Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR OPERATING A GAS-AND-STEAM COMBINED CYCLE POWER STATION
Document Type and Number:
WIPO Patent Application WO/2017/060114
Kind Code:
A1
Abstract:
The invention relates to a method for operating a gas-and-steam combined cycle power station (10) in which exhaust gas is produced by a gas turbine (12) and is supplied to a steam generator (20), wherein hot steam is produced using the exhaust gas supplied to said steam generator (20) and by means of said steam generator (20), and this steam serves to drive at least one generator (30) using at least one turbine device (22) in order to provide electrical current. The exhaust gas supplied to the steam generator (20) is conducted away from said steam generator (20), and at least one portion of the heat contained in the exhaust gas, downstream of the steam generator (20), is used to initiate an endothermic chemical reaction.

Inventors:
BECKER STEFAN (DE)
DANOV VLADIMIR (DE)
LENK UWE (DE)
SCHMID ERICH (DE)
SCHÄFER JOCHEN (DE)
TREMEL ALEXANDER (DE)
Application Number:
PCT/EP2016/072847
Publication Date:
April 13, 2017
Filing Date:
September 26, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
International Classes:
F01K23/10; F01K1/04; F01K3/00; F01K3/14; F01K3/18; F01K3/24; F01K13/02
Domestic Patent References:
WO2014026784A12014-02-20
WO2015043949A12015-04-02
Foreign References:
DE4025421A11991-02-28
Other References:
None
Download PDF:
Claims:
Patentansprüche

1. Verfahren zum Betreiben eines Gas-und-Dampf-Kombinations¬ kraftwerks (10), bei welchem von einer Gasturbine (12) Abgas bereitgestellt wird, welches einem Dampferzeuger (20) zuge¬ führt wird, wobei mittels des dem Dampferzeuger (20) zuge¬ führten Abgases und mittels des Dampferzeugers (20) heißer Dampf erzeugt wird, mittels welchem über wenigstens eine Tur¬ bineneinrichtung (22) wenigstens ein Generator (30) zum Be- reitstellen von elektrischem Strom angetrieben wird, und wobei das Abgas dem Dampferzeuger (20) zugeführte Abgas dem Dampferzeuger (20) abgeführt wird,

dadurch gekennzeichnet, dass

zumindest ein Teil von in dem Abgas stromab des Dampferzeu- gers (20) enthaltener Wärme zum Bewirken einer endothermen chemischen Reaktion genutzt wird.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet, dass

zumindest der Teil der in dem Abgas stromab des Dampferzeu¬ gers (20) enthaltenen Wärme über einen Wärmetauscher (38) an Edukte der endothermen chemischen Reaktion übertragen wird.

3. Verfahren nach Anspruch 1 oder 2,

gekennzeichnet durch die Schritte:

- Abzweigen zumindest eines Teils des mittels des Dampferzeu¬ gers (20) erzeugten Dampfes und Speichern des abgezweigten Dampfes in einem DampfSpeicher (34);

- Abführen zumindest eines Teils des in dem DampfSpeicher

(34) gespeicherten Dampfes aus dem DampfSpeicher (34);

- Erwärmen des aus dem DampfSpeicher (34) abgeführten Dampfes mittels Wärme, welche bei einer exothermen chemischen Reaktion freigesetzt wird; und

- Führen des erwärmten Dampfes zu der Turbineneinrichtung

(22), welche mittels des zugeführten erwärmten Dampfes angetrieben wird.

4. Verfahren nach Anspruch 3,

dadurch gekennzeichnet, dass

als Edukte der exothermen chemischen Reaktion Produkte der endothermen chemischen Reaktion verwendet werden.

5. Verfahren nach Anspruch 3 oder 4,

dadurch gekennzeichnet, dass

der Turbineneinrichtung (22) der erwärmte Dampf zum Antreiben der Turbineneinrichtung (22) zugeführt wird, um das Gas-und- Dampf-Kombinationskraftwerk (10) von einem ersten Lastbereich in einen gegenüber dem ersten Lastbereich höheren, zweiten Lastbereich hochzufahren.

6. Verfahren nach Anspruch 5,

dadurch gekennzeichnet, dass

die endotherme chemische Reaktion in dem zweiten Lastbereich bewirkt wird.

