Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR OBTAINING PURE 2-ETHYLHEXYL ACRYLATE OR PURE 2-PROPYLHEPTYL ACRYLATE FROM THE CORRESPONDING RAW ALKYL ACRYLATE BY DISTILLATION
Document Type and Number:
WIPO Patent Application WO/2018/114429
Kind Code:
A1
Abstract:
The invention relates to a method for obtaining pure 2-ethylhexyl acrylate or pure 2-propylheptyl acrylate from the corresponding raw alkyl acrylate by distillation, characterized in that the method is carried out in a dividing wall column (1) having dividing built-in components and an evaporator (7), in which dividing wall column a dividing wall (8) is arranged in the column longitudinal direction in such a way that an upper common column region (9), a lower common column region (14), a feed part (10, 12) having a side feed point (2), and a removal part (11, 13) having a side removal point (3) are formed, in that the column has a number of theoretical separating stages in the range of 10 to 60, wherein the number of theoretical separating stages of the dividing wall column (1) refers to the sum of the theoretical separating stages in the common upper column region (9), the common lower column region (14) and the feed part (10, 12), the side feed point (2) for the corresponding raw alkyl acrylate is arranged at a theoretical separating stage in the region beginning at least two theoretical separating stages above the bottommost theoretical separating stage and ending at least two theoretical separating stages below the topmost theoretical separating stage, the side removal point (3) for the pure 2-ethylhexyl acrylate or pure 2-propylheptyl acrylate is arranged at a theoretical separating stage in the region beginning at least two theoretical separating stages above the bottommost theoretical separating stage and ending at least two theoretical separating stages below the topmost theoretical separating stage, and the dividing wall (8) is arranged in the column in the region beginning at least one theoretical separating stage above the bottommost theoretical separating stage and ending at least one theoretical separating stage below the topmost theoretical separating stage, wherein the liquid amount ratio at the upper end of the dividing wall (8) to the enriching section (10) and to the stripping section (11) of the column is set in a range of 1:0.2 to 1:5.

Inventors:
LANG ORTMUND (DE)
METZEN BERND (DE)
HECHLER CLAUS (DE)
Application Number:
PCT/EP2017/082203
Publication Date:
June 28, 2018
Filing Date:
December 11, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
C07C67/54; C07C69/54
Domestic Patent References:
WO2003043712A12003-05-30
Foreign References:
US20130284586A12013-10-31
DE10258329A12003-07-31
DE3302525A11984-07-26
US20130284586A12013-10-31
DE102005053982A12006-05-18
DE10258329A12003-07-31
Other References:
HOLGER BECKER: "Dissertation", 2003, TU DARMSTADT (FACHBEREICH CHEMIE, article "Polymerisationsinhibierung von (Meth-)Acrylaten", pages: 21 - 24
KAIBEL ET AL., CHEM. ENG. TECHNOL., vol. 10, 1987, pages 92 - 98
CHEM. ING.-TECH., vol. 61, no. 2, 1989, pages 104 - 112
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Patentansprüche

1 . Verfahren zur destillativen Gewinnung von Rein-2-Ethylhexylacrylat oder Rein-2-Propyl- heptylacrylat aus em entsprechenden Roh-Alkylacrylat, dadurch gekennzeichnet, dass das Verfahren in einer Trennwandkolonne (1 ) mit trennwirksamen Einbauten und Verdampfer (7) durchgeführt wird, in der eine Trennwand (8) in Kolonnenlängsrichtung unter Ausbildung eines oberen gemeinsamen Kolonnenbereichs (9), eines unteren gemeinsamen Kolonnenbereichs (14), eines Zulaufteils (10, 12) mit einer Seitenzulaufsteile (2) und eines Entnahmeteils (1 1 , 13) mit einer Seitenentnahmesteile (3) angeordnet ist, die Kolonne eine Anzahl von the- oretischen Trennstufen im Bereich von 10 bis 60 aufweist, wobei die Anzahl der theoretischen Trennstufen der Trennwandkolonne (1 ) sich auf die Summe der theoretischen Trennstufen im gemeinsamen oberen Kolonnenbereich (9), dem gemeinsamen unteren Kolonnenbereich (14) und dem Zulaufteil (10, 12) bezieht, die Seitenzulaufsteile (2) für das entsprechende Roh-Alkylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindes- tens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist, die Seitenentnahmesteile (3) für das Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist und die Trennwand (8) in der Kolonne im Bereich beginnend mindestens eine theoretische Trennstufe oberhalb der untersten und endend mindestens eine theoretische Trennstufe unterhalb der obersten theoretischen Trennstufe angeordnet ist, wobei man das Flüssigkeitsmengenverhältnis am oberen Ende der Trennwand (8) auf den Verstärkungsteil (10) und den Abtriebsteil (1 1 ) der Kolonne in einem Bereich von 1 : 0,2 bis 1 : 5 einstellt.

2. Verfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Seitenzulaufsteile (2) für das entsprechende Roh-Alkylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens vier theoretische Trennstufen oberhalb der untersten und en- dend mindestens vier theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist, die Seitenentnahmesteile (3) für das Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens vier theoretische Trennstufen oberhalb der untersten und endend mindestens vier theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist und die Trennwand (8) in der Kolonne im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb des untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist. Verfahren nach Anspruch 1 , dadurch gekennzeichnet dass, die Kolonne (1 ) eine Anzahl von theoretischen Trennstufen im Bereich von 15 bis 30 aufweist, die Seitenzulaufsteile (2) für das entsprechende Roh-Alkylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens acht theoretische Trennstufen oberhalb der untersten und endend mindestens sechs theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist, die Seitenentnahmesteile (3) für das Rein-2-Ethylhexylacrylat oder Rein-2-Propyl- heptylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens fünf theoretische Trennstufen oberhalb der untersten und endend mindestens acht theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist und die Trennwand (8) in der Kolonne im Bereich beginnend mindestens drei theoretische Trennstufen oberhalb des untersten und endend mindestens drei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist.

Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die gegenüberliegende Seitenentnahmesteile (3) mindestens eine theoretische Trennstufe unterhalb der Seitenzulaufsteile (2) liegt, wobei im Fall verschiedener Anzahl an theoretischen Trennstufen im Entnahmeteil (1 1 , 13) wie im Zulaufteil (10, 12) zur Zählung der Anzahl theoretischer Trennstufen für die Festlegung der relativen Höhenposition von Zulauf- und Entnahmestelle diejenige Seite mit der höheren Gesamtanzahl an Trennstufen im Bereich der Trennwand (8) herangezogen wird.

Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als trennwirksame Einbauten Füllkörper, geordnete Packungen und/oder Böden vorgesehen sind.

Verfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass als Böden Dual- Flow-Böden eingesetzt werden.

Verfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Dual-Flow-Bö- den auf der Zulauf- und Entnahmeseite unterschiedliche Öffnungsverhältnisse zur Einstellung der optimalen Gasverteilung auf beiden Seiten der Trennwand (8) aufweisen.

Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man die Verweilzeit im Verdampfer (7) und dem zugehörigen Rohrleitungssystem auf 1 bis 60 Minuten begrenzt.

9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man das Flüssigkeitsmengenverhältnis am oberen Ende der Trennwand (8) auf den Verstärkungsteil (10) und den Abtriebsteil (1 1 ) der Kolonne in einem Bereich von 1 : 0,5 bis 1 : 2 einstellt.

