Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR MANUFACTURING A PUNCHED PIECE
Document Type and Number:
WIPO Patent Application WO/2016/177904
Kind Code:
A1
Abstract:
The invention relates to a method for manufacturing a punched piece (1), comprising the steps of: a) laminating a polymer film onto a metal sheet (2); b) subjecting the metal sheet (2) to a punching process, whereby the punched piece (1) is produced, the polymer film being provided with a cold-flowable pressure-sensitive adhesive (4).

Inventors:
FRENKLER DIETER (DE)
FLEISSNER PETER (DE)
Application Number:
PCT/EP2016/060239
Publication Date:
November 10, 2016
Filing Date:
May 06, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CCL DESIGN GMBH (DE)
International Classes:
B32B15/095; B32B15/082; B32B15/085; B32B37/12; B32B38/00; B32B38/04; B32B38/06
Domestic Patent References:
WO2009120547A22009-10-01
WO2014187982A12014-11-27
WO1996025292A11996-08-22
Foreign References:
US8083878B12011-12-27
Attorney, Agent or Firm:
Paul & Albrecht Patentanwaltssozietät (DE)
Download PDF:
Claims:
ANSPRÜCHE

1. Verfahren zur Herstellung eines Stanzbauteils (1 ), umfassend die Schritte:

a) auf eine Oberfläche eines Metallblechs (2) wird ein Polymerfilm (3) laminiert,

b) das laminierte Metallblech (2) wird einem Stanzvorgang unterworfen, wodurch das Stanzbauteil (1 ) generiert wird, dadurch gekennzeichnet, dass ein Polymerfilm (3) verwendet wird, der an seiner beim Laminiervorgang zum Metallblech (2) weisenden Seite mit einem kaltfließfähigen Haftklebstoff (4) versehen ist.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Polymerfilm (3) verwendet wird, der eines oder eine Mehrzahl der folgenden Materialien aufweist oder daraus besteht:

• Polyvinylchlorid

• Polyethylen

• Polyurethan, insbesondere thermoplastisches Polyurethan.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass vor dem Laminieren in Schritt a) die Oberfläche des Metallblechs (2) gebürstet und/oder geschliffen wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zu laminierende Oberfläche des Metallblechs (2) insbesondere nach dem Bürsten und/oder Schleifen der Oberfläche gereinigt wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass während des Reinigens Öl und/oder Fett von der Oberfläche weggebrannt wird, wobei insbesondere für die Verbrennung ein gasförmiger Brennstoff verwendet wird, dem Silan zugesetzt wird, das sich bei der Verbrennung unter Bildung von Si02-Partikeln, welche sich auf der zu reinigenden Oberfläche ablagern, zersetzt.

6. Verfahren nach den Ansprüchen 4 oder 5, dadurch gekennzeichnet, dass die gereinigte Oberfläche des Metallblechs (2) bedruckt wird, und zwar insbesondere unter Verzicht auf eine auf die Oberfläche aufgebrachte Konversionsschicht.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Laminieren in Schritt a) und vor dem Stanzen in Schritt b) der Polymerfilm (3) ausgeheizt wird.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Ausheizen bei einer Temperatur zwischen 60°C und 120°C, bevorzugt bei einer Temperatur zwischen 80°C und 100°C, besonders bevorzugt bei einer Tem- peratur von 90°C, erfolgt und/oder dass das Ausheizen für eine Zeitdauer von 10 min bis 240 min, bevorzugt für eine Zeitdauer von 20 min bis 60 min, besonders bevorzugt für eine Zeitdauer von 30 min, erfolgt.

9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass das Metallblech (2) vor oder gleichzeitig mit dem Stanzvorgang einem Prägevorgang unterworfen wird.

10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Polymerfilm (3) vor oder nach dem Stanzvorgang bedruckt wird.

1 1. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Ausführung des Stanzvorgangs ein Stempel und eine korrespondierende Matrize verwendet werden, die derart ausgestaltet sind, dass ein Spalt zwischen dem Stempel und der Matrize vorhanden ist, so dass der Polymerfilm (3) und der kaltfließfähige Haftklebstoff (4) während des Stanzvorgangs vor ihrer Durchtrennung entlang der geschnittenen Seitenflächen des Metallblechs gezogen werden. 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Stanzbauteil (1 ) nach dem Stanzvorgang einer tief- ziehartigen Umformung unterworfen wird, wobei die maximale Tiefe der Umformung dem 1 bis 10 fachen, bevorzugt dem 5 bis 10 fachen, besonders bevorzugt dem 5 bis 7 fachen, der Dicke des Metallblechs (2) entspricht.

