Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR MONITORING A VEHICLE ELECTRICAL SYSTEM
Document Type and Number:
WIPO Patent Application WO/2016/110352
Kind Code:
A1
Abstract:
The invention relates to a method for operating a vehicle electrical system comprising multiple vehicle-electrical-system paths and to a vehicle electrical system configured to carry out said method. According to the invention, diagnostics are carried out by means of a component that is associated with a number of the vehicle-electrical-system paths.

Inventors:
HORN MATTHIAS (DE)
BOHNE CHRISTIAN (DE)
Application Number:
PCT/EP2015/076396
Publication Date:
July 14, 2016
Filing Date:
November 12, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
G01R19/165; B60R16/03
Foreign References:
DE10320608A12004-12-02
US20140358346A12014-12-04
DE102005034161B32006-10-12
DE19855245B42010-08-12
DE102006010713B42010-04-01
Other References:
See also references of EP 3243084A1
Download PDF:
Claims:
Ansprüche

1. Verfahren zum Betreiben eines Bordnetzes (10, 40), das mindestens zwei Bordnetzpfade (34, 36, 60, 62) umfasst, wobei in dem Bordnetz (10, 40) mehrere Komponenten, vorgesehen sind, wobei eine Diagnose mit mindestens einer der Komponenten durchgeführt wird, die mehreren der Bordnetzpfade (34, 36, 60, 62) zugeordnet ist.

2. Verfahren nach Anspruch 1, bei dem die Diagnose mit einer Komponente durchgeführt wird, die jeweils mindestens ein Teil (116, 118, 156, 158) in unterschiedlichen Bordnetzpfaden (34, 36, 60, 62) umfasst, wobei eine

Kommunikation über eine interne Kommunikationsleitung (102, 142) zwischen den Teilen erfolgt.

3. Verfahren nach Anspruch 2, bei dem als Komponenten Verbraucher (26, 32, 56, 58, 80, 120) vorgesehen sind, wobei die Diagnose mit mindestens einem der Verbraucher durchgeführt wird, der in mehreren der Bordnetzpfade (34, 36, 60, 62) vorgesehen ist.

4. Verfahren nach Anspruch 3, bei dem die Verbraucher (26, 32, 56, 58, 80, 120) unterschiedlichen Sicherheitsstufen zugeordnet sind.

5. Verfahren nach Anspruch 1, bei dem als Komponenten mindestens ein Koppelelement (22, 28, 52) zwischen zwei Bordnetzpfaden (34, 36, 60, 62) vorgesehen ist, wobei die Diagnose mit wenigstens einem des mindestens einen Koppelelements (22, 28, 52) durchgeführt wird, das in mehreren der

Bordnetzpfade (34, 36, 60, 62) vorgesehen ist.

6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem die Diagnose auf Grundlage der Messung von Eingangsspannungen der Bordnetzpfade (34, 36, 60, 62) durchgeführt wird, welcher der Bordnetzpfade (34, 36, 60, 62) aktiv wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, das dazu eingesetzt wird, eine zeitliche oder dynamische Begrenzung eines der Bordnetzpfade (34, 36, 60, 62) zu erkennen.

8. Verfahren nach einem der Ansprüche 1 bis 7, das dazu eingesetzt wird, einen Ausfall durch Unter- oder Überspannung eines der Bordnetzpfade (34, 36, 60, 62) zu erkennen.

9. Verfahren nach einem der Ansprüche 1 bis 8, das dazu eingesetzt wird, eine ungewollte galvanische Kopplung zu erkennen.

10. Bordnetz für ein Kraftfahrzeug, das insbesondere zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 9 eingerichtet ist, mit mindestens zwei Bordnetzpfaden (34, 36, 60, 62), wobei in dem Bordnetz (10, 40) mehrere Komponenten vorgesehen sind, wobei mindestens eine der Komponenten, die mehreren der Bordnetzpfade (34, 36, 60, 62) zugeordnet ist, dazu eingerichtet ist, eine Diagnose durchzuführen.

11. Bordnetz nach Anspruch 10, bei dem die Diagnose mit einer Komponente durchzuführen ist, die jeweils mindestens ein Teil (116, 118, 156, 158) in unterschiedlichen Bordnetzpfaden (34, 36, 60, 62) umfasst, wobei eine

Kommunikation über eine interne Kommunikationsleitung (102, 142) zwischen den Teilen erfolgt.