10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man das Mengenverhältnis der Brüdenströme am unteren Ende der Trennwand (8) auf den Abtriebsteil (12) und den Verstärkungsteil (13) der Kolonne in einem Bereich von 1 : 0,5 bis 1 : 2,0 einstellt.

1 1 . Verfahren nach einem der vorherigen Ansprüche, gekennzeichnet durch einen Druck am Kolonnenkopf im Bereich von 10 mbar bis 5 bar.

12. Verfahren nach einem der vorherigen Ansprüche, gekennzeichnet durch eine Temperaturregelung im oberen gemeinsamen Kolonnenbereich (9), mittels eines Temperatursignals unterhalb der obersten theoretischen Trennstufe, die als Stellgröße den Destillatstrom, das Rücklaufverhältnis oder die Rücklaufmenge nutzt.

13. Verfahren nach einem der vorherigen Ansprüche, gekennzeichnet durch eine Temperaturregelung im unteren gemeinsamen Kolonnenbereich (14), mittels eines Temperatursignals oberhalb der untersten theoretischen Trennstufe, die als Stellgröße die Sumpfentnahmemenge nutzt.

14. Verfahren nach einem der vorherigen Ansprüche, gekennzeichnet durch eine Standregelung am Kolonnensumpf, die als Stellgröße die Seitenentnahmemenge nutzt.

15. Verfahren nach einem der vorherigen Ansprüche, gekennzeichnet, dass das Verhältnis der Querschnittsflächen des Bereichs des Entnahmeteils (1 1 , 13) zum Bereich des Zulaufteils (10, 12) bei 4 : 1 bis 1 : 4 liegt.

16. Verfahren nach einem der vorherigen Ansprüche 1 bis 14, gekennzeichnet, dass das Verhältnis der Querschnittsflächen des Bereichs des Entnahmeteils (1 1 , 13) zum Bereich des Zulaufteils (10, 12) bei 1 ,5 : 1 bis 1 : 1 ,5 liegt.

17. Verfahren nach einem der vorherigen Ansprüche zur destillativen Gewinnung von Rein-2- Ethylhexylacrylat aus Roh-2-Ethylhexylacrylat mit einer Reinheit von > 98,5 Gew.-%.

18. Verfahren nach einem der vorherigen Ansprüche zur destillativen Gewinnung von Rein-2- Propylheptylacrylat aus Roh-2-Propylheptylacrylat mit einer Reinheit von > 98,5 Gew.-%.

19. Verfahren nach Anspruch 17, wobei das Roh-2-Ethylhexylacrylat die folgende Zusammensetzung aufweist:

40 bis 99 Gew.-% 2-Ethylhexylacrylat,

0,1 bis 10 Gew.-% 2-Ethylhexanol,

0,1 bis 10 Gew.-% Höhersieder (bez. auf 2-Ethylhexylacrylat),

0,1 bis 10 Gew.-% weitere Niedersieder (bez. auf 2-Ethylhexylacrylat).

20. Verfahren nach Anspruch 18, wobei das Roh-2-Propylheptylacrylat die folgende Zusammensetzung aufweist:

40 bis 99 Gew.-% 2-Propylheptylacrylat,

0,1 bis 10 Gew.-% 2-Propylheptanol,

0,1 bis 10 Gew.-% Höhersieder (bez. auf 2-Propylheptylacrylat),

0,1 bis 10 Gew.-% weitere Niedersieder (bez. auf 2-Propylheptylacrylat).

21 . Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Stabilisator 1 in den Verstärkungsteil (10) des Zulaufteils (10, 12) zugegeben wird.

22. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass es sich bei dem Stabilisator 1 um Phenothiazin (PTZ) handelt.

23. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Stabilisator 2 in den Behälter (20), der das Kondensat (26) auffängt, und/oder in die Leitung eines Quenchkreislaufs (21 ), wobei es sich hierbei um einen flüssigen Rückführstrom eines Teils des Kondensats in den Kondensator (6) handelt, und/oder am Kopf des Kondensators (6) zugegeben wird. 24. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass es sich bei dem Stabilisator 2 um p-Methoxyphenol (MeHQ) handelt.

Description:
Verfahren zur destillativen Gewinnung von Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptyla- crylat aus dem entsprechenden Roh-Alkylacrylat

Beschreibung

Ester der Acrylsäure, H2C=CH-C(=0)OR, werden im Folgenden auch Acrylate genannt. R steht für einen Alkylrest.

Acrylate wie zum Beispiel 2-Ethylhexylacrylat und 2-Propylheptylacrylat werden großtechnisch in der Regel durch Umsetzung von Alkohol (Beispiel: 2-Ethylhexanol bzw. 2-Propylheptanol) und Acrylsäure gewonnen. Bei der Synthese (Veresterungsreaktion) entsteht ein Produktgemisch, auch Roh-Acrylat genannt, worin das Acrylat in der Regel überwiegt.

Im vorliegenden Fall entspricht R also 2-Ethylhexyl und 2-Propylheptyl.

Alkylacrylate finden Anwendung für Lacke, Klebstoffe, Bauchemikalien, Papierbeschichtungen und Kunststoffe.

Um den Spezifikationsanforderungen zu entsprechen, muss das in einer Synthese anfallende Roh-Acrylat weiter destillativ gereinigt werden. Die Spezifikationsanforderungen für reine Acrylate sehen z.B. insbesondere einen Mindestgehalt an Acrylat von 99,5 Gew.-% und einen maximal zulässigen Gehalt an Acetat, RO(C=0)CH3, von 1500 ppm und an Diether, ROR, von 1000 ppm vor.

Die Gewinnung von Acrylat aus dem Roh-Acrylat ist wegen der geringen Unterschiede in den relativen Flüchtigkeiten der Komponenten ein kompliziertes destillationstechnisches Problem und wird daher in der Regel durch eine Zweikolonnenschaltung durchgeführt (s.u.). Aufgrund der Empfindlichkeit der zur Polymerisation neigenden Acrylate sind besondere Kolonneneinbauten in der Regel besonders vorteilhaft.

Die destillative Gewinnung von Acrylat aus Roh-Acrylat erfolgt nach einer bevorzugt durchgeführten Vorreinigung, z.B. durch Extraktion, im Stand der Technik, wie er z.B. in der Dissertation .Polymerisationsinhibierung von (Meth-)Acrylaten', TU Darmstadt (Fachbereich Chemie), 2003, von Holger Becker auf den Seiten 21 bis 24 dargestellt wird, in zwei hintereinandergeschalteten Destillationskolonnen:

In einer ersten Destillationskolonne wird ein Gemisch von überwiegend Niedersiedern (bez. auf das 2-Ethylhexylacrylat bzw. 2-Propylheptylacrylat), wie z.B. Wasser, Alkohol (ROH), Acetat (RO(C=0)CH3), Diether (ROR), als Kopfprodukt abgezogen, wobei die organischen Niedersie- der zur Veresterung zurückgeführt werden können. Im Sumpf wird das Acrylat und die Höher- sieder abgetrennt. In einer zweiten nachgeschalteten Destillationskolonne werden als Sumpfprodukt die Höhersieder (bez. auf das 2-Ethylhexylacrylat bzw. 2-Propylheptylacrylat), wie z.B. 2-Ethylhexyloxyester bzw. 2-Propylheptyloxyester (ROCH2CH2C(=0)OR), abgetrennt. Das Wertprodukt (also das Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat) wird als Kopf- produkt der zweiten Destillationskolonne entnommen. Vgl. die Kolonnen H und I in Abb. 3-7 auf Seite 24 der o.g. Dissertation. Der Sumpfablauf der Kolonne I wird einem Schwersiederabschei- der J zugeführt (vgl. Abb. 3-7 auf Seite 24 der o.g. Dissertation).

