Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR MEASURING THE VAPOR PRESSURE OF LIQUID AND SOLID MATERIALS
Document Type and Number:
WIPO Patent Application WO/2019/023722
Kind Code:
A1
Abstract:
In the case of a method for measuring the vapor pressure of liquid and solid materials, in which method a sample of the material is arranged in a sample container, and the sample container is connected, by means of an inlet line, to a measurement cell for determining the vapor pressure, and the pressure provided by the gaseous portion of the sample via the inlet line is measured in the measurement cell, it is provided that the entire liquid and/or solid portion of the sample remains in the sample container during the measurement and only gaseous portions of the sample are conducted into the inlet line.

Inventors:
LUTZ JOSEF (AT)
Application Number:
PCT/AT2018/000066
Publication Date:
February 07, 2019
Filing Date:
July 26, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRABNER INSTR MESSTECHNIK GMBH (AT)
International Classes:
G01N1/22; G01N7/14; G01N7/16
Foreign References:
CN105910955A2016-08-31
US3191428A1965-06-29
CN105510176A2016-04-20
CN204165857U2015-02-18
US2722826A1955-11-08
Attorney, Agent or Firm:
KESCHMANN, Marc (AT)
Download PDF:
Claims:
14

Patentansprüche :

1. Verfahren zur Dampfdruckmessung von flüssigen und festen Stoffen, bei dem eine Probe des Stoffes in einem Probenbehälter angeordnet wird, der Probenbehälter mit einer Messzelle zur Ermittlung des Dampfdruckes über eine Eingangsleitung verbunden wird und der durch den

gasförmigen Anteil der Probe über die Eingangsleitung bereitgestellte Druck in der Messzelle gemessen wird, dadurch gekennzeichnet, dass der gesamte flüssige und/oder feste Anteil der Probe während der Messung im

Probenbehälter verbleibt und ausschließlich gasförmige Anteile der Probe in die Eingangsleitung geleitet werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein gasförmiger Anteil der Probe vor der Messung in die Messzelle gelangt.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der gasförmige Anteil der Probe über ein

Druckübertragungselement Druck in die Messzelle einbringt.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der gasförmige Anteil der Probe auf eine Membran, einen Zwischenkolben oder ein in der Messzelle angeordnetes Fluid Druck ausübt, der in die Messzelle übertragen wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Probe im Probenbehälter

temperiert, insbesondere erhitzt wird. 15

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Messzelle nach der Messung über eine Ausgangsleitung entleert wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Messzelle und/oder die

Eingangsleitung und/oder die Ausgangsleitung temperiert, insbesondere erhitzt wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Messzelle vor der Messung mithilfe eines das Gasvolumen der Messzelle begrenzenden,

verschiebbar geführten Kolbens gefüllt wird und bevorzugt nach der Messung mithilfe des Kolbens entleert wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Druck in der Messzelle mithilfe eines im Kolben integrierten Drucksensors gemessen wird.

10. Vorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 9, umfassend eine einen

Drucksensor umfassende Messzelle zur Ermittlung des

Dampfdruckes, einen Probenbehälter, welcher mit der Probe des zu messenden Stoffes befüllbar ist, sowie eine die Messzelle und den Probenbehälter verbindende

Eingangsleitung, dadurch gekennzeichnet, dass der

Probenbehälter vakuumdicht verschließbar ist und die

Eingangsleitung am oberen Ende des Probenbehälters

angeschlossen ist, sodass ausschließlich gasförmige Anteile der Probe in die Eingangsleitung geleitet werden. 16

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Eingangsleitung ausgebildet ist, um gasförmige Anteile der Probe in die Messzelle zu transportieren.

12. Vorrichtung nach Anspruch 10 oder 11, dadurch

gekennzeichnet, dass die Eingangsleitung ein

Druckübertragungselement umfasst, welches ausgebildet ist, um den vom gasförmigen Anteil der Probe ausgeübten Druck in die Messzelle einzubringen.

