Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF MONITORING ADAPTATION VALUES IN AN ENGINE CONTROL DEVICE
Document Type and Number:
WIPO Patent Application WO/2022/248781
Kind Code:
A1
Abstract:
The invention relates to a method, implemented in an engine control device of a vehicle, of monitoring a plurality of adaptation values of at least one parameter, the method comprising the following steps: - calculating (10), for each adaptation value, an individual impact value indicating the impact of said adaptation value on the at least one parameter for a current operating point of the engine; - calculating (12) an overall impact value of the impact all the adaptation values have on said at least one parameter for the current operating point of the engine; - comparing (14) the calculated overall impact value with at least one predefined overall impact threshold value; and - transmitting (16), depending on the result of the comparison (14), an alert signal to a device of the vehicle.

Inventors:
POULY CLEMENT (FR)
Application Number:
PCT/FR2022/050594
Publication Date:
December 01, 2022
Filing Date:
March 30, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PSA AUTOMOBILES SA (FR)
International Classes:
F02D41/24; F02D41/22; F02D13/02
Foreign References:
DE102008012607A12009-09-10
DE10244539A12004-04-08
EP0275507A21988-07-27
FR2105495A51972-04-28
FR3085721B12020-09-04
Attorney, Agent or Firm:
BOURGUIGNON, Eric (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Procédé, mis en œuvre dans un contrôle moteur d’un véhicule, de surveillance de plusieurs adaptatifs d’au moins un paramètre, caractérisé en ce que le procédé comporte les étapes suivantes :

- un calcul (10), pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre pour un point de fonctionnement courant du moteur ;

- un calcul (12) d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre pour le point de fonctionnement courant du moteur ;

- une comparaison (14) de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie ; et

- une émission (16), en fonction du résultat de la comparaison (14), d’un signal d’alerte à destination d’un dispositif du véhicule.

2. Procédé selon la revendication 1, caractérisé en ce que ledit au moins un paramètre est une richesse de carburant.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l’étape (10) de calcul, pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre consiste à multiplier une valeur courante dudit adaptatif par une fonction de transfert prédéterminée entre ledit au moins un paramètre et ledit adaptatif, fournissant ainsi la valeur d’impact individuel.

4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que l’étape (12) de calcul d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre consiste à additionner les valeurs d’impact individuel calculées pour l’ensemble des adaptatifs, fournissant ainsi la valeur d’impact global.

5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que l’étape (14) de comparaison de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie comporte une première phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global minimale, et une seconde phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global maximale, et en ce que le signal d’alerte est émis à destination d’un dispositif du véhicule si la valeur d’impact global calculée est inférieure à la valeur seuil d’impact global minimale ou supérieure à la valeur seuil d’impact global maximale.

6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que les étapes de calcul (10) de valeurs d’impact individuel, de calcul (12) d’une valeur d’impact global, de comparaison (14) et d’émission (16) d’un signal d’alerte sont réeffectuées pour chaque point de fonctionnement courant du moteur.

Description:
DESCRIPTION

TITRE DE L’INVENTION : PROCEDE DE SURVEILLANCE D’ADAPTATIFS DANS

UN CONTROLE MOTEUR

La présente invention revendique la priorité de la demande française N°2105495 déposée le 27.05.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.

L’invention se rapporte à un procédé, mis en œuvre dans un contrôle moteur de moteur thermique, de surveillance de plusieurs adaptatifs. Ce moteur thermique est avantageusement mais non limitativement un moteur à allumage commandé, notamment un moteur à carburant essence ou à mélange contenant de l’essence et la surveillance se fait avantageusement mais non limitativement pour surveiller l’impact des adaptatifs sur la richesse de carburant injecté dans le moteur thermique.

Cette application non limitative va être prise comme exemple pour illustrer le procédé de surveillance mais le procédé selon l’invention peut être mis en œuvre pour surveiller des adaptatifs d’un autre paramètre de fonctionnement que la richesse de carburant dans le moteur thermique.