13. Verfahren nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass die von dem Metallblech (2) wegweisende Oberfläche des Polymerfilms (3) abschließend mit einer Hartstoffschicht, insbesondere in der Form eines Nanolacks, beschichtet wird oder dass ein Polymerfilm (3) verwendet wird, der standardmäßig an der von dem Metallblech (2) wegweisende Oberfläche mit einer Hartstoffschicht ausgestattet ist.

14. Stanzbauteil (1 ) umfassend ein Metallblech (2) und einen Polymerfilm (3), der auf eine Oberfläche des Metallblechs (2) laminiert und so mit dem Metallblech (2) stoffschlüssig verbunden ist, wobei der Polymerfilm (3) tief- ziehfähig ausgebildet ist, dadurch gekennzeichnet, dass der Polymerfilm (3) zur Herstellung der stoffschlüssigen Verbindung zwischen dem Metallblech (2) und dem Polymerfilm (3) an seiner zu dem Metallblech (2) weisenden Seite mit einem kaltfließfähigen Haftklebstoff (4) versehen ist.

15. Stanzbauteil (1 ) nach Anspruch 14, dadurch gekennzeichnet, dass das Metallblech (2) eines oder eine Mehrzahl der folgenden Materialien um- fasst oder daraus besteht:

Aluminium,

eine Aluminiumlegierung,

austentischer Cr-Ni-Stahl.

16. Stanzbauteil (1 ) nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass der Polymerfilm (3) eines oder eine Mehrzahl der folgenden Materialien umfasst oder daraus besteht:

• Polyvinylchlorid, • Polyethylen,

• Polyurethan, insbesondere thermoplastisches Polyurethan.

17. Stanzbauteil (1 ) nach einem der Ansprüche 14 bis 16, dadurch ge- kennzeichnet, dass der Polymerfilm (3) eine Filmdicke zwischen 1 μ m bis

500 μ m, bevorzugt eine Filmdicke zwischen 20 μ m bis 250 μ m, besonders bevorzugt eine Filmdicke zwischen 30 μ m bis 160 μ m, aufweist.

18. Stanzbauteil (1 ) nach einem der vorhergehenden Ansprüche 14 bis 17, dadurch gekennzeichnet, dass die vom Metallblech (2) wegweisende

Oberfläche des Polymerfilms (3) mit einer Hartstoffschicht, insbesondere in der Form eines Nanolacks, beschichtet ist.

19. Stanzbauteil (1 ) nach einem der vorhergehenden Ansprüche 14 bis 18, dadurch gekennzeichnet, dass der selbstklebende Haftklebstoff (4) eine selbstklebende Acrylatformulierung, insbesondere einen lösungsmittelbasierten Acrylatklebstoff, umfasst oder daraus besteht.

20. Stanzbauteil (1 ) nach einem der vorhergehenden Ansprüche 14 bis 19, dadurch gekennzeichnet, dass der selbstklebende Haftklebstoff (4) einschichtig oder mehrschichtig an dem Polymerfilm (3) vorgesehen ist und/oder der Polymerfilm (3) insgesamt eine Menge von 10 g/m2 bis 100 g/m2, besonders bevorzugt von 20 g/m2 bis 60 g/m2, an Haftklebstoff (4) aufweist. 21. Stanzbauteil (1 ) nach einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, dass der Haftklebstoff (4) eine Glasübergangstemperatur zwi- sehen 10°C bis -100°C, bevorzugt eine Glasübergangstemperatur zwischen -10°C bis -80°C, besonders bevorzugt eine Glasübergangstemperatur zwischen -20°C bis -50°C, aufweist. 22. Stanzbauteil nach einem der Ansprüche 14 bis 21 , dadurch gekennzeichnet, dass das Metallblech (2) und/oder der Polymerfilm (3) bedruckt ist.

