallization temperature of a melt-formed alloy having the same overall composition of constituents, so long as it does not result in actual recrystallization of the microstructure comprising the substantially elongated grains. Without being bound by theory, this may be related to the particle core/nanomatrix structure, wherein the coating layer constituents are distributed as the nanomatrix having dispersed particles, rather than a melt-formed alloy microstructure where the constituents comprising the coating layers may be distributed very differently due to the solubility of the coating layer material in the particle core material. It may also result because the dynamic deformation hardening process occurs more rapidly than that of dynamic recrystallization, such that the material strength increases rather decreases even though the forming 520 is performed above the recrystallization temperature of a melt -formed alloy having the same amounts of constituents. The critical recrystallization temperature will depend on the amount of deformation introduced and other factors. In certain embodiments, including powder compacts 522 formed from powder particles 12 comprising various Mg or Mg alloy particle cores 14, heating during forming 520 may be performed at a forming temperature of about 300°F to about 1000°F, and more particularly about 300°F to about 800°F, and even more particularly about 500°F to about 800°F. In certain other embodiments, forming may be performed at a temperature, which is less than a melting temperature of the powder compact, such as the extrudate, and which may include a temperature that is less than T C ,T P , T M or T D p as described herein. In other embodiments, the forming may be performed at a temperature that is about 20°C to about 300°C below the melting temperature of the powder compact.

[0107] In one embodiment, extruding 530 may be performed according to a predetermined reduction ratio. Any suitable predetermined reduction ratio may be employed, which in one embodiment may comprise a ratio of an initial thickness (ti) of the particles to a final thickness (t f ), or ty t f , and in another embodiment may comprise a ratio of an initial length (L) of the particles to a final length (I f ), or \y I f . In one embodiment, the ratio may be about 5 to about 2000, and more particularly may be about 50 to about 2000, and even more particularly about 50 to about 1000. Alternately, in other embodiments, reduction ratio may be expressed as an initial thickness (ti) of the extrusion die cavity to a final thickness (t f ), or ty t f , and in another embodiment may comprise a ratio of an initial cross-sectional area (a;) of the die cavity to a final cross-sectional area (a f ), or ay a f .

[0108] Referring to FIGS. 18 and 24, while forming 520 of the powder compact 522 may be performed by directly extruding 530 powder 10 as described above, in other embodiments, forming 520 the powder compact 522 may include compacting 540 the powder 10 and powder particles 12 into a billet 542 and deforming 550 the billet 542 to provide a powder compact 522 having elongated powder particles 512, as described herein. The billet 542 may include a precursor powder compact 100 or a powder compact 200, as described herein, which may be formed by compacting 540 according to the methods described herein, including cold pressing (uniaxial pressing), hot isostatic pressing, cold isostatic pressing, extruding, cold roll forming, hot roll forming or forging to form the billet 542. In one embodiment, compacting 540 by extrusion may include a sufficient reduction ratio, as described herein, to consolidate the powder particles 12 and form the billet 542 without forming substantially elongated powder particles 512. This may include extrusion at reduction ratios less than those effective to form elongated particles 512, such as reduction ratios less than about 50, and in other embodiments less than about 5. In another

embodiment, compacting 540 by extrusion to form the billet 542 may be sufficient to partially form the substantially elongated powder particles 512. This may include extrusion at reduction ratios greater than or equal to those effective to form elongated particles 512, such as reduction ratios greater than or equal to about 50, and in other embodiments greater than or equal to about 5, where the deformation associated with compacting 540 is followed by further deformation associated with deforming 550 of the billet 542. [0109] Deforming 550 of the billet 542 may be performed by any suitable deformation method. Suitable deformation methods may include extrusion, hot rolling, cold rolling, drawing or swaging, or a combination thereof, for example. Forming 550 of the billet 542 may also be performed according to a predetermined reduction ratio, including the predetermined reduction ratios described herein.

[0110] In certain embodiments, powder compacts 522 having substantially elongated powder particles 512 formed according to method 500 as described herein have a strength, particularly an ultimate compressive strength, which is greater than precursor powder compact 100 or powder compact 200 formed using the same powder particles. For example, +100 mesh spherical powder particles 12 having a pure Mg particle core 14 and a coating layer 16 comprising, by weight of the particle, a layer of 9% pure Al disposed on the particle core followed by a layer of 4% alumina disposed on the pure Al and a layer of 4% Al disposed on the alumina exhibited an ultimate compressive strength greater than billets 542 comprising precursor powder compacts 100 and powder compacts 200 described herein, including those formed by dynamic forging, as described herein, which generally have equiaxed arrangement of the cellular nanomatrix 216 and dispersed particles 214. In one embodiment, the powder compacts 522 having substantially elongated powder particles 512 of Mg/Al/Al 2 0 3 /Al as described had elastic moduli up to about 5.1 xlO 6 psi and ultimate compressive strengths greater than about 50 ksi, and more particularly greater than about 60 ksi, and even more particularly up to about 76 ksi as shown in FIG. 25, as well as

compressive yield strengths up to about 46 ksi. These powder compacts 522 also exhibited higher rates of corrosion in predetermined wellbore fluids than billets 542 comprising precursor powder compacts 100 and powder compacts 200 described herein. In one embodiment, the powder compacts 522 having substantially elongated powder particles 512 of Mg/Al/Al 2 0 3 /Al as described had corrosion rates in an aqueous solution of 3% potassium chloride in water at 200 F up to about 2.1 mg/cm 2 /hr as compared to a corrosion rate of powder compact 200 of the same powder of about 0.2 mg/cm 2 /hr. In another embodiment, the powder compacts 522 having substantially elongated powder particles 512 of

Mg/Al/Al 2 0 3 /Al as described had corrosion rates in 5-15% by volume HCl greater than about 7,000 mg/cm 2 /hr, including a corrosion rate greater than about 11,000 in 15% HCl.

[0111] The method 500 described may be used to form various alloys as described herein in various forms, including ingots, bars, rods, plates, tubulars, sheets, wires and other stock forms, which may in turn be used to form a wide variety of articles 502, particularly a wide variety of downhole articles 580, and more particularly various downhole tools and components. As shown in FIGS. 26 and 27, exemplary embodiments include various balls 582, including various diverter balls; plugs 584, including various cylindrical and disk- shaped plugs; tubulars 586; sleeves 588, including sleeves 588 used to provide various seats 590, such as a ball seat 592 and the like for downhole use and application in a wellbore 594. The articles 580 may be designed to be used downhole anywhere, including within the tubular metal casing 596 or within the cement liner 598 or within the wellbore 600, and may be used permanently, or that may be designed to be selectively removable as described herein in response to a predetermined wellbore condition, such as exposure to a predetermined temperature or predetermined wellbore fluid.

[0112] While one or more embodiments have been shown and described,

modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.