7. Gas-und-Dampf-Kombinationskraftwerk (10), welches zum Durchführen eines Verfahrens nach einem der vorhergehenden

Ansprüche ausgebildet ist.

Description:
Beschreibung

Verfahren zum Betreiben eines Gas-und-Dampf-Kombinations ¬ kraftwerks

Die Erfindung betrifft ein Verfahren zum Betreiben eines Gas- und-Dampf-Kombinationskraftwerks gemäß dem Oberbegriff vom Patentanspruch 1. Ein solches Verfahren zum Betreiben eines Gas-und-Dampf- Kombinationskraftwerks sowie ein solches Gas-und-Dampf- Kombinationskraftwerk (GuD-Kraftwerk) sind aus dem allgemeinen Stand der Technik bereits hinlänglich bekannt. Das Gas- und-Dampf-Kraftwerk wird auch als Combined Cycle Power Plant bezeichnet und umfasst wenigstens eine Turbineneinrichtung, wenigstens einen von der Turbineneinrichtung antreibbaren Generator zum Bereitstellen von elektrischem Strom und wenigstens eine Gasturbine. Wir der Generator von der Turbineneinrichtung angetrieben, so kann der Generator mechanische Ener- gie in elektrische Energie bzw. elektrischen Strom umwandeln und diese elektrische Energie bzw. den elektrischen Strom be ¬ reitstellen. Der elektrische Strom kann dann beispielsweise in ein Stromnetz eingespeist werden. Die Gasturbine stellt dabei Abgas bereit, mittels welchem heißer Dampf erzeugt wird. Beispielsweise wird der Gasturbine ein Brennstoff, insbesondere ein gasförmiger Brennstoff wie beispielsweise Erdgas, zugeführt, wobei der Brennstoff mit ¬ tels der Gasturbine verbrannt wird. Insbesondere wird der Gasturbine zusätzlich zu dem Brennstoff Sauerstoff bzw. Luft zugeführt, sodass aus der Luft und dem Brennstoff ein Brenn ¬ stoff-Luft-Gemisch entsteht. Dieses Brennstoff-Luft-Gemisch wird verbrannt, woraus Abgas der Gasturbine resultiert. Mit ¬ tels des Abgases wird beispielsweise eine Flüssigkeit, insbe- sondere Wasser, erwärmt und dadurch verdampft, woraus heißer Dampf resultiert. Dies bedeutet, dass der heiße Dampf mittels des Abgases der Gasturbine derart erzeugt wird, dass mittels des heißen Abgases der Gasturbine eine Flüssigkeit wie bei ¬ spielsweise Wasser verdampft wird.

Der Dampf wird der Turbineneinrichtung zugeführt, sodass die Turbineneinrichtung mittels des Dampfs angetrieben wird. Wie bereits beschrieben, wird über die Turbineneinrichtung bzw. mittels der Turbineneinrichtung der Generator angetrieben. Das Gas-und-Dampf-Kombinationskraftwerk, welches auch als Gas-und-Dampf-Kombikraftwerk bezeichnet wird, ist ein Kraft- werk, in dem die Prinzipien eines Gasturbinenkraftwerks und eines Dampfkraftwerks kombiniert werden. Die Gasturbine bzw. ihr Abgas dient dabei als Wärmequelle für einen nachgeschal ¬ teten Dampferzeuger, mittels welchem der Dampf für die Turbineneinrichtung bzw. zum Antreiben der Turbineneinrichtung er- zeugt wird. Die Turbineneinrichtung ist somit als Dampfturbi ¬ ne ausgebildet.

Dies bedeutet, dass die Gasturbine ihr Abgas bereitstellt, welches dem Dampferzeuger zugeführt wird. Somit wird mittels des dem Dampferzeuger zugeführten Abgases und mittels des

Dampferzeugers heißer Dampf erzeugt, mittels welchem die Tur ¬ bineneinrichtung und über die Turbineneinrichtung der Generator zum Bereitstellen von elektrischem Strom angetrieben wird. Ferner wird das dem Dampferzeuger zugeführte Abgas dem Dampferzeuger zumindest zum Teil wieder abgeführt.