Description:
Beschreibung Titel

Verfahren zum Überwachen eines Bordnetzes

Die Erfindung betrifft ein Verfahren zum Überwachen eines Bordnetzes und ein solches Bordnetz. Das Bordnetz ist dabei insbesondere für ein Kraftfahrzeug vorgesehen.

Stand der Technik

Unter einem Bordnetz ist im automotiven Einsatz die Gesamtheit aller elektrischen Komponenten in einem Kraftfahrzeug zu verstehen. Somit sind davon sowohl elektrische Verbraucher als auch Versorgungsquellen, wie bspw. Batterien, umfasst. Im Kraftfahrzeug ist darauf zu achten, dass elektrische Energie so verfügbar ist, dass das Kraftfahrzeug jederzeit gestartet werden kann und während des Betriebs eine ausreichende Stromversorgung gegeben ist. Aber auch im abgestellten Zustand sollen elektrische Verbraucher noch für einen angemessenen Zeitraum betreibbar sein, ohne dass ein nachfolgender Start beeinträchtigt wird.

Zu beachten ist, dass aufgrund der zunehmenden Elektrifizierung von

Aggregaten sowie der Einführung von neuen Fahrfunktionen die Anforderung an die Zuverlässigkeit der elektrischen Energieversorgung im Kraftfahrzeug stetig steigt. Weiterhin ist zu berücksichtigen, dass zukünftig bei einem

hochautomatischen Fahren fahrfremde Tätigkeiten in begrenztem Maße zulässig sein sollen. Eine sensorische, regelungstechnische, mechanische und energetische Rückfallebene durch den Fahrer ist in diesem Fall nur noch eingeschränkt vorhanden. Unter einem hochautomatischen Fahren, das auch als hochautomatisiertes Fahren bezeichnet wird, ist ein Zwischenschritt zwischen einem assistierten Fahren, bei dem der Fahrer durch Assistenzsysteme unterstützt wird, und einem autonomen Fahren, bei dem das Fahrzeug selbsttätig und ohne Einwirkung des Fahrers fährt, zu verstehen. Bei diesem verfügt das Fahrzeug über eine eigene Intelligenz, die vorausplant und die Fahraufgabe zumindest in den meisten Fahrsituationen übernehmen könnte. Daher hat bei einem hochautomatischen Fahren die elektrische Versorgung eine bisher im Kraftfahrzeug nicht gekannte Sicherheitsrelevanz.

Das heutige konventionelle 14 V-Bordnetz mit nur einem Generator und nur einer Batterie kann die erhöhten Anforderungen an die Zuverlässigkeit der elektrischen Versorgung nicht mehr in ausreichendem Maße erfüllen. Als Beispiel wird hier das Segeln mit abgeschaltetem Verbrennungsmotor erwähnt. Während der Segelphase steht der Generator als Energieerzeuger nicht mehr zur Verfügung. Der Ausfall der Batterie in der Segelphase führt daher zum Ausfall der gesamten elektrischen Versorgung im Kraftfahrzeug. Aus diesem Grund werden aktuell 14 V-Bordnetze mit zwei Batterien, sogenannte 2-Batterienbordnetze, bei

Automobilherstellern und Zulieferern für Segeln diskutiert.

Es sind Bordnetztopologien für erhöhte Zuverlässigkeit auf Basis eines 14 V- Bordnetzes bekannt, bei denen skalierbare und modulare Bordnetztopologien zur Versorgung von sicherheitsrelevanten elektrischen Verbrauchern realisiert werden. Bei diesen werden die Verbraucher in Verbrauchergruppen mit unterschiedlicher Sicherheitsrelevanz eingeteilt, wobei grundsätzlich eine zweikanalige elektrische Versorgung für redundante, sicherheitsrelevante Verbraucher und eine fehlertolerante Versorgung für einfach vorhandene sicherheitsrelevante Verbraucher vorgesehen sind.

Neben der Weiterentwicklung des 14 V- Bordnetzes wird von

Automobilherstellern die Einführung des 48 V/14 V-Bordnetzes geplant. Dieses 48 V/14 V-Bordnetz dient neben der Versorgung von Hochleistungsverbrauchern als Einstiegs-Hybridisierung. In der Druckschrift DE 198 55 245 B4 ist eine redundante Spannungsversorgung für elektrische Verbraucher in einem Fahrzeugbordnetz beschrieben. Dabei werden vorhandene Verbraucher redundant aus zwei Teilbordnetzen mit unterschiedlicher Spannung versorgt, wozu eine Versorgung aus zwei getrennten Spannungszweigen vorgesehen ist.