DE 3302525 A1 (BASF AG) sowie die Fachliteratur, beispielsweise Kaibel et al. in Chem. Eng. Technol. 10 (1987), Seiten 92 bis 98, und in Chem. Ing.-Tech. 61 (1989), Nr. 2, Seiten 104 bis 1 12, beschreiben allgemein die Anwendung von Trennwandkolonnen bei der destillativen Reinigung von organischen Verbindungen.

US 2013/0284586 A1 (LG Chem. Ltd.) beschreibt die Verwendung einer Trennwandkolonne zur destillativen Reinigung von 2-Ethylhexylacrylat.

Demgegenüber lag der Erfindung die Aufgabe zugrunde, ein verbessertes Verfahren zur destillativen Gewinnung von Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat aus dem jeweils entsprechenden Roh-Alkylacrylat zur Verfügung zu stellen, das, bei Einhaltung der jeweili- gen geforderten Spezifikationen für das Rein-2-Ethylhexylacrylat und Rein-2-Propylheptylac- rylat, wirtschaftlicher ist, insbesondere bezüglich der Investitions- und Energiekosten.

Demgemäß wurde ein Verfahren zur destillativen Gewinnung von Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat aus dem entsprechenden Roh-Alkylacrylat gefunden, welches dadurch gekennzeichnet ist, dass das Verfahren in einer Trennwandkolonne (1 ) mit trennwirksamen Einbauten und Verdampfer (7) durchgeführt wird, in der eine Trennwand (8) in Kolonnenlängsrichtung unter Ausbildung eines oberen gemeinsamen Kolonnenbereichs (9), eines unteren gemeinsamen Kolonnenbereichs (14), eines Zulaufteils (10, 12) mit einer Seitenzulaufsteile (2) und eines Entnahmeteils (1 1 , 13) mit einer Seitenentnahmesteile (3) angeordnet ist, die Kolonne eine Anzahl von theoretischen Trennstufen im Bereich von 10 bis 60 aufweist, die Seitenzulaufsteile (2) für das entsprechende Roh-Alkylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist, die Seitenentnahmesteile (3) für das Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat auf einer theoretischen Trennstufe im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet ist und die Trennwand (8) in der Kolonne im Bereich beginnend mindestens eine theoretische Trennstufe oberhalb der untersten und endend mindestens eine theoretische Trennstufe unterhalb der obersten theoretischen Trennstufe angeordnet ist. Unter Rein-2-Ethylhexylacrylat und Rein-2-Propylheptylacrylat ist besonders ein Acrylat mit einer Reinheit von jeweils > 98,5 Gew.-%, insbesondere > 99,5 Gew.-%, zu verstehen.

Unter Roh-Alkylacrylat ist besonders ein Gemisch mit einem Gehalt an Acrylat von jeweils > 40 Gew.-% bis < 99 Gew.-%, insbesondere > 60 Gew.-% bis < 98 Gew.-%, 2-Ethylhexylacrylat bzw. 2-Propylheptylacrylat zu verstehen.

Das im erfindungsgemäßen Verfahren eingesetzte Roh-2-Ethylhexylacrylat weist besonders die folgende Zusammensetzung auf:

40 bis 99 Gew.-%, z.B. 70 bis 99 Gew.-%, insbesondere 60 bis 98 Gew.-%, z.B. 79 bis 98 Gew.-%, 2-Ethylhexylacrylat,

0,1 bis 10 Gew.-%, insbesondere 1 bis 7 Gew.-%, 2-Ethylhexanol,

0,1 bis 10 Gew.-%, insbesondere 0,5 bis 7 Gew.-%, Höhersieder (bez. auf 2-Ethylhexylacrylat), 0,1 bis 10 Gew.-%, insbesondere 0,5 bis 7 Gew.-%, weitere Niedersieder (bez. auf 2-Ethylhexylacrylat).

Das im erfindungsgemäßen Verfahren eingesetzte Roh-2-Propylheptylacrylat weist besonders die folgende Zusammensetzung auf:

40 bis 99 Gew.-%, z.B. 70 bis 99 Gew.-%, insbesondere 60 bis 98 Gew.-%, z.B. 79 bis 98 Gew.- %, 2-Propylheptylacrylat,

0,1 bis 10 Gew.-%, insbesondere 1 bis 7 Gew.-%, 2-Propylheptanol,

0,1 bis 10 Gew.-%, insbesondere 0,5 bis 7 Gew.-%, Höhersieder (bez. auf 2-Propylheptylacrylat),

0,1 bis 10 Gew.-%, insbesondere 0,5 bis 7 Gew.-%, weitere Niedersieder (bez. auf 2-Propylheptylacrylat).

Das erfindungsgemäße Verfahren wird in einer Trennwandkolonne (1 ) durchgeführt, in der eine Trennwand (8) in Kolonnenlängsrichtung unter Ausbildung eines oberen gemeinsamen Kolon- nenbereichs (9), eines unteren gemeinsamen Kolonnenbereichs (14), eines Zulaufteils (10, 12) und eines Entnahmeteils (1 1 , 13) angeordnet ist.

Es wurde überraschend gefunden, dass die destillative Gewinnung von Rein-2-Ethylhexylac- rylat und Rein-2-Propylheptylacrylat aus dem entsprechenden Roh-Alkylacrylat entgegen der Annahme, dass eine zweistufige Betriebsweise mit unterschiedlichen Drücken erforderlich sei, in einer einzigen Kolonne, und zwar einer Trennwandkolonne und somit bei einheitlichem Druck durchgeführt werden kann. Eine Trennwandkolonne ist eine Destillationskolonne mit senkrechter Trennwand, die in Teilbereichen eine Quervermischung von Flüssigkeits- und Brüdenströmen verhindert. Die Trennwand, die i.d.R. aus einem ebenen Blech besteht und geschweißt, geschraubt oder gesteckt sein kann, unterteilt die Kolonne in Längsrichtung in deren mittlerem Bereich in einen Zulaufteil und einen Entnahmeteil. Das aufzutrennende Gemisch, das entsprechende Roh-Alkylacrylat, wird dem Zulaufteil zugeführt und das Produkt, das Rein-2-Ethylhexylacrylat oder entsprechend Rein-2-Propylheptylacrylat, wird aus dem Entnahmeteil abgezogen.

Das Verfahren wird bevorzugt kontinuierlich durchgeführt.

Die Trennwandkolonne ist, wie in der Regel jede Destillationskolonne, mit einem Verdampfer (Sumpfverdampfer) (7) und einem Kondensator (6) am Kolonnenkopf ausgestattet.