Es hat sich gezeigt, dass ein solches Gas-und-Dampf-Kombina ¬ tionskraftwerk (GuD-Kraftwerk) , insbesondere je nach Strombedarf, abgeschaltet werden muss, sodass der Generator keinen elektrischen Strom bereitstellt und beispielsweise nicht an ¬ getrieben wird und sodass mittels des GuD-Kraftwerks kein Strom in das Stromnetz eingespeist wird. Infolge des Abschal- tens kann das Gas-und-Dampf-Kombinationskraftwerk auskühlen, woraufhin ein erneutes Anschalten bzw. ein Hochfahren des Gas-und-Dampf-Kombinationskraftwerks eine besonders lange

Zeit und einen besonders hohen Energiebedarf erfordert. Daher ist es üblicherweise vorgesehen, das Gas-und-Dampf-Kombina ¬ tionskraftwerk während einer Zeit, während welcher das Gas- und-Dampf-Kombinationskraftwerk abgeschaltet ist, warm zu halten. Dabei wird das Gas-und-Dampf-Kombinationskraftwerk mittels Dampf warmgehalten. Dieser dampf zum Warmhalten wird üblicherweise mittels eines Boilers, insbesondere eines Gas- boilers, erzeugt. Mittels des Boilers wird eine Flüssigkeit wie beispielsweise Wasser verdampft, wobei hierzu ein Brenn ¬ stoff zum Einsatz kommt. Der mittels des Boilers erzeugte Dampf wird zumindest durch einen Teil des Gas-und-Dampf- Kombinationskraftwerks geleitet, um dieses warm zu halten bzw. zu erwärmen. Dann kann das Gas-und-Dampf-Kombinations ¬ kraftwerk nach einem Abschalten desselben im Rahmen eines Warmstarts gestartet werden, da das Gas-und-Dampf-Kombina ¬ tionskraftwerk dann eine bereits hinreichend hohe Temperatur, bei welcher es gestartet werden kann, aufweist. Jedoch ist mit zunehmender Zeit, die das Gas-und-Dampf-Kombinations ¬ kraftwerk abgeschaltet ist, eine zunehmende Menge an Dampf zum Warmhalten bzw. Erwärmen des Gas-und-Dampf-Kombinations ¬ kraftwerks erforderlich, da dieses sukzessive auskühlt. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der eingangs genannten Art derart weiterzuentwickeln, dass sich ein besonders effizienter Betrieb realisieren lässt.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.

Um ein Verfahren der im Oberbegriff des Patentanspruchs 1 an- gegebenen Art derart weiterzuentwickeln, dass sich ein besonders effizienter Betrieb realisieren lässt, ist es erfindungsgemäß vorgesehen, dass zumindest ein Teil von in dem Ab ¬ gas der Gasturbine stromab des Dampferzeugers enthaltener Wärme zum Bewirken einer endothermen chemischen Reaktion, das heißt einer chemischen Wärme aufnehmenden Reaktion genutzt wird. Dies bedeutet, dass das beispielsweise aus dem Dampfer ¬ zeuger ausströmende Abgas - in Strömungsrichtung des Abgases der Gasturbine - stromab des Dampferzeugers eine Temperatur aufweist, sodass in dem Abgas der Gasturbine stromab des Dampferzeugers, das heißt nach dem Erzeugen des Dampfes, Wär ¬ me in dem Abgas der Gasturbine enthalten ist. Diese Wärme, die in dem Abgas stromab des Dampferzeugers beziehungsweise nach dem Dampferzeuger enthalten ist, wird genutzt, um die endotherme chemische Reaktion zu bewirken. Hierzu wird die in dem Abgas enthaltene Wärme der endothermen chemischen Reakti ¬ on beziehungsweise Edukten der endothermen chemischen Reaktion zugeführt. Dadurch wird zumindest ein Teil der der endo- thermen chemischen Reaktion zugeführten Wärme in Produkten der endothermen chemischen Reaktion gespeichert, sodass ein thermochemischer Speicher, insbesondere ein thermochemischer Wärmespeicher, geschaffen werden kann. In den Produkten der endothermen chemischen Reaktion kann die im Abgas der Gasturbine stromab des Dampferzeugers enthaltene Wärme zumindest zum Teil gespeichert werden, wobei die in den Produkten gespeicherte Wärme beispielsweise zu einem späteren Zeitpunkt und/oder für andere Zwecke genutzt werden kann.

