Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR MEASURING VISCOSITY OF FLOWING FLUID BASED ON BENDING VIBRATION STRUCTURE
Document Type and Number:
WIPO Patent Application WO/2013/097190
Kind Code:
A1
Abstract:
A method for measuring the viscosity of a flowing fluid based on a bending vibration structure. The method comprises the following steps: 1) when no liquid is present, driving the control device of a flow meter to control the measuring pipe so that the measuring pipe is in a bending resonance state having constant amplitude, and measuring the input power and resonance frequency of the empty pipe at this time; 2) controlling the fluid having a known viscosity and density to flow through the measuring pipe at a certain flow rate, so as to ensure that the fluid has a constant temperature to keep the viscosity of the fluid unchanged, and measuring the input power and resonance frequency at different flow rates; 3) obtaining K1', K2' and K3 of the flow meter by calibration according to the data measured; and 4) measuring the unknown viscosity of a fluid. The method can be directly performed based on the bending vibration of a Coriolis mass flow meter without adding extra conditions, not only expanding the method for measuring viscosity but also increasing the functionality of the Coriolis mass flow meter and reducing costs.

Inventors:
REN JIANXIN (CN)
TAN DONGJIE (CN)
LI BAISONG (CN)
YANG KAN (CN)
ZHANG PENG (CN)
HUI QUANMIN (CN)
Application Number:
PCT/CN2011/085052
Publication Date:
July 04, 2013
Filing Date:
December 30, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
XI AN DONG FENG MACHINERY & ELECTRONIC CO LTD (CN)
REN JIANXIN (CN)
TAN DONGJIE (CN)
LI BAISONG (CN)
YANG KAN (CN)
ZHANG PENG (CN)
HUI QUANMIN (CN)
International Classes:
G01N11/00
Foreign References:
CN102156086A2011-08-17
CN101109686B2011-01-19
US4524610A1985-06-25
US5317908A1994-06-07
JPH0242319A1990-02-13
JPH08283311A1996-10-29
Attorney, Agent or Firm:
XI'AN ZHIBANG PATENT & TRADEMARK AGENT CO., LTD. (CN)
西安智邦专利商标代理有限公司 (CN)
Download PDF:
Claims:
¾1 ¾ ^ ^

1、一种基于弯曲振动结构的流动流体粘度的测量方法,其特征在于该方法 包括以下歩骤:

1 )未充液条件下,驱动流量计的控制装置控制测量管处于恒幅弯曲谐振状 态, 此时测量得到空管时输入功率 P。, 谐振频率 /ΰ ;

2)控制已知粘度、密度的流体以一定的流速通过测量管, 确保流体温度恒 定以保证流体粘度不变, 测量不同流速 V下的输入功率 Ρ、 谐振频率/ ;

3 )根据测量数据, 以 χ = 为自变量, 以 y =+(^- )为因变量, 对数据进

J J J

行曲线拟合, 可得到曲线方程, 并结合式 =;^ 2 + ¾¾^ +;7<即可标定得到 流量计的 '、 K3 ;

4)测量未知粘度流体: 通过流量计直接测量未知粘度流体流速、 密度、 谐 振频率、 输入功率密度 ρ、 流体温度^、 谐振频率/、 输入功率 Ρ, 由

\ ρ ρ η = 计算出未知粘度流体的实时粘度。

2、根据权利要求 1所述的基于弯曲振动的流动流体粘度的测量方法,其特 征在于: 所述歩骤 2 ) 中标定时需满足恒温、 恒幅谐振、 层流、 无气泡的测量 条件。

3、根据权利要求 1所述的基于弯曲振动的流动流体粘度的测量方法,其特 征在于: 所述流量计为科氏质量流量计。 所用的平台不仅适用于科氏质量流量 计, 也适用于其他基于弯曲振动的结构。