13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass das Druckübertragungselement eine Membran, einen

Zwischenkolben oder ein in der Messzelle und ggf. in der Eingangsleitung angeordnetes Fluid umfasst.

14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Probenbehälter ein

Thermostat umfasst, um die Probe zu temperieren,

insbesondere zu erhitzen.

15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Messzelle eine Ausgangsleitung aufweist, die bevorzugt ein Ausgangsventil umfasst.

16. Vorrichtung nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass die Messzelle und/oder die Eingangsleitung und/oder die Ausgangsleitung ein Thermostat aufweisen .

17. Vorrichtung nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass die Messzelle einen den

Messraum der Messzelle begrenzenden, verschiebbar geführten Kolben aufweist, um die Messzelle vor der Messung zu füllen und bevorzugt nach der Messung zu entleeren.

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass der Drucksensor in den Kolben integriert ist.

Description:
Verfahren zur Dampfdruckmessung von flüssigen und festen Stoffen

Die Erfindung betrifft ein Verfahren zur Dampfdruckmessung von flüssigen und festen Stoffen, bei dem eine Probe des Stoffes in einem Probenbehälter angeordnet wird, der

Probenbehälter mit einer Messzelle zur Ermittlung des Dampfdruckes über eine Eingangsleitung verbunden wird und der durch den gasförmigen Anteil der Probe über die

Eingangsleitung bereitgestellte Druck in der Messzelle gemessen wird.

Die Erfindung betrifft weiters eine Vorrichtung zur

Durchführung eines erfindungsgemäßen Verfahrens, umfassend eine einen Drucksensor umfassende Messzelle zur Ermittlung des Dampfdruckes, einen Probenbehälter, welcher mit der Probe des zu messenden Stoffes befüllbar ist, sowie eine die Messzelle und den Probenbehälter verbindende

Eingangsleitung .

Die Bestimmung des Dampfdruckes von Flüssigkeiten und/oder Festkörpern ist vor allem in Bezug auf Sicherheitsfragen bei brennbaren Stoffen (Transport etc.), aber auch zur Charakterisierung der Substanzen bzw. deren

Herstellungsprozessen erforderlich .

Die gebräuchlichsten Methoden zu Bestimmung des

Dampfdruckes von Flüssigkeiten und Festkörpern sind:

Gravimetrische Methode: meist als Effusionsmethode mit einer Knudsen Zelle (NFT 20-047) ausgeführt und vor allem für sehr geringe Dampfdrücke geeignet. Gas-Sättigungsmethode: indirekte Bestimmung über die Menge der abgeführten Probensubstanz durch eine

Inertgas-Spülung .

Rotationsmethode: indirekte Bestimmung über die Reibung eines Rotationskörpers im Gasvolumen der

Probensubstanz .

dynamische Dampfdruckermittlung : Messung der

Siedepunkte in einer Destillationsapparatur .

statische Dampfdruckermittlung (NFT 20-048) : direkte Messung des Dampfdruckes in einer vakuumdichten Kammer (z.B.: ASTM D6377, ASTM D6378).

Dampfdruckmessung mittels Isoteniskop: ist ein

Spezialfall der statischen Dampfdruckmessung über eine künstliche Atmosphäre (ASTM D2879) .

Die unterschiedlichen Methoden sind jeweils für die

entsprechenden Anwendungen und Druckbereiche optimiert. Mit Ausnahme der statischen Dampfdruckmessung nach ASTM D6377 und ASTM D6378 haben alle Methoden den Nachteil, dass sie für die genaue Ermittlung des Dampfdruckes einen hohen Aufwand zur Probenpräparation benötigen und kaum

automatisierbar sind.