Aus der Druckschrift DE 10 2006 010 713 B4 ist ein Bordnetz für ein Fahrzeug mit zumindest einem sicherheitsrelevanten Verbraucher bekannt. Hierbei wird ein einfach vorhandener sicherheitsrelevanter Verbraucher redundant aus zwei Teilnetzen, einem Primärnetz und einem Sekundärnetz, versorgt.

Offenbarung der Erfindung

Vor diesem Hintergrund werden ein Verfahren mit den Merkmalen des

Anspruchs 1 und eine Anordnung gemäß Anspruch 10 vorgestellt.

Ausführungsformen ergeben sich aus den abhängigen Ansprüchen und der Beschreibung.

Es wird somit ein Bordnetz betrachtet, dass mehrere Teilbordnetze, die hierin auch als Bordnetzpfade bezeichnet werden, umfasst. Zudem kann ein

Basisbordnetz vorgesehen sein. In dem Bordnetz sind nunmehr Komponenten, wie bspw. Verbraucher, Gleichspannungswandler usw., vorgesehen. Diese Komponenten können einem oder mehreren oder sogar allen der Bordnetzpfade zugeordnet sein. Dies bedeutet bspw., dass die Komponente in mehreren der Bordnetzpfade vorgesehen ist oder diese miteinander koppelt. So können insbesondere sicherheitsrelevante Verbraucher redundant aufgebaut sein, d. h. diese sind bspw. zweifach vorgesehen, wobei beide Verbraucher jeweils für sich alleine die zugeordnete Funktion erfüllen können. Das bedeutet, dass ein Verbraucher auf zwei Kanäle bzw. Bordnetzpfade verteilt ist.

Ein solcher Verbraucher kann nunmehr in beiden Bordnetzpfaden eine Diagnose durchführen und die bei den Diagnosen ermittelten Ergebnisse miteinander vergleichen. Auf diese Weise kann ein Ausfall, bspw. durch Unter- oder

Überspannung, oder eine Beeinträchtigung eines der beiden Bordnetzpfade erkannt werden und es können ggf. Gegenmaßnahmen eingeleitet werden. Neben insbesondere sicherheitsrelevanten, redundant vorgesehenen

Verbrauchern können auch im Bordnetz angeordnete Koppelelemente, bspw. Gleichspannungswandler, herangezogen werden, da diese Bordnetzpfade, zwischen denen diese angeordnet sind, überwachen können. Ist ein

Koppelelement zwischen einem Bordnetzpfad A und einem Bordnetzpfad B geschaltet, so wird hierin davon gesprochen, dass das Koppelelement in beiden Bordnetzpfaden vorgesehen ist.

Mit dem vorgestellte Verfahren wird erreicht, den Zustand von mehreren

Bordnetzkanälen zu diagnostizieren und diesen Zustand an andere Verbraucher oder Steller zu kommunizieren. Somit ist bei einem mehrkanaligen Bordnetz eine übergeordnete Diagnoseinstanz vorhanden, die den Zustand der

sicherheitsrelevanten Bordnetzkanäle erkennt.

Die Diagnose kann bspw. ergeben, dass ein Bordnetzpfad beeinträchtigt oder gar ausgefallen ist. Weiterhin können ungewollte galvanische Kopplungen, bspw. zwischen zwei Bordnetzpfaden, erkannt werden.

Zu beachten ist, dass insbesondere bei Elektrofahrzeugen und Hybridfahrzeug Bordnetze eingesetzt werden können, bei denen auf der Hochvoltseite kein Generator, sondern eine elektrische Maschine oder eine Batterie vorgesehen sein kann. Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der

Beschreibung und den beiliegenden Zeichnungen.

Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Kurze Beschreibung der Zeichnungen

Figur 1 zeigt eine Ausführung eines Bordnetzes. Figur 2 zeigt eine weitere Ausführung eines Bordnetzes.

Figur 3 zeigt in vereinfachter Darstellung den Aufbau eines Verbrauchers.

Figur 4 zeigt eine Ausführung eines sicherheitsrelevanten Verbrauchers in vereinfachter Darstellung.