Du fait des dispersions de fabrication, de l’usure, de l’encrassement et de la qualité de représentation des modèles des actionneurs du moteur, le comportement physique de ces actionneurs peut différer des modèles de comportement intégrés dans le contrôle moteur. Ce décalage des modèles des actionneurs, notamment ceux relatifs à la branche d’admission d’air et à la branche d’injection de carburant, peut amener à des dérives de richesse, donc à une surconsommation ou une augmentation des émissions polluantes et peut aussi avoir des impacts sur l’agrément de conduite ressenti par le conducteur. La richesse d’un mélange carburant indique la valeur de proportion entre l'air et le carburant du mélange admis dans la chambre de combustion du moteur. La qualité de la combustion dépend principalement de ce dosage.

Le contrôle moteur va donc devoir, tout au long de la vie du véhicule, corriger ces dérives de richesse. Cette correction est réalisée par une fonction connue de régulation de richesse qui corrige en permanence le temps de commande de l’injecteur en se basant sur la mesure de richesse fournie par la sonde de richesse présente à l’échappement.

Pour optimiser cette correction, il est connu d’utiliser une stratégie de contrôle moteur de type apprentissage qui va soit mémoriser (via des adaptatifs) la correction de richesse nécessaire pour chaque zone ou point de fonctionnement du moteur et la restituer lorsque le moteur repasse sur une zone apprise donnée, soit identifier les sources de déviation de richesse et corriger ces sources (les modèles actionneurs par exemple) par des adaptatifs. Dans un cas comme dans l’autre la richesse est ainsi automatiquement bien centrée. Une telle stratégie de contrôle moteur par apprentissage, selon la première variante précitée, est par exemple décrite dans le document brevet FR 3 085 721 B1.

La réglementation relative au diagnostic embarqué OBD (de l’anglais « On- Board Diagnostics ) requiert que ces systèmes d’apprentissage de la richesse soient surveillés pour notamment alerter le conducteur en cas de survenue d’une défaillance risquant d’entraîner un dépassement des seuils tolérables d’émissions polluantes. Cette surveillance est généralement réalisée via le diagnostic des valeurs prises par les adaptatifs de richesse en comparaison de valeurs limites.

Il est connu d’effectuer le diagnostic des adaptatifs de richesse indépendamment pour chaque adaptatif, par la comparaison des valeurs prises par l’adaptatif au moment de sa mise à jour par rapport à une valeur limite.

Cette valeur limite est généralement fixée de manière à surveiller un dépassement de ce que l’adaptatif est censé corriger : les dispersions de fabrication, l’usure, l’encrassement, ou encore la qualité de représentation des modèles des actionneurs du moteur. En cas de dépassement de cette limite, le système considère qu’il y a une anormalité et qu’une défaillance a pu survenir, causant une déviation de richesse exceptionnelle qui a été apprise en partie par l’adaptatif en question. Il existe alors dans ce cas un risque potentiel de dépassement des seuils tolérables d’émissions polluantes.

Le diagnostic des adaptatifs par un tel procédé est ainsi réalisé indépendamment pour chaque adaptatif en se basant sur une valeur limite que l’adaptatif considéré n’est pas censé atteindre. Toutefois, dans le cas où la stratégie de contrôle moteur fournit plusieurs adaptatifs de nature différente pour corriger les modèles de comportement des actionneurs (par exemple, modèle injecteur, modèle de remplissage en air des cylindres, modèle de position des arbres à cames...), ce procédé présente les inconvénients suivants :

- le diagnostic est réalisé, pour chaque adaptatif, sur la valeur atteinte par l’adaptatif à partir de limites basées essentiellement sur l’expérience et les valeurs classiques que l’adaptatif devrait prendre (typiquement correction de la dispersion de fabrication, de l’usure, ou encore de l’encrassement). Or c’est le risque de dépassement du niveau des émissions polluantes (ou tout du moins son équivalence en richesse) qui doit être surveillé précisément selon les textes réglementaires ;

- le diagnostic est réalisé, pour chaque adaptatif, sur une valeur atteinte par l’adaptatif mais sans considérer son impact réel en richesse (et donc en émissions polluantes). Or dans le cas où cet adaptatif est une constante (indépendante du point de fonctionnement du moteur donc), son impact en richesse peut varier en fonction du point de fonctionnement moteur. Il est possible qu’une valeur inhabituelle de l’adaptatif, au-delà des limites, n’ait un impact sur la richesse que sur des zones très précises du champ de fonctionnement du moteur que le conducteur du véhicule diagnostiqué ne parcourt pas ;

- l’interaction entre les différents adaptatifs n’est pas prise en compte par le procédé : un adaptatif peut ainsi atteindre des limites considérées comme ayant un impact sur la richesse mais, du fait des valeurs des autres adaptatifs appliquées sur d’autres modèles de comportement des actionneurs du contrôle moteur, les effets sur la richesse globale (et donc sur les émissions polluantes) de ces adaptatifs peuvent être sensiblement amoindris.