Für industrielle Anwendungen haben sich daher die

statischen Methoden durchgesetzt. Bei der statischen

Dampfdruckmessung nach ASTM D6377 und ASTM D6378 kann eine Probenflüssigkeit automatisiert in eine temperierte und vakuumdichte Messkammer gefüllt, vermessen und entleert werden. Dennoch ergeben sich im praktischen Einsatz bei entsprechenden Anforderungen die folgenden Nachteile für diese Methode:

a) Auf Grund des Volumens der Füllrohre und der

erforderlichen Spülung zur Vermeidung der Probenverschmutzung (cross over) ist ein Vielfaches des tatsächlich für die Messung notwendigen Probenvolumens erforderlich .

b) Keine Möglichkeit der Messung des Dampfdruckes von

festen Stoffen oder Pulvern.

c) Hochviskose Flüssigkeiten wie Erdöl, Silikonöl etc. können nur mit sehr hohem Zeitaufwand automatisiert in die Messkammer gelangen.

d) Das Entleeren der Messkammer bei hochviskosen

Flüssigkeiten ist zeitaufwendig und kann den

Drucksensor beschädigen.

e) Eine gute Reinigung der Messkammer ist für hochviskose und haftende Flüssigkeiten schwierig.

f) Stark korrodierende Substanzen können die Messkammer, Ventile, Filter und Schläuche beschädigen.

Es ist daher eine Aufgabe der Erfindung, ein Verfahren zur Dampfdruckmessung von flüssigen und festen Stoffen

bereitzustellen, bei welchem die oben genannten Nachteile ausgeräumt oder vermindert sind. Insbesondere soll ein Verfahren bereitgestellt werden, welches eine schnelle und sichere Dampfdruckmessung auch von festen und hochviskosen Stoffen ermöglicht.

Zur Lösung dieser Aufgabe sieht die Erfindung bei einem Verfahren der eingangs genannten Art vor, dass der gesamte flüssige und/oder feste Anteil der Probe während der

Messung im Probenbehälter verbleibt und ausschließlich gasförmige Anteile der Probe in die Eingangsleitung

geleitet werden. Bei diesem Verfahren wird also nicht, wie aus dem Stand der Technik bekannt, die Probe in die

Eingangsleitung und anschließend in die Messzelle

transportiert, sondern lediglich die gasförmigen Anteile, also der Dampf selbst in die Eingangsleitung eingebracht. Dadurch treten die Nachteile der bekannten Verfahren nicht auf, die mit dem Einbringen der flüssigen Probenanteile in die Messzelle verbunden sind. Insbesondere kann dadurch auch der Dampfdruck fester Substanzen gemessen werden. Vor allem bei hochviskosen Flüssigkeiten wird die Messung wesentlich vereinfacht und die Geschwindigkeit der Messung erhöht, weil der langwierige Transport der Flüssigkeit in die Messzelle und anschließend aus der Messzelle heraus unterbleiben kann.

Bei einer bevorzugten Ausführung ist vorgesehen, dass ein gasförmiger Anteil der Probe vor der Messung in die

Messzelle gelangt. Hierbei wird also der Dampf in die Messzelle gebracht und direkt der in der Messzelle

herrschende Druck gemessen.

Alternativ ist vorgesehen, dass der gasförmige Anteil der Probe über ein Druckübertragungselement Druck in die

Messzelle einbringt. Hierbei gelangt auch der gasförmige Anteil der Probe nicht in die Messzelle, sodass eine physikalische Trennung zwischen Messzelle und Probe erreicht wird. Diese Trennung hat den Vorteil, dass keine Anteile des Probenmaterials in den Bereich nach dem

Übertragungselement gelangen können und dadurch

Kondensationseffekte und etwaige Beschädigungen durch hoch korrosive Stoffe in der Messzelle ausgeschlossen werden können. Weiters ist dadurch auch keine Reinigung der

Messzelle nach der Messung erforderlich, wodurch die

Geschwindigkeit der Messungen erhöht wird.