Im erfindungsgemäßen Verfahren wird in vorteilhafter Weise die Verweilzeit im Verdampfer (7) und dem zugehörigen Rohrleitungssystem bevorzugt auf 1 bis 60 Minuten, weiter bevorzugt auf 10 bis 30 Minuten, begrenzt. Dadurch wird trotz der Polymerisationsanfälligkeit des Gemisches ein störungsfreier Betrieb der Anlage, insbesondere nur geringfügige oder keine Verschmutzungen, gewährleistet. In einer bevorzugten Verfahrensvariante wird das Flüssigkeitsmengenverhältnis am oberen Ende der Trennwand (8) auf den Verstärkungsteil (10) und den Abtriebsteil (1 1 ) der Kolonne, also Menge auf Verstärkungsteil (10) : Menge auf Abtriebsteil (1 1 ), in einem Bereich von 1 : 0,2 bis 1 : 5, also 5 bis 0,2, bevorzugt in einem Bereich von 1 : 0,5 bis 1 : 2, also 2 bis 0,5, eingestellt. Dies erfolgt bevorzugt in der Weise, dass die Flüssigkeit am oberen Ende der Trennwand gesammelt und über eine Regelungs- oder Stellvorrichtung im genannten Verhältnis auf den Verstärkungs- bzw. Abtriebsteil der Kolonne aufgegeben wird. Dadurch wird ein niedrigerer Energieverbrauch gewährleistet.

In einer weiteren bevorzugten Verfahrensvariante kann zusätzlich oder alternativ zur Regelung des Flüssigkeitsmengenrücklaufverhältnisses am oberen Ende der Trennwand (8) auch das

Mengenverhältnis der Brüdenströme (= Dampfströme) am unteren Ende der Trennwand (8) auf den Abtriebsteil (12) und auf den Verstärkungsteil (13) der Kolonne eingestellt werden. Dies erfolgt bevorzugt durch Wahl der Trenneinbauten und/oder durch den zusätzlichen Einbau druck- verlusterzeugender Einbauten, beispielsweise von Blenden oder durch eine Mengenregelung der Brüdenströme.

In einer bevorzugten Verfahrensvariante werden die Mengen der Brüdenströme auf den Abtriebsteil (12) und den Verstärkungsteil (13) der Kolonne, also Menge auf Abtriebsteil (12) : Menge auf Verstärkungsteil (13), in einem Verhältnis im Bereich von 1 : 0,5 bis 1 : 2,0, also 2 bis 0,5, bevorzugt in einem Verhältnis im Bereich von 1 : 0,9 bis 1 : 1 ,5, also 1/0,9 bis 1/1 ,5, eingestellt. Das erfindungsgemäße Verfahren wird bevorzugt bei einem Druck im Kolonnenkopf von 10 mbar bis 5 bar, bevorzugt von 10 bis 100 mbar, durchgeführt.

Bevorzugt ist im oberen gemeinsamen Kolonnenbereich (9) eine Temperaturregelung vorgesehen, mit einem Temperatursignal, welches von einer einzelnen oder gemittelt von mehreren Messstellen unterhalb der obersten theoretischen Trennstufe, bevorzugt auf der dritten theoretischen Trennstufe von oben gezählt, stammen kann, die als Stellgröße den Destillatstrom, das Rücklaufverhältnis oder bevorzugt die Rücklaufmenge, nutzt.

Dadurch wird ein stabiler Betrieb der Kolonne gewährleistet mit der Folge einer weiteren Verbesserung der erzielbaren Produktreinheit.

In einer weiteren Verfahrensvariante ist zusätzlich oder alternativ eine Temperaturregelung im unteren Kolonnenbereich vorgesehen, mit einem Temperatursignal, welches von einer einzelnen oder gemittelt von mehreren Messstellen oberhalb der untersten theoretischen Trennstufe, bevorzugt auf der zweiten theoretischen Trennstufe von unten gezählt, stammen kann, die als Stellgröße die Sumpfentnahmemenge nutzt. Durch diese zusätzliche Maßnahme wird eine weitere Verbesserung des stabilen Kolonnenbetriebs erreicht. Darüber hinaus ist es zusätzlich oder alternativ möglich, eine Standregelung am Kolonnensumpf vorzusehen, die als Stellgröße die Seitenentnahmemenge nutzt. Das Verhältnis der Querschnittsflächen des Bereichs des Entnahmeteils (1 1 , 13) zum Bereich des Zulaufteils (10, 12) liegt bevorzugt bei 4 : 1 bis 1 : 4, besonders bevorzugt bei 1 ,5 : 1 bis 1 : 1 ,5, z.B. bei 1 : 1 .

Die Trennwandkolonne (1 ) weist eine Anzahl von theoretischen Trennstufen im Bereich von 10 bis 60 auf.

Trennwirksame Einbauten befinden sich im gemeinsamen oberen Kolonnenbereich (9) und im gemeinsamen unteren Kolonnenbereich (14) sowie im Zulaufteil (10, 12) und Entnahmeteil (1 1 , 13).

Die Angabe der Anzahl der theoretischen Trennstufen der Trennwandkolonne (1 ) bezieht sich stets auf die Summe der theoretischen Trennstufen im gemeinsamen oberen Kolonnenbereich (9), dem gemeinsamen unteren Kolonnenbereich (14) und dem Zulaufteil (10, 12). In der Regel ist die Anzahl der theoretischen Trennstufen im Entnahmeteil (1 1 , 13) gleich groß wie im Zulaufteil (10, 12), kann jedoch auch größer, z.B. um 1 bis 5 größer, oder kleiner, z.B. um 1 bis 5 kleiner, sein. Die Seitenzulaufsteile (2) für das entsprechende Roh-Alkylacrylat ist auf einer theoretischen Trennstufe im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe, bevorzugt auf einer theoretischen Trennstufe im Bereich beginnend mindestens vier theoretische Trennstufen oberhalb der untersten und endend mindestens vier theoreti- sehe Trennstufen unterhalb der obersten theoretischen Trennstufe, angeordnet.

Die Seitenentnahmesteile (3) für das Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat ist auf einer theoretischen Trennstufe im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe, bevorzugt im Bereich beginnend mindestens vier theoretische Trennstufen oberhalb der untersten und endend mindestens vier theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe, angeordnet.

Die Trennwand (8) ist in der Kolonne im Bereich beginnend mindestens eine theoretische Trennstufe oberhalb der untersten und endend mindestens eine theoretische Trennstufe unterhalb der obersten theoretischen Trennstufe, bevorzugt im Bereich beginnend mindestens zwei theoretische Trennstufen oberhalb der untersten und endend mindestens zwei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe, besonders bevorzugt jeweils mittig, angeordnet.