Ausführungsformen der Erfindung

Die Erfindung ist anhand von Ausführungsformen in den Zeichnungen schematisch dargestellt und wird nachfolgend unter Bezugnahme auf die Zeichnungen ausführlich beschrieben.

Figuren 1 und 2 zeigen beispielhaft und vereinfacht Topologien von Bordnetzen, wie diese bspw. in Kraftfahrzeugen eingesetzt werden.

Figur 1 zeigt ein Bordnetz, das insgesamt mit der Bezugsziffer 10 bezeichnet ist. Dieses umfasst ein Basisbordnetz 12 mit einem Starter 14, einem Generator 16, einer Batterie 18 und einem Verbraucher R3 20. Weiterhin sind ein erstes Koppelelement 22, bspw. ein Gleichspannungswandler, eine erste Batterie 24 und ein erster Verbraucher Rl 26 sowie ein zweites Koppelelement 28, bspw. ein Gleichspannungswandler, eine zweite Batterie 30 und ein zweiter Verbraucher 32 vorgesehen.

Es ist in diesem Fall das Basisbordnetz 12 mit dem nicht sicherheitsrelevanten Verbrauch R3 20 und zusätzlich ein erster Bordnetzpfad 34 und ein zweiter Bordnetzpfad 36 vorgesehen, die jeweils über ein eigenes Koppelelement 22 bzw. 28 angekoppelt sind und über eine eigene Batterie 24 bzw. 30 bzw. einen elektrischen Speicher sowie sicherheitsrelevante, redundante Verbraucher Rl 26 bzw. R2 32 verfügen. Die Verbraucher Rl 26 und R2 32 sind zur Ausführung derselben Funktion vorgesehen.

Figur 2 zeigt ein Bordnetz, das insgesamt mit der Bezugsziffer 40 bezeichnet ist. Dieses umfasst ein Basisbordnetz 42 mit einem Starter 44, einem Generator 46, einer Batterie 48 und einem Verbraucher 50. Weiterhin sind ein Koppelelement 52, eine erste Batterie 54, ein erster Verbraucher Rl 56 sowie ein zweiter Verbraucher 58 vorgesehen.

Figur 2 zeigt eine Variante der Ausführung aus Figur 1 mit einem

sicherheitsrelevanten Bordnetzpfad 60 mit der Batterie 54 und dem ersten Verbraucher 56, der auch eine Verbrauchergruppe darstellen kann, welches über das Koppelelement 52 vom Basisbordnetz 42 entkoppelt und somit unabhängig von diesem ist. Ein zweiter sicherheitsrelevanter Bordnetzpfad 62 mit dem zweiten Verbraucher R2, der ggf. durch eine Verbrauchergruppe gegeben ist, ist direkt mit dem Basisbordnetz 42 verbunden.

Beide in Figuren 1 und 2 gezeigten Topologien haben gemeinsam, dass es eine Gruppe von sicherheitsrelevanten Verbrauchern gibt, die redundant ausgelegt und auf zwei getrennte Kanäle verteilt werden. Diese werden hierin als Rl und R2 bezeichnet. Beim hochautomatischen Fahren sind dies bspw. die Bremse und die Lenkung, welche redundant vorhanden sein müssen.

Damit ist sichergestellt, dass bei Ausfall eines Bordnetzpfads bzw. Kanals der andere weiterhin verfügbar ist. Von besonderer Bedeutung dabei ist jedoch, den Ausfall eines Kanals erkennen zu können und den defekten Kanal vom

funktionierenden Bordnetz abzukoppeln. Hier setzt das vorgestellte Verfahren an.

In heutigen Bordnetzen ist die Erfassung des Bordnetzzustands auf die einzelnen Komponenten verteilt. Beispielsweise misst der Batteriesensor der Verbraucher, bspw. des ESP oder der elektrischen Lenkung, die Bordnetzspannung. Dabei fehlt jedoch eine übergeordnete Komponente, die bspw. bei zweikanaligen Systemen den Zustand beider Kanäle erfassen kann.