Hierbei ist besonders bevorzugt vorgesehen, dass der gasförmige Anteil der Probe auf eine Membran, einen Zwischenkolben oder ein in der Messzelle angeordnetes Fluid Druck ausübt, der in die Messzelle übertragen wird.

Im Fall einer Membran ist diese bevorzugt so gestaltet, dass sie bei hohen Äuslenkungen möglichst wenig Kraft aufnimmt, also als weiche Membran ausgebildet ist. Dadurch wird der Vorteil erzielt, dass die Genauigkeit der

Druckbestimmung hoch ist. Der Einfluss der Membran auf die Druckübertragung kann vor der Messung des Dampfdruckes der- Probe bestimmt werden. Damit ergibt sich die Möglichkeit der Korrektur der gemessenen Druckwerte und vor allem bei kleinen Dampfdrücken eine höhere Genauigkeit.

Im Fall eines Zwischenkolbens bestehen die Vorteile, dass lediglich ein kleineres Gasvolumen nötig ist und eine vom aktuellen Gasdruck unabhängige Gewichtskraft vorliegt. Das Gewicht des Kolbens sollte möglichst klein sein. Für genaue Messungen von kleinen Drücken ist es von Vorteil, die gemessenen Druckwerte entsprechend zu korrigieren. Die Gewichtskraft des Kolbens sollte daher vor der eigentlichen Dampfdruckmessung durch eine vorgelagerte Kalibriermessung bestimmt werden.

Im Fall eines in der Messzelle angeordneten Fluids wird bevorzugt ein inkompressibles Medium, insbesondere eine Flüssigkeit zur Druckübertragung verwendet. Besonders bevorzugt weist die Flüssigkeit eine Viskosität von <10 mPa s in dem Temperaturbereich, in welchem der Dampfdruck bestimmt werden soll, auf. Weiters ist der Dampfdruck des inkompressiblen Mediums bevorzugt kleiner als der

Dampfdruck der Probe, besonders bevorzugt kleiner als 0,1 kPa im relevanten Temperaturbereich. 000066

6

Bei den Varianten mit einer Membran und einem

Zwischenkolben besteht das Problem, dass das für die

Bewegung der Membran bzw. des Zwischenkolbens notwendige Gasvolumen relativ groß ist. Geht man davon aus, dass abhängig vom tatsächlichen Dampfdruck der Probe das

Gasvolumen für die Zwischenkolben- bzw. Membranbewegung zumindest so groß sein muss wie die Volumenänderung durch den Kolben in der Messzelle, ergibt sich eine maximale

Änderung des Gasvolumens um einen Faktor 2. Für

Anwendungen, bei denen höhere Volumenänderungen

erforderlich sind, sind diese Ausführungen daher nur

bedingt einsetzbar. Die Verwendung eines Fluids zur

Druckübertragung hat hierbei den Vorteil, dass das

Verfahren auch für Anwendungen, bei denen hohe

Volumenänderungen erforderlich sind, geeignet ist.

Besonders bevorzugt ist vorgesehen, dass die Verwendung eines Fluids zur Druckübertragung mit einer Membran oder einem Zwischenkolben kombiniert wird. Hierbei wird also durch die gasförmigen Anteile der Probe ein Druck auf die Membran bzw. den Zwischenkolben ausgeübt und auf das Fluid übertragen, welches in der Messzelle sowie in einem

Abschnitt der Eingangsleitung angeordnet ist. Der von dem Fluid übertragene Druck wird anschließend in der Messzelle ermittelt .

Falls kein zusätzliches Übertragungselement vorgesehen ist, ist es erforderlich, dass die entstehenden gasförmigen

Anteile nicht in dem Fluid lösbar sind. Die Trennung

zwischen den gasförmigen Anteilen der Probe und dem Fluid entsteht in diesem Fall durch die Oberfläche des Fluids. Bevorzugt ist weiters ein Kalibrierschritt vor der

eigentlichen Messung vorgesehen, um die Eigenschaften der Messvorrichtung festzustellen, bspw. die Druckänderung durch die Membran, das Gewicht des Kolbens und/oder des Fluids, usw.