Description:
BESCHREIBUNG

Verfahren zur Herstellung eines Stanzbauteils

Die Erfindung betrifft ein Verfahren zur Herstellung eines Stanzbauteils, umfassend die Schritte: a) auf eine Oberfläche eines Metallblechs wird ein Polynnerfilnn laminiert, b) das Metallblech wird einem Stanzvorgang unterworfen, wodurch das Stanzbauteil generiert wird. Des Weiteren betrifft die Erfindung ein Stanzbauteil, umfassend ein Metallblech und einen Polymerfilm, der auf eine Oberfläche des Metallblechs laminiert und so mit dem Metallblech stoffschlüssig verbunden ist, wobei der Polymerfilm tiefziehfähig ausgebildet ist Stanzbauteile der vorbezeichneten Art, die mit einem Polymerfilm als Schutzschicht versehen sind, werden beispielsweise als Einstiegsleisten für Kraftfahrzeuge verwendet. Durch die Witterungseinflüsse und ständige Beanspruchung sind sie einer hohen Abnutzung unterworfen. Insbesondere kann an den Stanzflächen und in den Übergangsbereichen zwischen dem Metallblech, das beispielsweise aus Aluminium oder auch einem rostfreien Cr-Ni-Stahl bestehen kann, und dem Polymerfilm Korrosion auftreten. Insbesondere kommen Spaltkorrosion und Filiformkorrosion häufig vor.

Verfahren zur Herstellung eines solchen Stanzbauteils, das eine Oberflä- chenbeschichtung in Form eines Polymerfilms zum Korrosionsschutz aufweist, sind beispielsweise aus der WO 96/25292 bekannt. Der Polymerfilm ist hier an seiner Oberseite mit einer kratzfesten Schicht versehen, die auf dem Korrosionsschutz dient. An der metallblechweisenden Unterseite des Polymerfilms ist eine Schicht aus einem heißschmelzenden Klebstoff vorgese- hen, die beim Laminieren des Polymerfilms auf das Metallblech thermisch aktiviert wird.

Die aus dem Stand der Technik bekannten Verfahren zur Herstellung eines Stanzbauteils haben sich bewährt. Es wird jedoch als nachteilig erachtet, dass bei dem Stanzvorgang Spaltbildung auftritt, wenn der Polymerfilm den Deformationen des Metallsubstrats nicht folgen kann. Um die Spaltbildung zu verhindern, muss der gesamte Aufbau der Beschichtungen den Deformationen des Metallblechs folgen. Dies ist in der Praxis bisher nicht vollständig sicherzustellen, da beispielsweise geringe Abweichungen in der Verankerung des Polymerfilms zu einer Rückstellung des Polymerfilms und damit zur Spaltbildung führen können.

Insbesondere bei Verwendung von heißschmelzendem Klebstoff wird das Risiko der Spaltbildung vergrößert, da der Stanzvorgang bei Raumtemperatur erfolgt und heißschmelzender Klebstoff in diesem Temperaturbereich brüchig wird.

Außerdem ist bei einer gebürsteten Metalloberfläche ein erhöhtes Risiko der Spaltbildung zu verzeichnen, da die Metalloberfläche durch den Bürstvorgang eine ausgeprägte Feinstruktur aufweist. Die vielen mikroskopisch kleinen Öffnungen zwischen Polymerfilm und Metalloberfläche sind Schwachstellen, die bei entsprechender Belastung der Stanzkante zur Spaltbildung führen können. Diese wiederum führt zur Spaltkorrosion, wenn sich ein Spalt mit einer Breite zwischen 0,02 mm und 0,5 mm bildet und aufgrund von Sauerstoffmangel eine Passivierung der Metalloberfläche nicht ablaufen kann. Die Spaltkorrosion tritt bei fast allen Metallen auf, einschließlich rostfreien Cr-Ni-Stählen. Außerdem tritt Spaltkorrosion auch bei Spalten auf, die sich zwischen Metall und Kunststoff bilden. Bei der Spaltkorrosion kommt es durch die hohe Sauerstoffkonzentration am Beginn des Spaltes zu einer kathodischen Reaktion, während am Ende des Spaltes eine anodische, Metall abtragende Reaktion auftritt. Das Erscheinungsbild der Filiformkorrosion sind fadenförmige Unterwanderungen zwischen Beschichtung und Metalloberfläche. Bei Aluminium ist diese Korrosionsart, die der Spaltkorrosion elektrochemisch entspricht, ein häufig zu verzeichnender Schadensgrund. Ausgehend von dem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines Stanzbauteils und ein Stanzbauteil der eingangs genannten Art anzugeben, welche es ermöglichen, Spalt- und Filiformkorrosion bei dem Stanzbauteil zu vermeiden. Diese Aufgabe wird bei einem Verfahren zur Herstellung eines Stanzbauteils der eingangs genannten Art dadurch gelöst, dass ein Polymerfilm verwendet wird, der an seiner beim Laminiervorgang zum Metallblech weisenden Seite mit einem kaltfließfähigen Haftklebstoff versehen ist. Bei einem Stanzbauteil der eingangs genannten Art wird entsprechend die Aufgabe dadurch gelöst, dass der Polymerfilm zur Herstellung der stoffschlüssigen Verbindung zwischen dem Metallblech und dem Polymerfilm an seiner zu dem Metallblech weisenden Seite mit einem kaltfließfähigen Haftklebstoff versehen ist.