Ein Beispiel für einen sicherheitsrelevanten redundanten Verbraucher ist vereinfacht in Figur 3 zu sehen, welcher mit der Bezugsziffer 80 bezeichnet ist. Bei diesem sind alle Elemente inklusive Energieversorgung und Kommunikation gedoppelt. Dies bedeutet, dass bei Ausfall eines Kanals der andere Kanal alleine den sicheren Betrieb gewährleisten kann. Die Darstellung zeigt eine erste Signalelektronik 82, eine zweite Signalelektronik 84, einen ersten Hauptcontroller 86, einen zweiten Hauptcontroller 88, eine erste Endstufe 90, eine zweite Endstufe 92, einen ersten Motor 94 und einen zweiten Motor 96. Weiterhin sind mit Doppelpfeilen eine erste Kommunikation 98, eine zweite Kommunikation 100 sowie eine interne Kommunikationsleitung 102 verdeutlicht. Pfeile zeigen einen ersten Anschluss 104 an einen ersten

Bordnetzpfad und einen zweiten Anschluss 106 an einen zweiten Bordnetzpfad. In der Darstellung sind Komponenten eines Steuergeräts 110 und eines Motors 112 mit Umrandungen gekennzeichnet.

Der in Figur 3 gezeigte Verbraucher 80 könnte ein Lenksystem oder

Bremssystem sein, d. h. der Motor 112 steuert ein sicherheitsrelevantes System. Bei diesem redundant aufgebauten Verbraucher 80 sind sowohl die

Signalelektronik 82 bzw. 84, der Hauptcontroller 86 bzw. 88, die Endstufen bzw. Leistungsendstufen 90 bzw. 92 und der Motor 112 doppelt vorhanden. Auch die Anschlüsse 104 bzw. 106 an die Bordnetzpfade und die Kommunikation 98 bzw. 100 sind zweifach vorgesehen. Somit kann bei Ausfall einer Komponente oder eines Bordnetzpfads bzw. Kanals in der einen Hälfte die jeweils andere Hälfte redundant die Funktion übernehmen.

Die oben eingezeichneten Kästen 82, 86, 90 und 94 stellen einen der

Verbraucher aus der Gruppe Rl in Figur 1 bzw. 2 dar, die unten eingezeichneten Kästen 84, 88, 92 und 96 stellen einen Verbraucher aus der Gruppe R2 dar. Intern sind die beiden Teile 116, 118 über die interne Kommunikationsleitung 102 miteinander verbunden. Die beiden Teile 116, 118 sind somit Teile 116, 118 einer Komponente im Bordnetz, in diesem Fall Teile 116, 118 des redundanten Verbrauchers 80.

Bei dem vorgestellten Verfahren ist nunmehr vorgesehen, dass mehrere

Bordnetzpfade bzw. Teilnetze von einer Bordnetzkomponente überwacht werden, die an mehreren Teilnetzen angeschlossen ist. Hierfür sind zwei grundsätzliche Ausführungsformen denkbar:

1. Einen Verbraucher aus der Gruppe der redundant vorhandenen Verbraucher (Rl und R2 genannt) für die Erkennung des Bordnetzzustands zu nutzen, da diese Verbraucher durch seine Teile auf beiden Bordnetzkanälen vorhanden sind und damit die Spannungsqualität der beiden Kanäle vergleichen können. Im konkreten Beispiel könnte der in Figur 3 genannte redundante Verbraucher den ersten Bordnetzpfad und den zweiten Bordnetzpfad überwachen und die

Diagnoseergebnisse über die interne Kommunikationsleitung teilen. Ist die

Spannungsqualität im ersten Bordnetzpfad 1 schlechter als im Bordnetzpfad 2, würde der Verbraucher Rl oben abschalten und der Verbraucher R2 unten die Funktion übernehmen. 2. Den bzw. die Koppelelemente, bspw. Gleichspannungswandler, für die

Diagnose der Teilnetze und das Basisbord netzes zu nutzen. Dies bedeutet, dass bspw. in Figur 2 das Koppelelement den Zustand des Basisbordnetzes und des sicherheitsrelevanten Teilnetzes überwachen und vergleichen kann. Im Fehlerfall auf der Seite des Basisbordnetzes kann somit der Gleichspannungswandler das sicherheitsrelevante Bordnetz mit dem Verbraucher Rl vom Basisbordnetz abkoppeln. Somit würde die Gruppe der sicherheitsrelevanten Verbraucher Rl aus dem Speicher Bl versorgt.

Ein Vorteil des beschriebenen Verfahrens besteht darin, dass im Bordnetz vorhandene Komponenten für die Überwachung der Teilnetze genutzt werden, in dem diese funktional erweitert werden. Dadurch verringert sich für den OEM (original equipment manufacturer) der Integrationsaufwand im Kabelbaum und die Komponenten weisen einen Mehrfachnutzen bzw. Alleinstellungsmerkmal auf.