Bevorzugt ist vorgesehen, dass die Probe im Probenbehälter temperiert, insbesondere erhitzt wird. Dies ist

insbesondere dann von Bedeutung, wenn der Dampfdruck einer Probe stark von der Temperatur abhängt bzw. wenn der

Dampfdruck als Funktion der Temperatur ermittelt werden soll.

Weiters ist bevorzugt vorgesehen, dass die Messzelle nach der Messung über eine Ausgangsleitung entleert wird.

Alternativ kann die Messzelle über die Eingangsleitung entleert werden.

In einer bevorzugten Ausführung ist vorgesehen, dass die Messzelle und/oder die Eingangsleitung und/oder die

Ausgangsleitung temperiert, insbesondere erhitzt wird.

Falls ein Übertragungselement vorgesehen ist, ist besonders bevorzugt die Eingangsleitung ausgehend von dem

Probenbehälter bis zum Übertragungselement beheizt, um Kondensationseffekte zu vermeiden. Eine Kondensation der gasförmigen Anteile der Probe würde das Messergebnis verfälschen. Die Temperierung kann mithilfe eines

Thermostats, welches insbesondere ein Wasser- oder Ölbad umfasst, durchgeführt werden. Besonders bevorzugt ist vorgesehen, dass die Messzelle und/oder die Eingangsleitung und/oder die Ausgangsleitung die gleiche oder eine höhere Temperatur als die Probe aufweisen. Um die Messzelle einfach befüllen und nach der Messung wieder entleeren zu können, ist bevorzugt vorgesehen, dass die Messzelle vor der Messung mithilfe eines das Gasvolumen der Messzelle begrenzenden, verschiebbar geführten Kolbens gefüllt wird und bevorzugt nach der Messung mithilfe des Kolbens entleert wird. Während des Befüllens vergrößert der Kolben den Messraum der Messzelle, sodass ein Unterdruck entsteht und das jeweilige Fluid aus der Eingangsleitung in den Messraum geführt wird. Nach der Messung wird der Kolben in die andere Richtung geführt, verkleinert den Messraum und drückt dadurch das Fluid aus dem Messraum hinaus.

Mithilfe des Kolbens kann also sowohl die Befüllung als auch die Entleerung durchgeführt werden, wobei der Kolben den gefüllten Bereich innerhalb der Messzelle begrenzt.

Hierbei ist besonders bevorzugt vorgesehen, dass der Druck in der Messzelle mithilfe eines im Kolben integrierten Drucksensors gemessen wird.

Bevorzugt ist das Eingangsventil als Dreiwegeventil

ausgebildet. Damit kann das probenseitige Volumen einer Membran oder eines Zwischenkolbens je nach Bedarf entweder vakuumdicht abgeschlossen werden, zum umgebenden Luftdruck oder zum Probenvolumen angeschlossen werden.

Weiters ist erfindungsgemäß eine Vorrichtung der eingangs genannten Art vorgesehen, wobei der Probenbehälter

vakuumdicht verschließbar ist und die Eingangsleitung am oberen Ende des Probenbehälters angeschlossen ist, sodass ausschließlich gasförmige Anteile der Probe in die

Eingangsleitung geleitet werden. Durch diese Anordnung wird gewährleistet, dass flüssige und/oder feste Anteile der Probe nicht in die Eingangsleitung gelangen können, wodurch die damit verbundenen Probleme wirksam vermieden werden. Die Eingangsleitung weist hierbei bevorzugt ein

Eingangsventil auf, welches den Transport der gasförmigen Anteile innerhalb der Eingangsleitung regelt, insbesondere wahlweise freigibt bzw. absperrt. Um lediglich gasförmige Anteile in die Eingangsleitung durchzulassen, kann der Probenbehälter bevorzugt eine gasdurchlässige Schicht in Bereich der Mündung der Eingangsleitung oder in der

Eingangsleitung selbst aufweisen, die für Flüssigkeiten oder Feststoffe nicht durchlässig ist.