Der Erfindung liegt insbesondere die Idee zugrunde, im Abgas der Gasturbine nach dem Dampferzeuger enthaltene Wärme, wel ¬ che üblicherweise ungenutzt verloren geht, zu nutzen, um zu ¬ mindest einen Teil der im Abgas stromab des Dampferzeugers enthaltenen Wärme zu speichern, insbesondere in den Produkten der endothermen chemischen Reaktion.

Insbesondere kann die Wärme für Fernwärmezwecke gespeichert werden. Beispielsweise kann eine exotherme chemische Reakti- on, das heißt eine chemische Wärme abgebende Reaktion bewirkt werden, wobei die Produkte der endothermen chemischen Reaktion Edukte der exothermen chemischen Reaktion sind bzw. als Edukte der exothermen Reaktion genutzt werden. Im Rahmen der exothermen chemischen Reaktion wird Wärme freigesetzt, mit- tels welcher ein Medium, insbesondere Wasser effizient er ¬ wärmt werden kann. Produkte der exothermen Reaktion können beispielsweise als die Edukte der endothermen Reaktion ge ¬ nutzt werden. Der thermochemische Wärmespeicher kann genutzt werden, um eine besonders hohe Flexibilität hinsichtlich der Realisierung von Fernwärme zu realisieren. Insbesondere ist es möglich, in dem thermochemischen Wärmespeicher Wärme beziehungsweise Energie zu speichern, so dass insbesondere bei hohen Wärmebe- darfen ein Medium, insbesondere Wasser, mittels der in den thermochemischen Wärmespeicher gespeicherten Wärme effektiv erwärmt werden kann. Da hierzu im Abgas stromab des Dampfer ¬ zeugers enthaltene Energie genutzt wird, kann eine besonders hohe Effizienz realisiert werden. Die in den Produkten der endothermen Reaktion gespeicherte und bei der exothermen Reaktion freiwerdende Wärme wird beispielsweise an das Medium übertragen, um das Medium zu erwärmen. Dann kann das Medium beispielsweise für Heizzwecke, insbesondere zur Realisierung von Fernwärme, genutzt werden.

Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass zumindest der Teil der in dem Abgas stromab des Dampferzeugers enthaltenen Wärme über einen Wärmetauscher an Edukte der endothermen chemischen Reaktion übertragen wird .

Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass zumindest ein Teils des mittels des Dampfer ¬ zeugers erzeugten Dampfes abgezweigt und in einem Dampfspei ¬ cher gespeichert wird. Ferner wird zumindest ein Teil des in dem DampfSpeicher gespeicherten Dampfes aus dem DampfSpeicher abgeführt. Der aus dem DampfSpeicher abgeführte Dampf wird mittels Wärme, welche bei der exothermen chemischen Reaktion freigesetzt wird, erwärmt. Ferner wird der erwärmte Dampf zu der Turbineneinrichtung geführt, welche mittels des zugeführten erwärmten Dampfes angetrieben, insbesondere beschleunigt, wird .

Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass als Edukte der exothermen chemischen Reakti- on Produkte der endothermen chemischen Reaktion verwendet werden .

Bei einer vorteilhaften Ausführungsform der Erfindung ist e vorgesehen, dass der Turbineneinrichtung der erwärmte Dampf zum Antreiben der Turbineneinrichtung zugeführt wird, das Gas-und-Dampf-Kombinationskraftwerk von einem ersten Lastb reich in einen gegenüber dem ersten Lastbereich höheren, zweiten Lastbereich hochzufahren.

Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass die endotherme chemische Reaktion in dem zweiten Lastbereich bewirkt wird.

Zur Erfindung gehört auch ein Gas-und-Dampf-Kombinations ¬ kraftwerk, welches zum Durchführen eines erfindungsgemäßen Verfahrens ausgebildet ist. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind als vorteilhafte Ausgestal ¬ tungen des erfindungsgemäßen Gas-und-Dampf-Kombinationskraft ¬ werks anzusehen und umgekehrt.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er ¬ geben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vor ¬ stehend in der Beschreibung genannten Merkmale und Merkmals ¬ kombinationen sowie die nachfolgend in der Figurenbeschrei ¬ bung genannten und/oder in der einzigen Figur alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.