Le but de l’invention est de pallier les inconvénients de l’art antérieur en proposant un procédé, mis en œuvre dans un contrôle moteur, de surveillance de plusieurs adaptatifs d’au moins un paramètre, qui soit plus exhaustif et plus précis, et qui permette de prendre en compte les possibles interactions entre adaptatifs tout en réduisant le nombre de fausses détections.

Pour ce faire, l’invention se rapporte ainsi, dans son acceptation la plus large, à un procédé, mis en œuvre dans un contrôle moteur d’un véhicule, de surveillance de plusieurs adaptatifs d’au moins un paramètre, le procédé comportant les étapes suivantes :

- un calcul, pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre pour un point de fonctionnement courant du moteur ;

- un calcul d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre pour le point de fonctionnement courant du moteur ;

- une comparaison de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie ; et

- une émission, en fonction du résultat de la comparaison, d’un signal d’alerte à destination d’un dispositif du véhicule.

Le procédé selon l’invention est donc une fonction de contrôle moteur, qui vient seconder une fonction connue d’apprentissage en la surveillant et en alertant le conducteur en cas de survenue d’une défaillance risquant d’entraîner un dépassement des seuils tolérables d’émissions polluantes. La présente invention peut bien entendu être adaptée à des fonctions d’apprentissage du contrôle moteur autres qu’une fonction d’apprentissage de la correction de richesse. Le procédé selon l’invention permet de surveiller l’impact global de l’ensemble des adaptatifs sur le paramètre concerné, afin de recentrer le paramètre en question. La surveillance permise par le procédé selon l’invention est plus exhaustive et plus précise, car elle tient compte des possibles interactions entre les adaptatifs et que l’estimation effectuée de l’impact de l’ensemble des adaptatifs sur le paramètre varie en fonction du point de fonctionnement courant du moteur. Le procédé selon l’invention combine en effet l’impact de tous les adaptatifs (qui peuvent être de nature différente), prenant ainsi en compte l’influence qu’ont les adaptatifs entre eux ; et détecte une correction excessive du paramètre par les adaptatifs (une telle correction excessive étant directement corrélée à des surémissions polluantes lorsque le paramètre est la richesse de carburant) et non pas une valeur excessive d’un adaptatif donné qui n’est pas aisément convertible en effets sur les émissions polluantes. Ceci permet de réduire le nombre de de fausses détections. La surveillance permise par le procédé selon l’invention contribue en outre à un meilleur respect de la réglementation en vigueur, notamment de la réglementation relative au diagnostic embarqué OBD en matière de surveillance des niveaux d’émissions polluantes lorsque le paramètre est la richesse de carburant. Le procédé détecte en effet une correction excessive du paramètre par la combinaison des adaptatifs, qui est facilement transposable en impact probable sur les émissions polluantes.

La ou les valeur(s) seuil d’impact global prédéfinie(s) est(sont) de préférence paramétrable(s) par un utilisateur ou par un fabriquant du véhicule. Ceci permet de calibrer cette ou ces valeur(s) seuil au plus proche de ce que les textes réglementaires exigent, notamment en termes d’émissions polluantes lorsque le paramètre est la richesse de carburant.

De préférence, ledit au moins un paramètre est une richesse de carburant.

Selon une caractéristique technique particulière de l’invention, l’étape de calcul, pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre consiste à multiplier une valeur courante dudit adaptatif par une fonction de transfert prédéterminée entre ledit au moins un paramètre et ledit adaptatif, fournissant ainsi la valeur d’impact individuel. Une telle fonction de transfert représente la sensibilité de l’adaptatif au paramètre. Cette étape de calcul d’une valeur d’impact individuel de chaque adaptatif permet d’obtenir l’impact de chaque adaptatif sur le paramètre pour le point de fonctionnement courant du moteur.