Erfindungsgemäß wird somit der Polymerfilm, insbesondere ein TPU-Film, mittels eines kaltfließfähigen Haftklebstoffs, im Englischen auch pressure sensitive adhesive (PSA) genannt, an dem Metallblech als Substrat fixiert. Der kaltfließfähige Haftklebstoff besitzt eine hohe Fließfähigkeit bei Raumtemperatur, die es ermöglicht, den Polymerfilm mit dem Haftklebstoff während des Stanzvorgangs über die geschnittenen Seitenflächen des Metall- blechs zu ziehen, wobei sich die Anordnung aus Polymerfilm und Haftkleb- stoff an den Seitenflächen anlegt, wodurch eine optimale Versiegelung der Seitenflächen gewährleistet ist. Hinzu kommt, dass durch die während des Stanzvorgangs auftretenden Querkräfte der Haftklebstoff zwischen dem Polymerfilm und dem Metallblech im Bereich der Seitenflächen weggedrückt wird und austritt, so dass der Übergangsbereich zwischen dem Polymerfilm und dem Metallblech versiegelt wird. Die so erfolgte Kantenversiegelung ist thermisch und mechanisch gut belastbar. Im Ergebnis wird durch den Einsatz eines kaltfließfähigen Haftklebstoffs eine Spaltbildung zwischen dem Polymerfilm und dem Metallblech und somit das Auftreten von Spalt- und Fi- liformkorrosion zuverlässig vermieden.

Als Polymerfilm wird in bevorzugter Weise ein Polyurethan, insbesondere thermoplastisches Polyurethan verwendet, das hervorragende Selbsthei- lungs- und Tiefziehfähigkeiten aufweist. Alternativ können beispielsweise auch Polyvinylchlorid oder Polyethylen eingesetzt werden.

Voraussetzung dafür, dass der mit dem kaltfließfähigen Haftklebstoff ausgestattete Polymerfilm die geschnittene Seitenfläche des Metallblechs abschließen kann, ist, dass zur Ausführung des Stanzvorgangs ein Stempel und eine korrespondierende Matrize verwendet werden, die derart ausgestaltet sind, dass ein Spalt zwischen dem Stempel und der Matrize vorhanden ist, so dass der Polymerfilm und der kaltfließfähige Haftklebstoff während des Stanzvorgangs vor ihrer Durchtrennung entlang der geschnittenen Seitenfläche des Metallblechs gezogen werden. Dabei ist der Spalt so bemes- sen, dass er kleiner ist als die Summe der Schichtdicken von Polymerfilm und Haftklebstoff.