Figur 4 zeigt am Beispiel eines Verbrauchers, der mit Bezugsziffer 120 bezeichnet ist, die notwendigen Änderungen am Steuergerät.

Die Darstellung zeigt eine erste Signalelektronik 122, eine zweite

Signalelektronik 124, einen ersten Hauptcontroller 126, einen zweiten

Hauptcontroller 128, eine erste Endstufe 130, eine zweite Endstufe 132, einen ersten Motor 134 und einen zweiten Motor 136. Weiterhin sind mit Doppelpfeilen eine erste Kommunikation 138 zum Zustand eines ersten Bordnetzpfads, eine zweite Kommunikation 140 zum Zustand eines zweiten Bordnetzpfads sowie eine interne Kommunikationsleitung 142 für den Vergleich der Zustände der Bordnetzpfade verdeutlicht. Pfeile zweigen ein erster Anschluss 144 an einen ersten Bordnetzpfad und ein zweiter Anschluss 146 an einen zweiten

Bordnetzpfad. In der Darstellung sind Komponenten eines Steuergeräts 150 und eines Motors 152 mit Umrandungen gekennzeichnet. Bezugsziffern 156 und 158 bezeichnen Teile des redundanten Verbrauchers 120.

Es sind nunmehr folgende Schritte vorgesehen:

Die Eingangsspannung der jeweiligen Bordnetzpfade wird gemessen und von der jeweiligen Signalelektronik 122 oben bzw. 124 unten eingelesen. Die Spannungsmessung kann dabei in bekannter Weise erfolgen. Anhand verschiedener Diagnoseverfahren wird bewertet, ob der entsprechende

Bordnetzpfad ausgefallen oder degradiert ist. Weiterhin kann eine Kopplung zwischen beiden Kanälen oder die Kopplung eines Kanals mit Masse festgestellt werden.

Das Diagnoseergebnis kann über die zentral angeordnete

Kommunikationsleitung 142 dem jeweils anderen Teil

mitgeteilt werden. Davon hängt ab, welcher Teil, oben oder unten, die weitere Funktion übernimmt.

Auf diese Weise können folgende Fehler erkannt werden:

• Ausfall eines Kanals:

- Statische Unterspannung, z. B. kleiner 9 V

- Statische Überspannung, z. B. größer 16 V

- Dynamische Unterspannung, z. B. 10 ms kleiner 6 V

- Dynamische Überspannung, z. B. 10 ms größer 19 V

• Zeitliche oder dynamische Begrenzung eines oder beider Kanäle:

- Zeitbegrenzung: Spannung dauerhaft bei 12 V (Ausfall

Gleichspannungswandler) • Ungewollte galvanische Kopplung der Kanäle untereinander:

- Sind die Spannung Kanal 1 = Kanal 2, auch bei Aufschaltung von

Verbrauchern oder wenn einer der Wandler aktiv und der andere inaktiv ist, können die Kanäle durch einen Isolationsfehler galvanisch verbunden sein.

Dies muss erkannt werden, um den Fehler ggf. zu kapseln.

• Ungewollte Kopplung eines/beider Kanäle mit dem Basisbordnetz: - Die Galvanische Kopplung mit dem Basisbordnetz kann bei der Topologie im

Figur 1 nur über den jeweiligen Gleichspannungswandler erkannt werden

- Bei der in Figur 2 gezeigten Topologie kann die galvanische Kopplung zwischen Basisbordnetz und dem sicherheitsrelevanten Teilnetz sowohl über den Gleichspannungswandler als auch über einen redundanten

sicherheitsrelevanten Verbraucher erkannt werden.

Auch hier kann geprüft werden, ob die Bedingung Spannung Kanal 1 =

Spannung Kanal 2 dauerhaft erfüllt ist. Schließlich könnte der Bord netzzustand anderen, z. B. sicherheitsrelevanten,

Verbrauchern, einem übergeordneten Energiemanagement, anderen

Bordnetzteilnehmern, wie bspw. Koppelelementen, Speicher, Quellen, oder dem Fahrer mitgeteilt werden. Draus können weitere Maßnahmen abgeleitet werden, bspw. das Öffnen von Koppelelementen, die Erhöhung der Leistung von Energiequellen, das Zu- oder Abschalten weiterer Bordnetzlasten.