Selon une autre caractéristique technique particulière de l’invention, l’étape de calcul d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre consiste à additionner les valeurs d’impact individuel calculées pour l’ensemble des adaptatifs, fournissant ainsi la valeur d’impact global. Cette étape de calcul d’une valeur d’impact global permet de tenir compte de l’influence qu’ont les adaptatifs entre eux. Par exemple, deux adaptatifs de nature différente peuvent, en fonction du point de fonctionnement du moteur, se compenser en termes de correction de richesse s’ils sont de signes opposés.

Selon une autre caractéristique technique particulière de l’invention, l’étape de comparaison de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie comporte une première phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global minimale, et une seconde phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global maximale, et le signal d’alerte est émis à destination d’un dispositif du véhicule si la valeur d’impact global calculée est inférieure à la valeur seuil d’impact global minimale ou supérieure à la valeur seuil d’impact global maximale.

Avantageusement, les étapes de calcul de valeurs d’impact individuel, de calcul d’une valeur d’impact global, de comparaison et d’émission d’un signal d’alerte sont réeffectuées pour chaque point de fonctionnement courant du moteur. Ceci permet de rendre le diagnostic des adaptatifs dépendant du point de fonctionnement courant du moteur. La précision dans la détection du point de fonctionnement du moteur au cours duquel survient une défaillance est par conséquent grandement améliorée, puisque le diagnostic dépend du point de fonctionnement courant et n’est plus limité à la surveillance d’une valeur fixe variant uniquement lors des mises à jour de la fonction d’apprentissage du paramètre au sein du contrôle moteur, comme c’est le cas dans certains procédés de l’art antérieur.

On décrira ci-après, à titre d’exemples non limitatifs, des formes d’exécution de la présente invention, en référence à la figure annexée unique [Fig.1 ] qui est un organigramme représentant un procédé de surveillance de plusieurs adaptatifs d’au moins un paramètre selon la présente invention.

En se référant à la figure 1 la présente invention concerne un procédé, mis en œuvre dans un contrôle moteur d’un moteur thermique, de surveillance de plusieurs adaptatifs d’au moins un paramètre. Une telle surveillance des adaptatifs permet d’effectuer un diagnostic de ces mêmes adaptatifs, notamment un diagnostic relatif au respect des réglementations en vigueur pour le paramètre. Le paramètre peut être une richesse de carburant injecté mais ceci n’est pas limitatif dans le cadre de la présente invention. Dans ce cas, chaque adaptatif est un adaptatif de richesse de carburant. Les différents adaptatifs sont de préférence appliqués directement sur les sources d’erreurs de la richesse de carburant, c’est-à-dire sur les modélisations des différents éléments du moteur thermique. Ces adaptatifs sont appliqués par exemple :

- sur les modèles de position des déphaseurs d’arbres à cames ; et/ou

- sur le modèle d’estimation de la quantité d’air aspiré par les cylindres ; et/ou - sur le modèle de comportement d’au moins un injecteur par la correction de la modélisation de paramètres physiques tels que le gain statique de l’injecteur, son temps mort de commande.

Par exemple, sans que cela ne soit limitatif, un premier adaptatif peut être un adaptatif sur la position d’un déphaseur d’arbre à cames d’admission, un deuxième adaptatif peut être un adaptatif sur la position d’un déphaseur d’arbre à cames d’échappement, un troisième adaptatif peut être un adaptatif sur la modélisation du gain statique d’un injecteur de carburant dans le moteur thermique, et un quatrième adaptatif peut être un adaptatif sur la modélisation du temps mort de commande de l’injecteur. En variante ou en complément, un des adaptatifs peut également être un adaptatif relatif à une durée d’ouverture d’au moins un injecteur de carburant dans le moteur thermique.