Die Zeichnung zeigt in der einzigen Figur eine schematische Darstellung eines Gas-und-Dampf-Kombinationskraftwerks , bei welchem ein thermochemischer Wärmespeicher zum Einsatz kommt, um eine besonders hohe Effizienz zu realisieren. Die einzige Figur zeigt in einer schematischen Darstellung ein im Ganzen mit 10 bezeichnetes Gas-und-Dampf-Kombinations ¬ kraftwerk, welches auch als GuD-Kraftwerk oder - der besseren Lesbarkeit wegen - als Kraftwerk bezeichnet wird. Das Kraft- werk umfasst wenigstens eine Gasturbine 12, welcher bei ¬ spielsweise im Rahmen eines Verfahrens zum Betreiben des Kraftwerks Brennstoff zugeführt wird. Diese Zuführung von Brennstoff zu der Gasturbine 12 ist in der Figur durch einen Richtungspfeil 14 veranschaulicht. Bei dem Brennstoff handelt es sich insbesondere um einen gasförmigen Brennstoff wie bei ¬ spielsweise Erdgas. Ferner wird der Gasturbine 12 Luft zuge ¬ führt, was in der Figur durch einen Richtungspfeil 16 veranschaulicht ist. Mittels der Gasturbine 12 wird der Brennstoff verbrannt, woraus Abgas der Gasturbine 12 resultiert. Somit stellt die Gasturbine 12 das Abgas bereit, was in der Figur durch einen Richtungspfeil 18 veranschaulicht ist. In der Gasturbine 12 bildet sich beispielsweise ein Gemisch aus dem Brennstoff und der Luft, wobei dieses Gemisch verbrannt wird. Daraus resultiert das Abgas der Gasturbine 12.

Anhand des Richtungspfeils 18 ist erkennbar, dass das Abgas einem Dampferzeuger 20 des Kraftwerks zugeführt wird. Der Dampferzeuger 20 wird auch als Boiler oder Verdampfer bezeichnet. Ferner wird dem Dampferzeuger 20 eine Flüssigkeit, insbesondere in Form von Wasser, zugeführt. Dabei erfolgt ein Wärmeübergang von dem Abgas der Gasturbine 12 an das Wasser, wodurch das Wasser erwärmt und verdampft wird. Dadurch wird aus dem Wasser Dampf erzeugt. Dies bedeutet, dass mittels des Abgases der Gasturbine 12 und mittels des Dampferzeugers 20 Dampf aus dem dem Dampferzeuger 20 zugeführten Wasser (Flüssigkeit) erzeugt wird. Infolge dieses Wärmeübergangs von dem Abgas an das Wasser wird das Abgas gekühlt, sodass es bei ¬ spielsweise mit einer ersten Temperatur Tl von dem Dampferzeuger 20 abgeführt wird. Die erste Temperatur Tl beträgt beispielsweise zumindest im Wesentlichen 90°C (Grad Celsius).

Das Kraftwerk umfasst ferner eine im Ganzen mit 22 bezeichne ¬ te Turbineneinrichtung, welche vorliegend eine erste Turbine 24 und eine zweite Turbine 26 umfasst. Die Turbine 24 ist beispielsweise als Hochdruckturbine ausgebildet, wobei die Turbine 26 als Mitteldruck- und Niederdruckturbine ausgebil ¬ det ist. Der mittels des Abgases der Gasturbine 12 und mit- hilfe des Dampferzeugers 20 erzeugte Dampf wird der Turbinen ¬ einrichtung 22 zugeführt, sodass die Turbineneinrichtung 22, insbesondere die Turbinen 24 und 26, mittels des erzeugten heißen Dampfs angetrieben werden. Mittels der Turbineneinrichtung 22 wird in dem heißen Dampf enthaltene Energie in mechanische Energie umgewandelt, wobei die mechanische Ener ¬ gie über eine Welle 28 bereitgestellt wird. Die Turbinenein ¬ richtung 22 umfasst beispielsweise in der Figur nicht im Ein ¬ zelnen dargestellte Turbinenräder, denen der Dampf zugeführt wird. Dadurch werden die Turbinenräder mittels des Dampfs an- getrieben. Die Turbinenräder sind beispielsweise drehfest mit der Welle 28 verbunden, sodass die Welle 28 von den Turbinenrädern angetrieben wird, wenn die Turbinenräder mittels des Dampfs angetrieben werden. Das Kraftwerk umfasst ferner wenigstens einen Generator 30, welcher über die Welle 28 von der Turbineneinrichtung 22 antreibbar ist bzw. angetrieben wird. Dem Generator 30 wird somit die über die Welle 28 bereitgestellte mechanische Ener ¬ gie zugeführt, wobei mittels des Generators 30 zumindest ein Teil der zugeführten mechanischen Energie in elektrische

