Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR MANUFACTURING A COOLING ELEMENT AND A COOLING ELEMENT
Document Type and Number:
WIPO Patent Application WO/2001/071267
Kind Code:
A2
Abstract:
A method for manufacturing a cooling element comprising a housing part and ceramic lining elements arranged on the housing part surface. The ceramic lining elements (2) are connected to the element housing part (1) by using in the joint between the lining elements and the housing part a soldering/brazing agent, wherein at least the junction area is heated at least up to the melting temperature of the soldering/brazing agent, so that there is created a joint with a good thermal contact with the element housing part (1) and a ceramic lining element (2). The invention also relates to a cooling element.

Inventors:
SAARINEN RISTO (FI)
LEPPAENEN YRJOE (FI)
Application Number:
PCT/FI2001/000280
Publication Date:
September 27, 2001
Filing Date:
March 21, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OUTOKUMPU OY (FI)
SAARINEN RISTO (FI)
LEPPAENEN YRJOE (FI)
International Classes:
B23K1/19; F25D17/02; F27D1/12; F27B3/24; F27D9/00; (IPC1-7): F27D/
Domestic Patent References:
WO2001003873A12001-01-18
Foreign References:
US4382585A1983-05-10
US4752218A1988-06-21
US4892293A1990-01-09
Other References:
PATENT ABSTRACTS OF JAPAN & JP 01 155 189 A (FURUKAWA CO. LTD.) 19 June 1989
DATABASE WPI Week 199120, Derwent Publications Ltd., London, GB; AN 1991-144240, XP002956073 'Joining ceramic parts with metal parts - by providing concave ditch or convex strip on ceramic member and corresp. ditch or strip on metal member and heating under pressure' & JP 3 080 162 A (NGK INSULATORS LTD.) 04 April 1991
Attorney, Agent or Firm:
Outokumpu, Oyj (Intellectual Property Management P.O. Box 27 Espoo, FI)
Download PDF:
Claims:
CLAIMS
1. A method for manufacturing a cooling element comprising a housing part and ceramic lining elements arranged on the housing part surface, characterized in that the ceramic lining elements (2) are connected to the element housing part (1) by using in the joint between the lining elements and the housing part a soldering/brazing agent, wherein at least the junction area is heated at least up to the melting temperature of the soldering/brazing agent, so that there is created a joint with a good thermal contact with the element housing part (1) and a ceramic lining element (2).
2. A method according to claim 1, characterized in that the housing part (1) is mainly made of copper.
3. A method according to claim 1 or 2, characterized in that the ceramic lining elements (2) are fireproof bricks.
4. A method according to any of the claims 13, characterized in that the soldering/brazing agent is brought separately to the junction area, for example as a powder or a foil.
5. A method according to any of the claims 14, characterized in that the soldering/brazing agent is brought to the junction area together with the pieces to be joined together.
6. A method according to any of the claims 15, characterized in that in the ceramic lining elements (2), at least on the junction surface thereof, there is applied at least one intermediate agent layer, such as a metal layer or a soldering/brazing agent layer, prior to bringing the elements to the junction area.
7. A cooling element comprising a housing part (1) provided with a channel system for the cooling water circulation, and a lining made of ceramic elements (2) in at least part of the housing part surface, characterized in that the ceramic lining elements (2) are connected to the housing part (1) by means of a soldering/brazing agent in a way that results in a good thermal contact between the ceramic element and the housing part.
8. A cooling element according to claim 7, characterized in that the surface of the cooling element housing part (1) is provided with grooves (3), in which the ceramic lining elements (2) are arranged to be fitted.
9. A cooling element according to claim 7 or 8, characterized in that the ceramic lining elements (2) are arranged to be kept in the grooves (3) in a shapelocked fashion, when the element is in a position where the groove opens downwardly.
10. A cooling element according to any of the claims 79, characterized in that the distance (W,, W2) between the opposite walls of the housing part grooves (3) is reduced while proceeding from the bottom of the grooves towards the housing part surface.
Description:
METHOD FOR MANUFACTURING A COOLING ELEMENT AND A COOLING ELEMENT The present invention relates to a method for manufacturing a cooling element according to the preamble of the appended claim 1. The invention also relates to a cooling element.

In connection with industrial furnaces, such as flash smelting furnaces, blast furnaces and electric furnaces used in the manufacturing of metals, or in connection with other metallurgic reactors, there are used cooling elements that are typically made of mainly copper. On the surface of the cooling element, there is often arranged a ceramic lining, for instance made of fireproof bricks.