In üblicher Weise kann vor dem Laminieren in Schritt a) die Oberfläche des Metallblechs gebürstet und/oder geschliffen werden. Das Bürsten dient der Erzeugung einer mattierten Oberfläche des Metallblechs. Ebenso muss die zu laminierende Oberfläche des Metallblechs gereinigt werden. Insbesondere ist es erforderlich, das nach dem Bürsten und/oder Schleifen auf der Oberfläche verbleibende Öl von der Oberfläche zu beseitigen. Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass während des Reinigens Öl und/oder Fett von der Oberfläche weggebrannt wird, wobei insbesondere für die Verbrennung ein gasförmiger Brennstoff verwendet wird, dem Silan zugesetzt wird, das sich bei der Verbrennung unter Bildung von S1O2 -Partikeln, welche sich auf der zu reinigenden Oberfläche abla- gern, zersetzt. Das Wegbrennen des Öls von der Oberfläche des Metallblechs erfolgt üblicherweise mit einer Temperatur von etwa 2000°C. Da der Verbrennungsvorgang schlecht gesteuert werden kann, erfolgt die Verbrennung vorzugsweise in zwei Stufen, wobei insbesondere bei der zweiten Verbrennungsstufe für die Verbrennung ein gasförmiger Brennstoff verwendet wird, dem Silan zugesetzt wird. Dieses zersetzt sich bei der Verbrennung unter Bildung von S1O2 -Partikeln, welche sich auf der zu reinigenden Oberfläche ablagern. Diese Ablagerungen wiederum bilden Verankerungspunkte, die es erlauben, das Metallblech ohne das Aufbringen einer dazwischen liegenden Konversionsschicht unmittelbar zu bedrucken.

Gemäß einer Ausgestaltung der vorliegenden Erfindung ist vorgesehen, dass nach dem Laminieren in Schritt a) und vor dem Stanzen im Schritt b) der Polymerfilm ausgeheizt wird. Hierdurch werden die Polymerkristalle des Polymerfilms geschmolzen, um einen amorphen Polymerfilm zu erhalten. Mit an- deren Worten wird durch das Ausheizen die Kristallinität verringert, wodurch der Polymerfilm eine hohe Permeabilität erhält, so dass Lösungsmittel in den Polymerfilm eindringen kann. Hierdurch ergibt sich eine gute Verankerung für einen anschließenden Druckvorgang auf den Polymerfilm. Zur Amorphisierung des Polymerfilms kann das Ausheizen bei einer Temperatur zwischen 60°C und 120°C, bevorzugt bei einer Temperatur zwischen 80°C und 100°C, besonders bevorzugt bei einer Temperatur von 90°C, und für eine Zeitdauer von 10 min bis 120 min, bevorzugt für eine Zeitdauer von 20 min bis 60 min, besonders bevorzugt für eine Zeitdauer von 30 min erfolgen.

Ferner kann vor oder gleichzeitig mit dem Stanzvorgang in Schritt b) das Metallblech einem Prägevorgang unterworfen werden. Hierdurch wird das Metallblech entsprechend der anwendungsspezifischen Erfordernisse plastisch umgeformt.

Weiterhin kann der Polymerfilm vor oder nach dem Stanzvorgang einem Druckvorgang unterworfen werden, um den Polymerfilm mit einem ge- wünschten Design zu versehen. Anschließend wird dann der Polymerfilm mit einer Hartstoffschicht, insbesondere in Form eines Nanolacks, beschichtet. Wenn der Polymerfilm keinem Druckvorgang unterworfen wird, kann alternativ ein Polymerfilm verwendet werden, der standardmäßig mit einer Hart- stoffschicht ausgestattet ist. Durch die Hartstoffschicht wird eine leichte Rei- nigung des Stanzbauteils ermöglicht. Außerdem wird der Polymerfilm vor Beschädigungen durch Kratzer etc. geschützt.

In an sich bekannter Weise kann nach dem Stanzvorgang in Schritt b) das Stanzbauteil einer tiefziehartigen Umformung unterworfen werden. Dabei entspricht die maximale Tiefe der Umformung dem 1 bis 10 fachen, bevorzugt dem 5 bis 10 fachen, besonders bevorzugt dem 5 bis 7 fachen, der Dicke des Metallblechs. Hierdurch wird das Stanzbauteil entsprechend den anwendungsspezifischen Erfordernissen umgeformt. Dabei ist die maximale Tiefe der Umformung durch die Tiefziehfähigkeit des Haftklebstoffs begrenzt. Das Metallblech kann eines oder eine Mehrzahl der folgenden Materialien umfassen oder daraus bestehen: Aluminium, einer Aluminiumlegierung, austenitischem Cr-Ni-Stahl. Spaltkorrosion tritt bei vielen Metallen auf, darunter auch bei nichtrostenden, austenitischen Cr-Ni-Stählen. Daher ist ein erfindungsgemäßer Korrosionsschutz bei diesen Materialien sinnvoll.