Bevorzugt ist vorgesehen, dass die Eingangsleitung

ausgebildet ist, um gasförmige Anteile der Probe in die Messzelle zu transportieren.

Weiters ist bevorzugt vorgesehen, dass die Eingangsleitung ein Druckübertragungselement umfasst, welches ausgebildet ist, um den vom gasförmigen Anteil der Probe ausgeübten Druck in die Messzelle einzubringen. Hierbei gelangt der gasförmige Anteil der Probe in einen ersten Abschnitt der Eingangsleitung und übt dort einen Druck auf ein

Übertragungselement aus, welches diesen Druck an ein in einem zweiten Abschnitt der Eingangsleitung angeordnetes Fluid und anschließend die Messzelle weitergibt.

Bevorzugt ist vorgesehen, dass das Druckübertragungselement eine Membran, einen Zwischenkolben oder ein in der

Messzelle und ggf. in der Eingangsleitung angeordnetes Fluid umfasst. Es können auch Kombinationen vorgesehen sein, bspw. eine Membran oder ein Zwischenkolben und ein Fluid. Weiters ist bevorzugt vorgesehen, dass der Probenbehälter ein Thermostat umfasst, um die Probe zu temperieren, insbesondere zu erhitzen. Zur Temperierung ist bspw. ein Wasser- oder Ölbad geeignet.

Zum Entleeren der Messzelle nach der Messung ist bevorzugt vorgesehen, dass die Messzelle eine Ausgangsleitung aufweist, die bevorzugt ein Ausgangsventil umfasst. Die Ausgangsleitung ist bevorzugt mit einem Behälter für die aus der Messzelle entfernte Probe verbunden. In einer alternativen Ausführung ist keine Ausgangsleitung

vorgesehen, sondern die Messzelle kann über die

Eingangsleitung entleert werden. Hierbei weist die

Eingangsleitung bevorzugt ein Abzweigventil auf, welches die Eingangsleitung wahlweise mit einem Behälter für die aus der Messzelle entfernte Probe verbindet.

Weiters ist bevorzugt vorgesehen, dass die Messzelle und/oder die Eingangsleitung und/oder die Ausgangsleitung ein Thermostat aufweisen. Dadurch kann eine unerwünschte Kondensation innerhalb der Leitungen bzw. innerhalb der Messzelle wirkungsvoll vermieden werden.

Um eine einfache Befüllung und Entleerung der Messzelle sicherzustellen, ist bevorzugt vorgesehen, dass die

Messzelle einen den Messraum der Messzelle begrenzenden, verschiebbar geführten Kolben aufweist, um die Messzelle vor der Messung zu füllen und bevorzugt nach der Messung zu entleeren .

Hierbei ist bevorzugt vorgesehen, dass der Drucksensor in den Kolben integriert ist. Weiters ist bevorzugt vorgesehen, dass die Eingangsleitung ein zweites Ventil aufweist, welches ausgebildet ist, um ein als Druckübertragungselement wirkendes Fluid in die Eingangsleitung einzubringen. Hierzu kann die

Eingangsleitung über das Ventil mit einem Reservoir

verbunden werden. Um Blasenbildung in der Eingangsleitung zu vermeiden, ist es von Vorteil, wenn das Reservoir höher positioniert ist als alle anderen Komponenten und keine Schleifen oder Bögen in den Verbindungsleitungen vorliegen. Weiters kann auch ein Entlüftungsventil am höchsten Punkt vorgesehen sein. Eine blasenfreie Befüllung ist weiters über die Ausgangsleitung und eine entsprechende

Kolbenbewegung möglich.