In einer besonders bevorzugten Ausführungsform weist die Trennwandkolonne (1 ) eine Anzahl von theoretischen Trennstufen im Bereich von 15 bis 30 auf, die Seitenzulaufsteile (2) für das entsprechende Roh-Alkylacrylat ist auf einer theoretischen Trennstufe im Bereich beginnend mindestens acht theoretische Trennstufen oberhalb der untersten und endend mindestens sechs theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet, die Seitenentnahmesteile (3) für das Rein-2-Ethylhexylacrylat oder Rein-2-Propylheptylacrylat ist auf einer theoretischen Trennstufe im Bereich beginnend mindestens fünf theoretische

Trennstufen oberhalb der untersten und endend mindestens acht theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet und die Trennwand (8) in der Kolonne ist im Bereich beginnend mindestens drei theoretische Trennstufen oberhalb des untersten und endend mindestens drei theoretische Trennstufen unterhalb der obersten theoretischen Trennstufe angeordnet. Im Fall von gleicher Anzahl an theoretischen Trennstufen im Entnahmeteil (1 1 , 13) wie im Zulaufteil (10, 12) kann die Seitenentnahmesteile (3) sowohl auf der gleichen theoretischen Trennstufe wie die Seitenzulaufsteile (2) als auch unter- oder oberhalb der Seitenzulaufsteile liegen; aber selbstverständlich jeweils auf der anderen Seite der Trennwand (8) (vgl. Figur 1 ); bevor- zugt liegt die gegenüberliegende Seitenentnahmesteile (3) unterhalb, z.B. eine bis 25, besonders 5 bis 20, ganz besonders 6 bis 15, theoretische Trennstufen unterhalb, der Seitenzulaufsteile (2). (Das Zählen der Trennstufen erfolgt in der Kolonne bzw. im betreffenden Kolonnenbereich bzw. im betreffenden Kolonnenteil immer von unten nach oben).

Im Fall verschiedener Anzahl an theoretischen Trennstufen im Entnahmeteil (1 1 , 13) wie im Zu- laufteil (10, 12) wird zur Zählung der Anzahl theoretischer Trennstufen für die Festlegung der relativen Höhenposition von Zulauf- und Entnahmestelle diejenige Seite mit der höheren Gesamtanzahl an Trennstufen im Bereich der Trennwand (8) herangezogen.

Bezüglich der trennwirksamen Einbauten gibt es grundsätzlich keine Einschränkungen; bevor- zugt sind Füllkörper und/oder geordnete Packungen und/oder Böden vorgesehen.

In einer weiteren bevorzugten Verfahrensvariante werden Dual-Flow-Böden als trennwirksame Einbauten in der Trennwandkolonne eingesetzt. Der Begriff Dual-Flow-Boden bezeichnet in bekannter Weise einen Kolonnenboden mit Öffnungen, die von Dampf und Flüssigkeit im Gegen- ström passiert werden.

Bei der thermischen Behandlung von Gemischen, die eine oder mehrere polymerisierbare Verbindungen enthalten, in einer Kolonne, besteht immer das Problem, dass die Kolonne und die Kolonneneinbauten durch Ablagerungen verschmutzen und aufwendig gereinigt werden müssen, mit der Folge, dass der Betrieb unterbrochen werden muss. Als thermische Behandlung werden vorliegend Verfahren wie Destillation oder Rektifikation, Absorption, Extraktion oder

Strippen verstanden. Gemische, die der thermischen Behandlung in einer Kolonne unterworfen werden können, sind in der Regel fluid, d.h. gasförmig, flüssig oder gasförmig/flüssig.

Durch den Einsatz von Dual-Flow-Böden wird Verschmutzungsanfälligkeit der Trennwandkolonne gegenüber herkömmlichen Bodenkolonnen vermindert. Dadurch verlängert sich die Be- triebszeit der Kolonne und ihre Wirtschaftlichkeit ist somit erhöht.

Bevorzugt werden Dual-Flow-Böden im Bereich der Trennwand (10, 1 1 , 12, 13) eingesetzt; in einer weiter bevorzugten Ausführungsform werden Dual-Flow-Böden auch im gemeinsamen oberen Kolonnenbereich (9) und im gemeinsamen unteren Kolonnenbereich (14) eingesetzt. Eine weitere vorteilhafte Ausführungsform ist der Einsatz von Dual-Flow-Böden im Bereich der Trennwand (10, 1 1 , 12, 13) und im gemeinsamen unteren Kolonnenbereich (14) sowie der Einsatz von Füllkörpern oder Packungen im gemeinsamen oberen Kolonnenbereich (9). In der WO 03/043712 A1 (BASF AG) wurde für eine konventionelle Kolonne ohne Trennwand gezeigt, dass durch gezielte Ausgestaltung der Durchmesser der Öffnungen in den Dual-Flow- Böden eine erhebliche Reduzierung der Verschmutzungsanfälligkeit und somit eine erhebliche Verlängerung der Betriebszeit von Bodenkolonnen erreicht werden konnte.

Für Trennwandkolonnen gilt, dass über beide Seiten der Trennwand der gleiche Druckverlust herrscht. Eine genaue Einstellung der Gasaufteilung über die jeweiligen Böden auf der Zulaufseite und auf der Entnahmeseite ist durch die Wahl der Öffnungsverhältnisse der Böden auf der Zulaufseite und auf der Entnahmeseite von großem Vorteil.

Durch die gezielte Ausgestaltung der Öffnungsverhältnisse kann die Gasaufteilung zu der Zulaufseite und der Entnahmeseite genau eingestellt werden. Durch die unterschiedlichen Öffnungsverhältnisse der Dual-Flow-Böden entstehen bei gleichem Druckverlust unterschiedliche Gasmengen auf beiden Seiten der Trennwand. Dadurch kann auf eine aufwendige Gasverteilung unterhalb der Trennwand verzichtet werden.

Das Öffnungsverhältnis wird über die Größe und/oder Anzahl der Öffnungen eingestellt. Als Öffnungsverhältnis eines Dual-Flow-Bodens wird in bekannter Weise das Verhältnis aus der Summe der Öffnungsflächen und der Gesamtfläche des Dual-Flow-Bodens bezeichnet. Erfindungsgemäß können die Öffnungen der Dual-Flow-Böden innerhalb einer Kolonne unterschiedlich ausgestaltet, und zwar dergestalt, dass der Durchmesser der Öffnungen und/oder die Anzahl der Öffnungen variiert werden.

Es besteht grundsätzlich keine Einschränkung bezüglich der Form der Öffnungen:

Diese können jede geometrische Form, beispielsweise Kreise, Ellipsen, Rechtecke oder Polygone, aufweisen. Bevorzugt sind die Öffnungen in den Dual-Flow-Böden kreisförmig.

Der Fachmann kann in Abhängigkeit von Gas- und Flüssigkeitsbelastung sowie Öffnungsdurchmesser das erforderliche Öffnungsverhältnis leicht bestimmen. Der Durchmesser der Öffnungen in den Dual-Flow-Böden liegt bevorzugt im Bereich von 10 bis 80 mm, wobei oberhalb des Zulaufs angeordnete Dual-Flow-Böden bevorzugt Öffnungen im Bereich von 10 bis 50 mm, unterhalb des Zulaufs angeordnete Dual-Flow-Böden dagegen bevorzugt Öffnungen mit Durchmessern im Bereich von 15 bis 80 mm aufweisen.

Das Öffnungsverhältnis der Dual-Flow-Böden liegt bevorzugt im Bereich von 10 bis 30 %.

Im erfindungsgemäßen Verfahren wird das Acrylmomonere, d.h. das 2-Ethylhexylacrylat und 2- Propylheptylacrylat, bevorzugt durch geeignete Polymerisationsinhibitoren stabilisiert, um eine ungewünschte Polymerisation zu vermeiden. D.h., das erfindungsgemäße Verfahren wird bevorzugt in Gegenwart wirksamer Mengen eines Stabilisators oder mehrerer Stabilisatoren durchgeführt. Als Stabilisatoren eignen sich prinzipiell alle Polymerisationsinhibitoren, die zur Stabilisierung von (Meth)acrylsäure und (Meth)acrylsäureestern in z.B. DE 10 2005 053 982 A1 (BASF AG) und DE 102 58 329 A1 (BASF AG) empfohlen werden.