Ferner kann der Polymerfilm eines oder eine Mehrzahl der folgenden Materialien umfassen oder daraus bestehen: Polyvinylchlorid, Polyethylen, Polyurethan, insbesondere thermoplastisches Polyurethan. Diese Materialien eignen sich wegen ihrer mechanischen Eigenschaften wie Deformation unter Zugspannung, Rückstellungsvermögen (Selbstheilung), maximale Reißspannung und vor allem Tiefziehfähigkeit, sowie ihrer anwendungstechnischen Eigenschaften wie gute Bedruckbarkeit, gute bis sehr gute Beschich- tungseigenschaften und gute bis sehr gute Bewitterungseigenschaften. Au- ßerdem bieten sie aufgrund ihrer Polymermatrix einen zuverlässigen Diffusi- onsschutz.

Der Polymerfilm kann eine Filmdicke zwischen 1 μ m bis 500 μ m, bevorzugt eine Filmdicke zwischen 20 μ m bis 250 μ m, besonders bevorzugt eine Filmdicke zwischen 30 μ m bis 160 μ m, aufweisen. Mit derartigen Filmdicken wurden sehr gute und reproduzierbare Ergebnisse erzielt.

In üblicher Weise kann der Polymerfilm eine Hartstoffschicht, insbesondere in Form eines Nanolacks, aufweisen. Durch die Hartstoffschicht, die eine ge- ringe Oberflächenspannung aufweist, wird eine leichte Reinigung des Stanzbauteils ermöglicht. Darüber hinaus wird der Polymerfilm vor Beschädigungen wie Kratzer etc. geschützt.

Ferner kann der Haftklebstoff eine selbstklebende Acrylatformulierung, ins- besondere einen lösungsmittelbasierten Acrylatklebstoff, umfassen oder da- raus bestehen. Diese Haftklebstoffe zeichnen sich durch hohe Klebkraft und besondere Scherstabilität aus. Darüber hinaus verfügen sie über sehr gute Beständigkeit gegenüber salzhaltigem Wasser. Weiterhin kann der Haftklebstoff einschichtig oder mehrschichtig auf dem Polymerfilm angeordnet sein. Dabei kann der Polymerfilm insgesamt eine Menge von 10 g/m 2 bis 100 g/m 2 , bevorzugt von 20 g/m 2 bis 60 g/m 2 , an Haftklebstoff aufweisen. Mit dieser Menge an Haftklebstoff wurden sehr gute und reproduzierbare Ergebnisse erzielt.

Der Haftklebstoff kann eine Glasübergangstemperatur zwischen 10°C bis -100°C, bevorzugt eine Glasübergangstemperatur zwischen -10°C bis -80°C, besonders bevorzugt eine Glasübergangstemperatur zwischen -20°C bis -50 °C, aufweisen. Üblicherweise weisen Haftklebstoffe Glasübergangstempera- turen in diesem Temperaturbereich auf.

Weitere Merkmale und Vorteile der vorliegenden Erfindung werden anhand der nachfolgenden Beschreibung einer Ausführungsform eines erfindungsgemäßen Stanzbauteils unter Bezugnahme auf die Zeichnung deutlich. Darin ist:

Figur 1 eine schematische Querschnittsansicht der Schichtstruktur eines Stanzbauteils gemäß der vorliegenden Erfindung, Figur 2 schematisch die verschiedenen Stufen eines Stanzvorgangs zur Herstellung des Stanzbauteils, und

Figur 3 die Einzelheit A aus Figur 2 in vergrößerter Darstellung. Die Figur 1 zeigt ein Stanzbauteil 1 gemäß einer ersten Ausführungsform der vorliegenden Erfindung, das vor Spalt- und Filiformkorrosion geschützt ist, wobei die Schichtstruktur des Stanzbauteils 1 schematisch im Querschnitt dargestellt ist. Das Stanzbauteil 1 umfasst ein Metallblech 2, das aus Alumi- nium besteht und eine Dicke von 0,7 mm aufweist.

Ferner umfasst das Stanzbauteil 1 einen selbstklebenden Polymerfilm 3, der durch Laminieren auf die Oberfläche des Metallblechs 2 aufgebracht ist, sodass eine stoffschlüssige Verbindung mit dem Metallblech 2 besteht. Der Polymerfilm 3 ist tiefziehfähig bis zu 3,5 mm ausgebildet, besteht aus thermoplastischem Polyurethan und weist eine Filmdicke von 100 μηη auf.