Description:
一种基于弯曲振动结构的流动流体粘度的测量 方法 技术领域

本发明涉及一种基于弯曲振动结构的流动流体 粘度的测量方法。

背景技术

在许多工业生产领域, 都需要对流体粘度进行实时监测控制, 然而传统的 粘度计如毛细管法、 落球法等一般需要提取样品, 在实验室中进行测量。 这大 大减低了测量效率, 更不适合在线监测。 尤其在流体管道运输中, 要实时监控 流体粘度, 传统的测量方法不能满足需求。 科氏质量流量计作为一种较为先进 的精密仪器以其优越的性能在工业领域得到了 广泛的运用, 在能精确检测通过 管道流体的质量流量的同时还能获得体积流量 、 密度、 温度等测量值。 若能不 增加附加装置基础上同时实现检测流动流体粘 度, 则将大大提高科氏质量流量 计的功能, 更为实现在线监控粘度提供了便利的条件, 意义重大。

为了测量管道中流动流体的粘度, 美国的 Micromotion公司采用压差传感 器和科氏流量计进行流体粘度测量, 通过测量通过科氏流量计的流体在轴向的 产生的压差来实现流体在线测量。 在美国专利 4, 524, 610中说明了一种粘度 测量装置, 该装置利用驱动装置使科氏流量计传感器敏感 管产生切向方向的扭 转振动, 进而在流体内部产生摩擦力, 通过检测驱动电流即可得到流体动力粘 度测量值, 同时检测其内流体密度以得到运动粘度值。 但这对传感器的型号都 有特定要求, 同时还需要增加附加切向扭转驱动装置,这也 导致生产成本增加。 中国专利 200710018494.6中提出了一种基于管道弯曲振动的 态的流体粘度测 量方法。 通过检测输入功耗来检测流体粘度, 该方法简单, 不用外加附加装置 就能在科氏流量计本身的基础上实现轴向无流 速下流体的粘度测量, 同时还能 用于大多数的弯管科氏流量计, 然而在流体流动条件下, 由于耗能规律复杂, 其并未实现在流动状态下的流体粘度测量。

发明内容

因此, 本发明的目的在于, 提供一种基于弯曲振动结构的流动流体粘度的 测量方法, 其测量方法简单, 便于实现。

本发明的技术解决方案是: 本发明为一种基于弯曲振动结构的流动流体粘 度的测量方法, 其特殊之处在于该方法包括以下步骤:

1 )未充液条件下,驱动流量计的控制装置控制 量管处于恒幅弯曲谐振状 态, 此时测量得到空管时输入功率 P。, 谐振频率 /。;

2)控制已知粘度、密度的流体以一定的流速通 测量管, 确保流体温度恒 定以保证流体粘度不变, 测量不同流速 V 下的输入功率 P、 谐振频率 / ;

3 )根据测量数据, 以 x = 为自变量, 以 y = + (^- 为因变量, 对数据进

J J J Q

行曲线拟合, 可得到曲线方程, 并结合式 = ^ 2 + ^;¾^ + ;7 即可标定得到 流量计的 、 K K 3 ;

4)测量未知粘度流体: 通过流量计直接测量未知粘度流体流速、密度 、谐 振频率、 输入功率密度 ρ、 流体温度 、 谐振频率/、 输入功率 Ρ, 由 1 ρ ρ

η j-a 计算出未知粘度流体的实时粘度。 上述步骤 2) 中测量时需满足恒温、 恒幅谐振、 层流、 无气泡的测量条件。 上述流量计为科里奥利质量流量计。

本发明提供的一种基于弯曲振动结构的流动流 体粘度的测量方法, 可直接 在科里奧利质量流量计弯曲振动的基础上进行 , 无需增加其他附加条件, 不仅 拓展了粘度测量方法, 也增加了在科里奥利质量流量计的功能, 降低了成本。 附阁说明

图 1为弯管科氏流量计测量管弯曲振动示意图;

图 2为直管科氏流量计测量管弯曲振动示意图

图 3为 U型双管科里奥利质量流量计;

图 4为双 C型科里奥利质量流量计;

图 5为常温下粘度为 硅油标定时的拟合曲线;

图 6为各种形状的科里奥利质量流量计;

图 7为常温下 (温度 21°C ) 粘度为 207.8 xtt硅油实验结果;