The cooling elements are typically water-cooled and thus provided with a cooling water channel system, so that the heat is transferred from the fireproof bricks through the housing of the cooling element to the cooling water. The cooling elements are used in extreme working conditions, where they are subjected to strong corrosion and erosion strain caused by the furnace atmosphere or contacts with the molten material. For an effective operation of the cooling element, it is important that the joint between the fireproof bricks and the cooling element is good, in which case an effectively heat-transferring contact is achieved. A drawback in the manufacturing of known cooling elements is the complexity of the manufacturing methods in attaching the ceramic/fireproof lining and the difficulty in obtaining a good contact between the ceramic lining and the element. Thus the cooling properties of the element cannot be fully utilized. This in turn results in an accelerated wearing of the lining.

The object of the invention is to realize a method for manufacturing a cooling element, by which method the drawbacks of the prior art can be avoided.

Another object of the invention is to realize a cooling element that has a good contact between the ceramic lining and the element housing.

The invention is characterized by what is specified in the appended claims.

The arrangement according to the invention has several remarkable advantages. According to the method, there is obtained an extremely good contact between the ceramic lining elements and the cooling element housing.

This maintains the temperature on the furnace-side of the cooling element and its ceramic parts, such as the fireproof bricks, sufficiently low, so that on the element surface there is created a so-called autogenous lining, comprising among others oxidic and/or sulfidic molten components. Now the wearing of the bricks, among others, is essentially slowed down, and the working life of the cooling element is increased. The method according to the invention is advantageous also as regards the manufacturing technology.

The invention is explained in more detail below, with reference to the appended drawing, where Figure 1 illustrates the cooling element according to the invention, seen in cross-section.

The cooling element according to the invention comprises a housing part 1, provided with a channel system 4 for the cooling water circulation, and a lining formed of ceramic elements 2 applied to at least part of the surface of the housing part. The elements 2 of the ceramic lining are attached to the housing part 1 by means of a soldering/brazing agent in a way that results in a good thermal contact between the ceramic part and the housing part. The housing part 1 of the cooling element is typically made of copper, for example.

Advantageously the housing part 1 of the cooling element is made for instance by casting, such as by draw casting. The housing part is provided with a channel system 6 for the cooling water circulation. Typically the channel system 4 is made by working, for instance by drilling, or in connection with the casting.

At least one of the surfaces of the housing part 1 is provided with grooves 3, where there are arranged elements 2 of the ceramic lining, typically fireproof

bricks. in between the housing part 1 of the cooling element and the ceramic elements 2, there is made a joint enabling a good thermal contact by means of a soldering/brazing agent. The ceramic elements 2 are arranged to be held in the grooves in a shape-locking fashion, when the element is in a position where the groove opens downwardly. The grooves 3 can be for instance narrowing at the groove bottom towards the element surface, in which case the groove width W, at the groove bottom is larger than the groove width W2 on the surface level.

In a typical embodiment, the groove width Wz on the housing part surface level is 2-10 mm narrower than the groove width W, at the groove bottom. The dimensional tolerance between the grooves 3 and the ceramic lining elements 2 is arranged to be such that the ceramic elements 2 can be inserted in the grooves 3 at the ends thereof, from the side of the element housing part. In between the ceramic elements 2 and the housing part 1, at least at the junction surfaces, there is applied an intermediate layer of the soldering/brazing agent, with a melting temperature that is lower than the melting temperature of the pieces to be joined. The soldering/brazing agent can be brought in the joint for instance in the form of foil or powder. The soldering/brazing agent can also be readily included in at least one of the parts to be joined. For instance, the elements of a ceramic lining can include a layer of soldering/brazing agent on the junction surface, in which case said elements are immersed in the molten soldering/brazing agent prior to installing them in the grooves of the housing part. In that case a soldering/brazing agent layer is absorbed in the surface of the ceramic lining element. The soldering/brazing agent can be for example a copper-based alloy with a melting temperature within the range of 400-700° C.

When the ceramic lining elements 2, for instance fireproof bricks, and the soldering/brazing agent are arranged in the groove, the junction area of at least the pieces to be joined together is heated up to a temperature where the soldering/brazing agent melts and makes a good thermal contact between the bricks and the housing part. It is also possible to bring more soldering/brazing agent to the junction area during the heating process. The heating can be carried out in the same step where a possible blocking joint of the cooling

channel is made.

The cooling elements according to the invention can be used in several different applications. A typical target for the use of the cooling element according to the invention is for instance the ceiling of the lower furnace in a flash smelting furnace. There the shape of the grooves made in the cooling element prevents the ceramic lining elements from falling off the grooves, although the element is installed so that the lining side is directed downwards. The grooves do not have to be narrowed very much, because the temperature of the elements on the furnace side is higher than the temperature on the side that is directed away from the furnace, in which case thermal expansion causes pressure tension on the surface that is located on the furnace side. Typical measures for a cooling element according to the invention are: width: 0.25-1 m, length 1-2 m, and thickness of the housing part 100-200 mm, of which the thickness of the grooved part constitutes roughly a half.