In nicht gezeigter Weise weist der Polymerfilm 3 an seiner äußeren Oberfläche eine nicht dargestellte Hartstoffschicht in Form eines Nanolacks auf, die eine geringe Oberflächenspannung aufweist und damit eine leichte Reinigung des Stanzbauteils 1 ermöglicht. Die Herstellung der Hartstoffschicht erfolgt mittels lösungsmittelhaltiger Stoffe, die 3 μ m bis 6 μ m in den Polymerfilm 3 eindiffundieren können. Daher hat die Hartstoffschicht keinen Ein- fluss auf die Tiefziehfähigkeit des Polymerfilms 3.

Der Polymerfilm 3 ist zur Herstellung der stoffschlüssigen Verbindung zwischen dem Metallblech 2 und dem Polymerfilm 3 mit einem kaltfließfähigen Haftklebstoff 4 oder PSA an seiner zu dem Metallblech 2 weisenden Seite versehen. Dabei weist der Polymerfilm 3 eine Menge von 40 g/m 2 an Haft- klebstoff 4 auf. Dieser ist einschichtig auf dem Polymerfilm 3 angeordnet, besteht aus einem lösungsmittelbasierten Acrylatklebstoff 4 und weist eine Glasübergangstemperatur zwischen -20°C bis -50°C auf. Lösungsmittelbasierter Acrylatklebstoff 4 hat sich aufgrund seiner hohen Klebkraft, besonderen Scherstabilität und sehr guten Beständigkeit gegenüber salzhaltigem Wasser bewährt. Beim neutralen Salzwassersprühtest, ein standardisiertes Prüfungsverfahren zur Bewertung der Korrosionsschutzwirkung, wurde nach 500 Stunden keine Veränderungen bei diesem Haftklebstoff 4 und dem Polymerfilm 3 festgestellt. Bei Aluminium ist die Filiformkorrosion, die der Spaltkorrosion elektrochemisch entspricht, ein häufig zu verzeichnender Schadensgrund. Bei der Spaltkorrosion kommt es durch die hohe Sauerstoffkonzentration am Beginn des Spaltes zu einer kathodischen Reaktion, während am Ende des Spaltes eine anodische, Metall abtragende Reaktion stattfindet. An dieser Stelle tritt oft der Beginn der Filiformkorrosion auf. Das Erscheinungsbild der Filiformkorrosion sind fadenförmige Unterwanderungen zwischen Beschichtung und Metalloberfläche. Durch die Tiefziehfähigkeit des Polymerfilms 3 und die Fließfähigkeit des Haftklebstoffs 4 bei Raumtemperatur wird sichergestellt, dass beim Stanzvorgang die gesnittenen Seitenflächen des Metallblechs 2 gut abgedeckt und versiegelt werden, wie im Nachfolgenden noch erläutert werden wird.

Diese Kantenversiegelung ist thermisch und mechanisch gut belastbar. Zudem können kleine mechanische Beschädigungen des Polymerfilms 3 durch Nachfließen beseitigt werden (selbstheilende Wirkung des TPU-Films 3). Hierdurch wird eine Spaltbildung und somit das Auftreten von Spalt- und Filiformkorrosion zuverlässig vermieden. Die Kantenversiegelung ist zudem durch die Dicke des Polymerfilms und des Haftklebstoffs ein Mittel zum Schutz vor Kontaktkorrosion, die bei einer leitenden Verbindung zwischen zwei unterschiedlich edlen Metallen in Gegenwart eines Elektrolyten auftritt. Weiterhin dient der Polymerfilm 3 als Schutz vor Lochkorrosion und selektiver Korrosion, indem er korrosionsauslösende Partikel aufnimmt. Lochkorrosion wird beispielsweise durch Schleifstaubpartikel ausgelöst, während selektive Korrosion durch Legierungsbestandteile ausgelöst wird. Bei der Herstellung des Stanzbauteils 1 wird zunächst die Oberfläche des Metallblechs 2 grob gereinigt. Anschließend wird die Oberfläche des aus Aluminium bestehenden Metallblechs 2 gebürstet. Das Bürsten der Oberfläche des Metallblechs 2 erfolgt mittels rotierender, oszillierender Bürsten mit harter Fadenbelegung und dient der Erzeugung einer mattierten Oberfläche des Metallblechs 2. Anschließend wird das nach dem Bürsten auf der Oberfläche des Metallblechs 2 verbleibende Öl weggebrannt. Die Verbrennung erfolgt zweistufig bei einer Temperatur von etwa 2000°C. Dabei wird als Brennstoff für die zweite Stufe der Verbrennung ein Gas verwendet, dem Silan zugesetzt ist, welches sich bei der Verbrennung unter der Bildung von SiO2-Partikeln zersetzt, welche sich auf der Oberfläche des Metallblechs 2 ablagern. Diese SiO2-Partikeln bilden Verankerungspunkte, die es ermöglichen, dass Metallblech unter Verzicht auf eine Konversationsschicht unmittelbar zu bedrucken.