Le procédé comporte une première étape 10 au cours de laquelle le contrôle moteur calcule, pour chacun des adaptatifs, une valeur d’impact individuel de l’adaptatif sur le paramètre pour un point de fonctionnement courant du moteur. De préférence, cette étape de calcul 10 consiste à multiplier, pour chaque adaptatif, une valeur courante de l’adaptatif par une fonction de transfert prédéterminée entre le paramètre et l’adaptatif. Cette multiplication fournit alors la valeur d’impact individuel de l’adaptatif concerné, sur le point de fonctionnement courant du moteur. Cette fonction de transfert prédéterminée (et stockée par exemple dans des moyens mémoire du contrôle moteur) représente la sensibilité de l’adaptatif au paramètre. La fonction de transfert peut être déterminée au préalable par toute méthode connue, par exemple par calculs mathématiques de dérivées d’équations du paramètre du système par rapport à l’adaptatif considéré, ou encore par calcul du gradient local de variation du paramètre pour une variation de l’adaptatif.

Par exemple, pour le premier adaptatif de l’exemple précédemment décrit (adaptatif sur la position d’un déphaseur d’arbre à cames d’admission), si on appelle A le premier adaptatif, R le paramètre qui est ici la richesse de carburant, et IA®-R l’impact individuel du premier adaptatif sur la richesse de carburant ; alors cet impact individuel IA®-R s’exprime selon l’équation (1 ) suivante :

[Math]

IΊ L = KA,R * A (1 ) avec KA,R la fonction de transfert entre la richesse de carburant et le premier adaptatif, qui s’exprime en %/°CK ; la notation °CK désignant des degrés vilebrequin.

L’impact individuel sur la richesse de carburant de chacun des deuxième, troisième et quatrième adaptatifs de l’exemple précédemment décrit s’exprime selon une équation analogue à celle de l’équation (1 ), avec une fonction de transfert individuelle correspondante.

Au cours d’une étape suivante 12, le contrôle moteur calcule une valeur d’impact global de l’ensemble des adaptatifs sur le paramètre pour le point de fonctionnement courant du moteur. De préférence, cette étape de calcul 12 consiste à additionner les valeurs d’impact individuel calculées pour l’ensemble des adaptatifs au cours de l’étape précédente 10. Cette addition fournit alors la valeur d’impact global des adaptatifs, sur le point de fonctionnement courant du moteur.

Au cours d’une étape suivante 14, le contrôle moteur compare la valeur d’impact global calculée au cours de l’étape précédente 12 à au moins une valeur seuil d’impact global prédéfinie. L’étape de comparaison 14 comporte par exemple une première phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global minimale, et une seconde phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global maximale. La première phase peut être effectuée avant la seconde phase, ou inversement. En variante, les première et seconde phases sont effectuées simultanément. Dans le cas où le paramètre est la richesse de carburant, les valeurs seuil d’impact global minimale et maximale sont des seuils minimal et maximal réglementaires sur la déviation de richesse, qui correspondent aux limites d’émissions polluantes autorisées par la réglementation.

Au cours d’une étape suivante 16, le contrôle moteur émet, en fonction du résultat de la comparaison effectuée au cours de l’étape précédente 14, un signal d’alerte à destination d’un dispositif du véhicule. Le dispositif peut être notamment un dispositif d’affichage tel qu’un écran par exemple, permettant d’informer visuellement l’utilisateur du véhicule lors de la réception du signal d’alerte. Le dispositif peut en variante être un dispositif de restitution sonore, permettant d’émettre un signal auditif destiné à l’utilisateur, lors de la réception de ce signal d’alerte. Le dispositif peut être plus généralement tout dispositif permettant d’alerter un utilisateur du véhicule. Lorsque l’étape de comparaison précédente 14 comporte les deux phases précitées, le signal d’alerte est transmis à destination du dispositif si la valeur d’impact global calculée au cours de l’étape 12 est inférieure à la valeur seuil d’impact global minimale ou supérieure à la valeur seuil d’impact global maximale.

Les étapes 10, 12, 14 et 16 décrites ci-dessus sont réeffectuées pour chaque point de fonctionnement courant du moteur.

Le procédé selon l’invention permet une surveillance plus exhaustive et plus précise des adaptatifs, et permet de prendre en compte les possibles interactions entre adaptatifs tout en réduisant le nombre de fausses détections.