图 8为常温下 (温度 2ΓΟ 粘度为 386.24 ^ft硅油实验结果;

图 9为常温下 (温度 2ΓΟ 粘度为 550.6m P di硅油实验结果;

2

替换页 (细则第 26条) 图 4附图标记如下:

1、 2为传感器管, 16、 17为拾振线圈, 15为激振线圈, 3为温度传感器, 27、 28位定距板, 25为传感器本体, 18、 19为连接法兰, 5为出口管, 34为 接线端, 32为外壳。

具体实施方式

一、 本发明的测量基础

基于管道弯曲振动实现流动流体粘度测量的理 论基础同无流速下相同, 即 在测量管恒幅谐振状态下, 外部驱动装置补充的能量一部分用于抵消测量 管本 身的结构阻尼, 另一部分用于抵消测量管内部粘性流体粘性力 的耗能。 问题的 关键是如何得出在流体流动状态下驱动能量与 流体粘性力耗能之间的关系, 这 也是采用弯曲振动测量流体粘度最核心的部分 , 测量管弯曲振动示意图如图 1 图 2所示。

通过分析我们得出如下结果:

即对于形如图 3图 4的弯管科氏质量流量计, 其谐振状态下耗能分为三部 分

1 ) 测量管本身由于弯曲振动的结构阻尼耗能

在测量管弯曲振动振幅为某恒定值 ^下,其一个周期内消耗的能量表达式 为

管 = ( 1 )

Jo

其中 P。为空管振动时消耗的功率, f。空管振动时谐振频率

2 ) 测量管中流动流体由于弯曲振动粘性力消耗的 能量

在测量管弯曲振动振幅为某恒定值 ^下, 其一个周期内消耗的能量表达式 为

ψ^ = 2ηπ 2 ι + 2 (2) 其中 为粘度, /为谐振频率, V为流速,

Κ 2 = ^ α 2 π 2 Α"(χ)Α"(χ)άχ ^χ)为悬臂梁振动振型函数, α为与振幅相关的量; 对振动幅度恒定, 管 型固定的测量管 、 两值为常数, 可以通过标定得到。

3 )流体通过测量管后, 由于科氏力作用导致测量管产生扭转(对于直 氏质量流量计则不存在扭转, 即无该项耗能), 由扭转运动消耗的能量

曲7 1振动振幅为某恒定值 ^下, 其一个周期内消耗的能量表达式 ( /、

其中 为通过测量管的流体密度。

77 / 0

(4 ) κ 2 (-Ϋ+κ;

= πΚ 2 , Κ; = 2π 2 Κ {

通过已知标准粘度流体标定上述常数值后,即 可进行流动流体的粘度测量。

本发明使用的测量装置包括用于弯曲振动使 粘性流体产生内摩擦力耗能, 且与管道连通的传感器测量管(可直接用科氏 质量流量计作为平台);用于使测 量管保持恒幅谐振的振动控制装置; 用于 则量管振动的信号检测装置 (能 获取流体温度、 流速、 谐振频率、 流体密 科氏质量流量计 (图 3、 图 4 ) 刚好就能满足测量要求。 测量歩骤如下:

1 ) 系数标定方法

由上述的粘度测量公式, 为了实现粘 J

为此将粘】 •公式变形为

( 5 )

1

J J Jo )" = 2 ? + 3 /?流体 + ( 6 ) 可见对已知粘度流体, 该函数为一个二次函数。

对空管能耗, 应在未通流体前进行测定, 由驱动控制装置控制测量管处于 恒幅弯曲谐振状态, 此时可测量得到空管时输入功率 P。, 谐振频率 /。。

用已知标准粘度; Λ、 密度 Pl 的流体来进行标定, 流体流过测量管时, 驱动 控制装置控制测量管保持在恒幅谐振状态下, 并由驱动控制装置可检测到不同 流速 V下的输入功率 Ρ、 谐振频率/, 据式 (6 ) 将数据曲线拟合后, 得到曲线 方程, 由此可标定得出 、 κ 2 κ 3 。 当然对于 (不同管型、 不同尺寸的测 量管值不相同),可直接在静态下就能标定得 出。采用已知标准粘度标定时应注 意如下几个问题:

1、保持流体温度稳定。 由于温度对流体粘度影响较大, 因此要保证流体温 度不变的情况下才能确保已知粘度流体实际粘 度不变。 否则将会导致标定值误 差偏大, 造成测量结果误差较大, 并且标定时要保持的恒定温度 t, t值本身的 大小范围没有限制, 目的在于要能保证流体粘度在标定过程中保持 在该温度下 的恒定值。

2、 测量必须在测量管处于较好的恒幅谐振状态下 进行。 在测量管起振时、 振动幅值不稳定时或是振动频率变化较大时不 可测量。

3、 当测量无流速情况时, 务必确保测量管内流体充满, 流体流动后, 在不 同的流速下测量时, 必须在流速稳定后测量, 并应记录下流体流速、谐振频率、 流体密度, 温度及输入功率。

4、应保证通过测量管的流体处于层流状态。 有在层流状态下上述测量公 式才能运用, 而对于紊流状态时, 是不能进行测量的, 当然对于测量无流速时, 无需保证层流状态。

5、通过测量管的流体应尽量不使其混有气泡 气泡的影响是相当大的, 可 能导致测量结果高出实际结果几倍的情况。 同时气泡较多还会导致测量管振幅 变化较大, 不在保持恒幅振动, 这就不符合测量的前提。

根据测量数据拟合曲线, 得出拟合曲线方程, 结合式 (5 ), 即可标定得 到 、 κ 3 。 测量未知粘度;;的流体时, 由于能实时监控到流体温度, 固无需保证流体 温度相同,这也正是该方法的优点之一, 即能实时监控不同温度下的流体粘度, 但务必满足上述的恒幅谐振、 层流、 无气泡的条件。 同时必须注意, 测量不同 密度流体粘度时必须保证恒幅振动的振幅是相 同的。 也只有在这个前提下的测 量才是有意义的。

通过未知粘度流体后,由于驱动装置,能直接 获得流体密度 p、流体温度 Γ、

I皆振频率 /'、 输入功率尸, 由此便可由式(4) 计算出流体

的实时粘度, 即实现了流动流体粘度的在线监测。

本发明的一个具体实施例是以双 C型科里奥利质量流量计 (如图 4所示) 为平台为例, 进行如下步骤测量-

1)未充液条件下, 驱动控制装置控制测量管处于恒幅弯曲谐振状 态, 此时 可测量得到空管时输入功率 A, 谐振频率 /。。

2)控制已知粘度、密度的流体以一定的流速通 测量管, 确保流体温度恒 ; ^以保证流体粘度不变, 测量不同流速 V下的输入功率 、 谐振频率/。

3)根据测量数据, 以 x 为自变量, 以 y = - )为因变量, 对数据进

J J J JO

行曲线拟合, 可得到曲线方程, 并结合式 = ^ 2 'x 2 + ¾^ + 即可标定得到

K;、 K'、 κ 。

振幅 的大小可以根据需要调节, 但不同的大小时, 上述的标定值是不同 的。

4)对未知粘度流体, 由于科氏质量流量计能直接测量流速、 密度、谐振频 率、 输入功率密度 ρ、 流体温度 、 谐振频率 /、 输入功率 Ρ, 由式 (4) 可计算出流体的实时粘度, 实现在线粘度监测。

图 5 为利用已知粘度为 190.9 ^ 进行标定的拟合曲线, 标定后, 我们用 粘度分别为 2ϊ7·&ηψ α 、 386.24m^.^> 550.6wj^"不同型号硅油进行了粘度 测量。 结果如图 7、 图 8、 图 9所示。 可见在满足所需精度的基础上, 该方法是

6

替换页 (细则第 26条) 完全可行的。

该方法可以用在各种基于弯曲振动的科氏质量 流量计中(如图 6所示),或 符合弯曲振动结构的管道中。 可以测量不同流速下, 不同温度, 压强下的流过 科氏质量流量计的流动流体粘度。