Nach dem Reinigen der Oberfläche und gegebenenfalls Bedrucken derselben wird der mit dem kaltfließfähigen Haftklebstoff 4 versehene Polymerfilm 3 auf das Metallblech 2 laminiert. Um einen amorphen Polymerfilm 3 zu erhalten, wird nach dem Laminieren der Polymerfilm 3 ausgeheizt. Das Ausheizen erfolgt bei einer Temperatur von 90°C und für eine Zeitdauer von 30 Minuten.

Anschließend wird das Metallblech 2 bei Raumtemperatur einem Stanzvor- gang unterworfen, wodurch das Stanzbauteil 1 generiert wird. Gleichzeitig mit dem Stanzvorgang kann das Metallblech 2 einem Prägevorgang unterworfen werden. Der Stanzvorgang ist in der Figur 2 dargestellt.

Erkennbar ist hier, dass das Metallblech 2 mit dem Polymerfilm 3 von der Seite des Metallblechs 2 her gestanzt wird. Während des Stanzvorgangs wird das auszustanzende Bauteil in der Stanze nnittels eines Stempels 5 durch eine korrespondierende Matrize 6 gedrückt. Während dieses Stanz- beziehungsweise Schneidvorgangs wird der Werkstoff des Metallblechs 2 durch den eindringenden Stempel 5 zunächst elastisch verformt. Beim wei- teren Eindringen des Stempels 5 in den Werkstoff werden die Werkstofffasern noch weiter, bis die Elastizitätsgrenze des Werkstoffes überschritten wird, so dass eine plastische Verformung eintritt. Der Werkstoff wird von außen nach innen zur Schneide des Stempels 5 gezogen. Dadurch bilden sich am Schnittteil Einziehrundungen.

Bei weiterem Eindringen des Stempels 5 wird auch die Scherfestigkeit des Werkstoffes überschritten. Der Werkstoff wird an der Schneidkante der Matrize 6 und des Stempels 5 abgeschert und bildet Schnittflächen. Die Festigkeit des verbleibenden Restquerschnitts des Metallblechs ist irgendwann so gering, dass der Werkstoff bricht.

Während dieses Stanzvorgangs wird der Polymerfilm 3 mit dem Haftklebstoff 4 entlang der geschnittenen Seitenkante gezogen. Durch die Scherwirkung beim Stanzvorgang wird der Haftklebstoff 4 unter dem Polymerfilm 3 ausge- presst, und es erfolgt zusätzlich noch eine Versiegelung der Kante des Polymerfilms 3 zum Metallblech 2. Durch den Stanzvorgang erfolgt gleichzeitig die Bildung einer neuen Metallfläche und die Pressung des Haftklebstoffes 4. Hierdurch wird der Haftklebstoff 4 ideal appliziert. Die Bildung einer amor- phen Al2O3-Schicht durch Autopassivierung, die die Haftung auf dem Metallblech 2 beeinträchtigen könnte, wird durch die Gleichzeitigkeit der Flächenbildung und der Pressung des Haftklebstoffs 4 zuverlässig vermieden. Eine Beizung zum Abtrag der Metalloxide, die bei konventionellen Verfahren üblich ist, ist daher nicht erforderlich. Nach dem Stanzvorgang wird das Stanzbauteil einem Druckvorgang unterworfen und anschließend mit der Hartstoffschicht in Form des Nanolacks beschichtet.

Bezugszeichenliste

1 Stanzbauteil

2 Metallblech 3 Polymerfilm

4 Haftklebstoff

5 Stempel

6 Matrize