Die Erfindung wird nachfolgend anhand eines in der

Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dieser zeigen Fig. 1 eine schematische Darstellung einer ersten Ausführungsform der Erfindung, Fig. 2 eine schematische Darstellung einer zweiten

Ausführungsform der Erfindung und Fig. 3 eine schematische Darstellung einer dritten Ausführungsform der Erfindung.

In Fig. 1 ist eine erste Ausführungsform der Erfindung dargestellt, wobei mit 1 eine Messzelle zur

Dampfdruckermittlung bezeichnet ist und mit 2 ein

Probenbehälter, in welchem eine Probe 3 des zu

untersuchenden Stoffes angeordnet ist. Der Probenbehälter 2 ist über eine Eingangsleitung 4, die ein Eingangsventil 5 aufweist, mit der Messzelle 1, insbesondere mit deren

Messraum 7 verbunden. Der Probenbehälter 2 weist weiters ein Öl- oder Wasserbad 6 auf, um die Probe 3 zu

temperieren, insbesondere zu erhitzen. Die Messzelle 1 weist einen Messraum 7 sowie einen Kolben 8 auf, der translatorisch bewegbar angeordnet ist und den Messraum 7 begrenzt. Der Messraum 7 ist über eine Ausgangsleitung 9 mit einem Behälter 10 für die Aufnahme der Probenmenge nach Abschluss der Messung verbunden, wobei die Ausgangsleitung 9 ein Ausgangsventil 11 aufweist. Die Eingangsleitung 4 weist weiters eine Isolierung bzw. ein Temperierelement 12 auf .

Um eine Dampfdruckmessung durchzuführen, wird eine Probe 3 in dem Probenbehälter 2 angeordnet und dieser mit der

Eingangsleitung 4 verbunden. Durch Öffnen des

Eingangsventils 5 und Anheben des Kolbens 8 entsteht ein Unterdruck im Messraum 7 und gasförmige Anteile der Probe 3 gelangen in die Eingangsleitung und in den Messraum 7.

Anschließend wird der Dampfdruck im Messraum 7, bspw.

mithilfe eines im Kolben 8 integrierten Sensors gemessen. Nach der Messung wird das Eingangsventil 5 geschlossen, das Ausgangsventil 11 geöffnet und der Kolben 8 drückt die gasförmigen Anteile aus dem Messraum 7 über die

Ausgangsleitung 9 in den Behälter 10. Anschließend kann der Messraum 7 erneut gefüllt werden und eine nächste Messung durchgeführt werden.

In Fig. 2 ist eine zweite Ausführungsform der Erfindung dargestellt. Im Unterschied zur Ausführung gemäß Fig. 1 werden die gasförmigen Anteile der Probe 3 nicht in den Messraum 7 der Messzelle 1 transportiert, sondern die gasförmigen Anteile gelangen über einen ersten Abschnitt der Eingangsleitung 4 und das Eingangsventil 5 zu einem Druckübertragungselement 13, welches eine Membran 14 aufweist. Die Membran 14 ist nicht gasdurchlässig, sodass der Druck der gasförmigen Anteile der Probe 3 auf die

Membran 14 eine Deformation der Membran 14 bewirkt, wodurch auf das in dem anschließenden Abschnitt der Eingangsleitung 4 befindliche Fluid Druck ausgeübt wird, der in der

Messzelle 1 erfasst werden kann. In Fig. 3 ist eine dritte Ausführungsform der Erfindung dargestellt, die sich von der Ausführung gemäß Fig. 2 dadurch unterscheidet, dass das Übertragungselement 13 anstelle einer Membran 14 einen Zwischenkolben 15 aufweist. Durch den Druck der gasförmigen Anteile der Probe 3 wird der Zwischenkolben 15 bewegt, sodass Druck auf das in der Eingangsleitung 4 angeordnete Fluid ausgeübt wird, der dadurch in die Messzelle 1 übertragen wird.

Das in der Eingangsleitung 4 angeordnete Fluid kann bspw. Luft oder ein anderes, insbesondere inkompressibles Fluid sei .