Geeignete Stabilisatoren können beispielsweise N-Oxide (Nitroxyl- oder N-Oxyl-Radikale, also Verbindungen, die wenigstens eine >N-0-Gruppe aufweisen), wie z.B. 4-Hydroxy-2,2,6,6-tetra- methylpiperidin-N-oxyl oder 4-Oxo-2,2, 6, 6-tetramethylpiperidin-N-oxyl, Phenole und Naphthole, wie p-Methoxyphenol, p-Aminophenol, p-Nitrosophenol, 2-tert.-Butylphenol, 4-tert.-Butylphenol, 2,4-Di-tert.-butylphenol, 2-Methyl-4-tert.-butylphenol, 2,6-tert.-Butyl-4-methylphenol oder 4-tert- Butyl-2,6-dimethylphenol, Chinone, wie z.B. Hydrochinon oder Hydrochinonmonomethylether, aromatische Amine, wie z.B. Ν,Ν-Diphenylamin, Phenylendiamine, wie z.B. N,N'-Dialkyl-p-phe- nylendiamin, wobei die Alkylreste gleich oder verschieden sein können und jeweils unabhängig voneinander 1 bis 4 Kohlenstoffatome aufweisen und geradkettig oder verzweigt sein können, wie z.B. N,N'-Dimethyl-p-phenylendiamin oder N,N'-Diethyl-p-phenylendiamin, Hydroxylamine, wie z.B. Ν,Ν-Diethylhydroxylamin, Imine, wie z.B. Methylethylimin oder Methylenviolett, Sulfonamide, wie z.B. N-Methyl-4-toluolsulfonamid oder N-tert.-Butyl-4-toluolsulfonamid, Oxime, wie Al- doxime, Ketoxime oder Amidoxime, wie z.B. Diethylketoxim, Methylethylketoxim oder Salicylal- doxim, phosphorhaltige Verbindungen, wie z.B. Triphenylphosphin, Triphenylphosphit oder Triethylphosphit, schwefelhaltige Verbindungen wie z.B. Diphenylsulfid oder Phenothiazin, Metallsalze, wie z.B. Cer(lll)acetat oder Cer(lll)ethylhexanoat, oder Gemische davon, sein.

Bevorzugt erfolgt die Stabilisierung mit Phenothiazin (PTZ), p-Methoxyphenol (MeHQ), Hydrochinon, Hydrochinonmonomethylether, 4-Hydroxy-2,2, 6, 6-tetramethylpiperidin-N-oxyl, 4-Oxo- 2,2, 6, 6-tetramethylpiperidin-N-oxyl, 2,6-tert.-Butyl-4-methylphenol oder Gemischen davon. Ganz besonders bevorzugt wird Phenothiazin (PTZ) und/oder p-Methoxyphenol (MeHQ) als Polymerisationsinhibitor verwendet.

Auch wenn die Inhibitoren als Reinsubstanz zugegeben werden können, ist es von Vorteil, den Inhibitor gelöst in einem Lösungsmittel als einfach und reproduzierbar zu dosierende Lösung zuzugeben, wobei grundsätzlich auch Inhibitormischungen in einer einzelnen Lösung möglich sind. Bevorzugt wird eine im Acrylatsyntheseverfahren bzw. dem Stoffgemisch in der Kolonne bereits vorhandene Flüssigkeit als Lösungsmittel verwendet. Besonders bevorzugt für die Wahl als Lösungsmittel ist das Acrylatprodukt selbst (hier 2-Ethylhexyl- bzw. 2-Propylheptylacrylat) oder einer der Syntheseeinsatzstoffe für das Acrylat (hier Acrylsäure oder 2-Ethylhexanol bzw. 2-Propylheptanol).

Die Erfindung wird im Folgenden anhand einer Zeichnung (Figur 1 ) und eines Ausführungsbeispiels näher erläutert. Die Zeichnung zeigt in der einzigen Figur eine Trennwandkolonne 1 mit Trennwand 8, die die Trennwandkolonne 1 in einen gemeinsamen oberen Kolonnenbereich 9, einen Zulaufteil 10 und 12, mit Verstärkungsteil 10 und Abtriebsteil 12, einen Entnahmeteil 1 1 und 13 mit einem Abtriebsteil 1 1 und einem Verstärkungsteil 13, sowie einen gemeinsamen unteren Kolonnenbe- reich 14 unterteilt. Trennwirksame Einbauten befinden sich in den Kolonnenbereichen 9 und 14 und in den Teilen 10 bis 13. Das entsprechende Roh-Alkylacrylat 2 tritt zwischen den Kolonnenteilen 10 und 12 in die Trennwandkolonne 1 ein. Das Rein-2-Ethylhexylacrylat oder entsprechend Rein-2-Propylheptylacrylat, 3, wird zwischen den Kolonnenteilen 1 1 und 13, bevorzugt in flüssiger Form, entnommen. Der am Kolonnenkopf anfallende Brüdenstrom 15 wird im Konden- sator 6, der gegebenenfalls durch einen Nachkühler ergänzt wird, teilweise kondensiert und in den Rücklaufstrom 16 sowie den Destillatstrom 4 aufgeteilt. Der nicht kondensierte Anteil aus dem Kondensator 6 enthält die niedersiedenden Verunreinigungen und wird dampfförmig als Strom 19 abgezogen. Am unteren Kolonnenende wird die Flüssigkeit 17 in einem Verdampfer 7 teilweise verdampft und über die Rohrleitung 18 in die Kolonne zurückgeführt. Ein Teilstrom 5, der die höhersiedenden Verunreinigungen enthält, wird abgezogen. Der Verdampfer 7 kann als Naturumlaufverdampfer oder als Zwangsumlaufverdampfer ausgebildet sein, im letzteren Fall ist zusätzlich eine Umlaufpumpe für den Flüssigkeitsstrom 17 erforderlich. Besonders vorteilhaft hinsichtlich der Vermeidung unerwünschter Polymerisationsreaktionen ist es anstelle des Zwangsumlaufverdampfers einen Fallfilmverdampfer einzusetzen, da mit dieser Bauart die kür- zesten Verweilzeiten möglich sind. Zur Verringerung der Verweilzeit der Flüssigkeit im Verdampfersystem ist es günstig, die Standhaltung nicht in der unteren Kolonnenhaube, sondern in der Zulaufleitung der Flüssigkeit 17 anzuordnen.

In einer bevorzugten Fahrweise (vgl. Figur 2) wird im erfindungsgemäßen Verfahren ein Stabili- sator 1 (23) (sog. Prozessstabilisator; z.B. insbesondere PTZ) in den Verstärkungsteil (10) des Zulaufteils (10, 12), dort im Besonderen knapp unterhalb des oberen Endes der Trennwand (8), zugegeben. Der Stabilisator 1 kann insbesondere als Lösung in einem geeigneten Lösungsmittel, besonders wie oben aufgeführt, z.B. 2-Ethylhexylacrylat bzw. 2-Propylheptylacrylat, eingesetzt werden. Dadurch ist der gesamte Zulaufteil (10, 12) und der gemeinsame untere Teil der Kolonne (14) mit dem Prozessstabilisator stabilisiert. (Unter .knapp unterhalb des oberen Endes der Trennwand (8)' ist z.B. ,eine bis 5 theoretische Trennstufen unterhalb des oberen Endes der Trennwand (8)' zu verstehen).

Weiterhin (vgl. Figur 2) wird im erfindungsgemäßen Verfahren bevorzugt ein Stabilisator 2 (22) (sog. Lagerstabilisator; z.B. insbesondere MeHQ) in den Behälter (20), der das Kondensat (26) auffängt, und/oder in die Leitung eines Quenchkreislaufs (21 ) und/oder am Kopf des Kondensators (6) zugegeben. Der bevorzugt eingerichtete Quenchkreislauf (d.h der flüssige Rückführstrom eines Teils des Kondensats, z.B. 10 bis 50 Gewichtshundertstel des Kondensats, in den Kondensator (6)) hat die Funktion, dass die natürlicherweise stabilisatorfreien Brüden (15) beim Kondensieren im Kondensator (6) besonders ausreichend stabilisiert sind. Über die Rücklaufleitung (16) wird dann der gemeinsame obere Kolonnenbereich (9) oberhalb der Trennwand (8) sowie Zulaufteil (10, 12) und Entnahmeteil (1 1 , 13) im Bereich der Trennwand mit dem Stabili- sator (insb. MeHQ) stabilisiert, wobei auch Sauerstoff zugegen ist, der aus Magerluft stammt. Die Zufuhr von Magerluft (25) (Mischung aus Luft und Stickstoff, insbesondere derart, dass ein Sauerstoffgehalt von 4 bis 9 Vol.% resultiert) erfolgt besonders entweder am unteren Ende des Verdampfers (7) oder am unteren Ende der Kolonne (1 ).

In einer weiteren Verfahrensvariante (vgl. Figur 2) wird in den Verstärkungsteil (13) unterhalb der Seitenentnahmesteile (3) zusätzlich Prozessstabilisator (24), insbesondere PTZ, zugegeben.

Alle Druckangaben beziehen sich auf den Absolutdruck.

Alle ppm-Angaben beziehen sich auf das Gewicht (Gew.-ppm).

Ein .Niedersieder' (bezogen auf das betreffende Alkylacrylat) ist ein Stoff, dessen Siedetemperatur niedriger als die Siedetemperatur des betreffenden Alkylacrylats, also 2-Ethylhexylacrylat bzw. 2-Propylheptylacrylat, bei gleichem Druck ist.

Ein , Hohersieder' (bezogen auf das betreffende Alkylacrylat) ist ein Stoff, dessen Siedetemperatur höher als die Siedetemperatur des betreffenden Alkylacrylats, also 2-Ethylhexylacrylat bzw. 2-Propylheptylacrylat, bei gleichem Druck ist.

Beispiele

Die Fahrweisen werden anhand der Daten aus einer thermodynamischen Simulation einer Ge- samtanlage zur Herstellung von 2-Ethylhexylacrylat dargestellt.

Die thermodynamische Simulation des Prozesses wurde mit der Software Aspen Plus® (kurz: Aspen) durchgeführt. Aspen ist eine umfangreiche Simulationssoftware, die zur Modellierung, Simulation und Optimierung chemischer Verfahren und Anlagen in der Industrie eingesetzt wird. Aspen verfügt über umfangreiche Modell-Datenbanken zur Modellierung der Basisoperationen sowie über Stoffdatenbanken für die Stoffeigenschaften vieler verschiedener Substanzen. Die Eigenschaften von Mischungen werden von Aspen mit Hilfe von unterschiedlichen thermodynamischen Modellen aus den Stoffdaten der reinen Substanzen berechnet.

Beispiel 1

(Flüssigkeitsmengenverhältnis am oberen Ende der Trennwand (8), Verstärkungsteil (10) : Abtriebsteil (1 1 ) = 1 : 2 und Mengenverhältnis der Brüdenströme am unteren Ende der Trennwand (8), Abtriebsteil (12) : Verstärkungsteil (13) = 1 : 1 )

Ein Roh-2-Ethylhexylacrylat-Strom von 19180 kg/h mit einer Temperatur von 145 °C wurde flüs- sig auf der 14. theoretischen Trennstufe einer Trennwandkolonne (1 ) mit insgesamt 22 theoretischen Trennstufen eingespeist. Das Roh-2-Ethylhexylacrylat wies die folgende Zusammenset- zung auf:

2-Ethylhexylacrylat: 96,3 Gew.-%

2-Ethylhexanol: 2,5 Gew.-%

Di-2-Ethylhexylether: 0,2 Gew.-%

2-Ethylhexylacetat: 0,3 Gew.-%

2-Ethylhexyloxyester: 0,5 Gew.-%

weitere Höhersieder (bez. auf 2-Ethylhexylacrylat): Rest Die Trennwand (8) erstreckte sich von der 4. bis zur 17. theoretischen Trennstufe. Die Seitenentnahme (3) erfolgte auf der 6. theoretischen Trennstufe. Der Betrieb der Kolonne erfolgte bei einem Kopfdruck von 22 mbar und einem Sumpfdruck von 43 mbar.

Am Kopf der Kolonne wurde bei einer Temperatur von 26 °C kondensiert. Aus dem Kondensator (6) wurde ein dampfförmiger niedersiederhaltiger Strom (19) von 5 kg/h abgezogen. Aus dem kondensierten Strom wurde ein Teilstrom (4) von 566 kg/h abgezogen. Die hochsiedenden Verunreinigungen (5) wurden am Kolonnensumpf in einem Mengenstrom von 1396 kg/h bei einer Temperatur von 122 °C entnommen. Am Seitenabzug wurde das Wertprodukt Rein-2-Ethyl- hexylacrylat bei einer Temperatur von 1 17 °C flüssig in einer Menge von 17213 kg/h erhalten. Der Seitenabzug (3) wies die folgende Zusammensetzung auf:

2-Ethylhexylacrylat: 99,83 Gew.-%

2-Ethylhexanol: 0,05 Gew.-%

Di-2-Ethylhexylether: 62 Gew.-ppm

2-Ethylhexylacetat: 855 Gew.-ppm

2-Ethylhexyloxyester: < 0,01 Gew.-%

weitere Höhersieder (bez. auf 2-Ethylhexylacrylat): Rest

Der Mindestgehalt an Acrylat von > 99,5 Gew.-% und die handelsüblichen Spezifikationen für die Nebenkomponenten 2-Ethylhexylacetat mit 1000 ppm und für Di-2-Ethylhexylether mit 100 ppm werden eingehalten.

Die Destillationsausbeute für 2-Ethylhexylacrylat lag bei über 93 %. Das Flüssigkeitsmengenverhältnis für die Flüssigkeit am oberen Ende der Trennwand (8), Verstärkungsteil (10) : Abtriebsteil (1 1 ), betrug 1 : 2. Am unteren Ende der Trennwand (8) erfolgte die Aufteilung der Brüdenstrommengen, Abtriebsteil (12) : Verstärkungsteil (13), im Verhältnis 1 : 1 . Die Heizleistung des Verdampfers betrug 2175 kW.

Durch das erfindungsgemäße Verfahren konnte die Destillation von Roh-2-Ethylhexylacrylat zu Rein-2-Ethylhexylacrylat z.B. bei einer Jahreskapazität von 130.000 t unter Einhaltung der geforderten Spezifikationen mit einer Investitionskosteneinsparung von 25 % und einer Energiekosteneinsparung von 32 % gegenüber einem herkömmlichen zweistufigen Destillationsverfah- ren durchgeführt werden.

Vergleichsbeispiel 1

(Flüssigkeitsmengenverhältnis am oberen Ende der Trennwand (8), Verstärkungsteil (10) : Ab- triebsteil (1 1 ) = 1 : 7 und

Mengenverhältnis der Brüdenströme am unteren Ende der Trennwand (8), Abtriebsteil (12) : Verstärkungsteil (13) = 1 : 1 )

Ein Roh-2-Ethylhexylacrylat-Strom von 19180 kg/h mit einer Temperatur von 145 °C wurde flüs- sig auf der 14. theoretischen Trennstufe einer Trennwandkolonne (1 ) mit insgesamt 22 theoretischen Trennstufen eingespeist. Das Roh-2-Ethylhexylacrylat wies die folgende Zusammenset- zung auf:

2-Ethylhexylacrylat: 96,3 Gew.-%

2-Ethylhexanol: 2,5 Gew.-%

Di-2-Ethylhexylether: 0,2 Gew.-%

2-Ethylhexylacetat: 0,3 Gew.-%

2-Ethylhexyloxyester: 0,5 Gew.-%

weitere Höhersieder (bez. auf 2-Ethylhexylacrylat): Rest Die Trennwand (8) erstreckte sich von der 4. bis zur 17. theoretischen Trennstufe. Die Seitenentnahme (3) erfolgte auf der 6. theoretischen Trennstufe. Der Betrieb der Kolonne erfolgte bei einem Kopfdruck von 22 mbar und einem Sumpfdruck von 43 mbar.

Am Kopf der Kolonne wurde bei einer Temperatur von 26 °C kondensiert. Aus dem Kondensator (6) wurde ein dampfförmiger niedersiederhaltiger Strom (19) von 5 kg/h abgezogen. Aus dem kondensierten Strom wurde ein Teilstrom (4) von 123 kg/h abgezogen. Die hochsiedenden Verunreinigungen (5) wurden am Kolonnensumpf in einem Mengenstrom von 1838 kg/h bei einer Temperatur von 122 °C entnommen. Am Seitenabzug wurde das Wertprodukt Rein-2-Ethyl- hexylacrylat bei einer Temperatur von 1 16 °C flüssig in einer Menge von 17213 kg/h erhalten. Der Seitenabzug (3) wies die folgende Zusammensetzung auf:

2-Ethylhexylacrylat: 97,61 Gew.-%

2-Ethylhexanol: 2,06 Gew.-%

Di-2-Ethylhexylether: 26 Gew.-ppm

2-Ethylhexylacetat: 3312 Gew.-ppm

2-Ethylhexyloxyester: < 0,01 Gew.-%

weitere Höhersieder (bez. auf 2-Ethylhexylacrylat): Rest

Der Mindestgehalt an Acrylat von > 99,5 Gew.-% und die handelsübliche Spezifikation für die Nebenkomponente 2-Ethylhexylacetat mit 1000 ppm werden nicht eingehalten.

Die Destillationsausbeute für 2-Ethylhexylacrylat lag bei über 90 %.

Das Flüssigkeitsmengenverhältnis für die Flüssigkeit am oberen Ende der Trennwand (8), Verstärkungsteil (10) : Abtriebsteil (1 1 ), betrug 1 : 7. Am unteren Ende der Trennwand (8) erfolgte die Aufteilung der Brüdenstrommengen, Abtriebsteil (12) : Verstärkungsteil (13), im Verhältnis 1 : 1 . Die Heizleistung des Verdampfers betrug 2875 kW.

Vergleichsbeispiel 2

(Flüssigkeitsmengenverhältnis am oberen Ende der Trennwand (8), Verstärkungsteil (10) : Abtriebsteil (1 1 ) = 1 : 2 und

Mengenverhältnis der Brüdenströme am unteren Ende der Trennwand (8), Abtriebsteil (12) : Verstärkungsteil (13) = 3 : 1 )

Ein Roh-2-Ethylhexylacrylat-Strom von 19180 kg/h mit einer Temperatur von 145 °C wurde flüssig auf der 14. theoretischen Trennstufe einer Trennwandkolonne (1 ) mit insgesamt 22 theoreti- sehen Trennstufen eingespeist. Das Roh-2-Ethylhexylacrylat wies die folgende Zusammenset- zung auf:

2-Ethylhexylacrylat: 96,3 Gew.-%

2-Ethylhexanol: 2,5 Gew.-%

Di-2-Ethylhexylether: 0,2 Gew.-%

2-Ethylhexylacetat: 0,3 Gew.-%

2-Ethylhexyloxyester: 0,5 Gew.-%

weitere Höhersieder (bez. auf 2-Ethylhexylacrylat): Rest Die Trennwand (8) erstreckte sich von der 4. bis zur 17. theoretischen Trennstufe. Die Seitenentnahme (3) erfolgte auf der 6. theoretischen Trennstufe. Der Betrieb der Kolonne erfolgte bei einem Kopfdruck von 22 mbar und einem Sumpfdruck von 43 mbar.

Am Kopf der Kolonne wurde bei einer Temperatur von 26 °C kondensiert. Aus dem Kondensator (6) wurde ein dampfförmiger niedersiederhaltiger Strom (19) von 5 kg/h abgezogen. Aus dem kondensierten Strom wurde ein Teilstrom (4) von 498 kg/h abgezogen. Die hochsiedenden Verunreinigungen (5) wurden am Kolonnensumpf in einem Mengenstrom von 1463 kg/h bei einer Temperatur von 122 °C entnommen. Am Seitenabzug wurde das Wertprodukt Rein-2-Ethyl- hexylacrylat bei einer Temperatur von 1 17 °C flüssig in einer Menge von 17213 kg/h erhalten.

Der Seitenabzug (3) wies die folgende Zusammensetzung auf:

2-Ethylhexylacrylat: 99,49 Gew.-%

2-Ethylhexanol: 0,39 Gew.-%

Di-2-Ethylhexylether: 121 Gew.-ppm

2-Ethylhexylacetat: 1039 Gew.-ppm

2-Ethylhexyloxyester: < 0,01 Gew.-%

weitere Höhersieder (bez. auf 2-Ethylhexylacrylat): Rest Der Mindestgehalt an Acrylat von > 99,5 Gew.-% und die handelsüblichen Spezifikationen für die Nebenkomponenten 2-Ethylhexylacetat mit 1000 ppm und für Di-2-Ethylhexylether mit 100 ppm werden nicht eingehalten.

Die Destillationsausbeute für 2-Ethylhexylacrylat lag bei über 92 %.

Das Flüssigkeitsmengenverhältnis für die Flüssigkeit am oberen Ende der Trennwand (8), Ver- stärkungsteil (10) : Abtriebsteil (1 1 ), betrug 1 : 2. Am unteren Ende der Trennwand (8) erfolgte die Aufteilung der Brüdenstrommengen, Abtriebsteil (12) : Verstärkungsteil (13), im Verhältnis 3 : 1 . Die Heizleistung des Verdampfers betrug 2175 kW.