Energie bzw. elektrischen Strom umgewandelt wird. Der Genera ¬ tor 30 kann diesen elektrischen Strom bereitstellen, welcher beispielsweise in ein Stromnetz eingespeist werden kann. Der Dampf wird von der Turbineneinrichtung 22 abgeführt und einem Wärmetauscher 32 zugeführt, welcher als Kondensator fungiert bzw. ausgebildet ist. Mittels des Wärmetauschers 32 wird der Dampf gekühlt, wodurch der Dampf kondensiert. Hierdurch wird der Dampf wieder zu dem zuvor genannten Wasser, das dem Dampferzeuger 20 wieder zugeführt werden kann.

Um den Dampf mittels des Wärmetauschers 32 zu kühlen, wird dem Wärmetauscher 32 beispielsweise ein Kühlmedium, insbeson- dere eine Kühlflüssigkeit, zugeführt. Dabei kann ein Wärme ¬ übergang von dem Dampf an die Kühlflüssigkeit erfolgen, wodurch der Dampf gekühlt wird und in der Folge kondensiert. Das Kraftwerk weist eine Mehrzahl von in der Figur nicht näher dargestellten Leitungen auf, durch welche jeweilige Strömungen des mittels des Abgases der Gasturbine 12 erzeugten Dampfs strömen. Diese Strömungen können unterschiedliche Temperaturen aufweisen. In der Figur sind unterschiedliche Tem- peraturen T2, T3 und T4 des mittels des Abgases der Gasturbi ¬ ne 12 erzeugten Dampfs dargestellt, wobei die Temperatur T2 beispielsweise 595°C, die Temperatur T3 360°C und die Tempe ¬ ratur T4 240°C beträgt. Das Wasser verlässt den Kondensator beispielsweise mit einer Temperatur T5, welche beispielsweise 40°C beträgt.

Je nach Strombedarf, d.h. je nach Menge an elektrischem

Strom, welche von dem Stromnetz bereitgestellt werden muss, wird das Kraftwerk aktiviert, d.h. angeschaltet, und deakti- viert, d.h. abgeschaltet. Beispielsweise wird das Kraftwerk bei nur geringem Strombedarf abgeschaltet. Steigt der Strombedarf, so wird das Kraftwerk nach dem Abschalten wieder angeschaltet. Dieses Anschalten, das sich zeitlich an ein Abschalten des Kraftwerks anschließt, erfolgt vorzugsweise als ein Warmstart, um das Kraftwerk schnell und energiegünstig anschalten zu können. Zur Realisierung dieses Warmstarts, insbesondere zur Realisierung eines besonders energiegünsti ¬ gen Warmstarts, wird das Kraftwerk nach dem Abschalten und während einer Zeit, während welcher das Kraftwerk abgeschal- tet ist, warmgehalten bzw. erwärmt, um ein übermäßiges Aus ¬ kühlen bzw. Abkühlen des Kraftwerks zu vermeiden.

Es ist erkennbar, dass die Gasturbine 12 ihr Abgas bereit ¬ stellt, welches dem Dampferzeuger 20 zugeführt wird. Ferner wird dem Dampferzeuger 20 das Wasser zugeführt. Mittels des dem Dampferzeuger zugeführten Abgases der Gasturbine 12 und mittels des Dampferzeugers 20 wird das Wasser zumindest teil ¬ weise erwärmt und verdampft, wodurch Dampf erzeugt wird. Fer- ner wird dem Dampferzeuger 20 das dem Dampferzeuger 20 zugeführte Abgas der Gasturbine 12 zumindest teilweise abgeführt.

Um nun eine besonders hohe Effizienz beziehungsweise einen besonders effizienten Betrieb zu realisieren, umfasst das Kraftwerk einen thermochemischen Wärmespeicher 34, welcher beispielsweise durch wenigstens einen Reaktor gebildet ist beziehungsweise wenigstens einen Reaktor umfasst. Da das Ab ¬ gas der Gasturbine 12 - bezogen auf eine Strömungsrichtung des Abgas der Gasturbine 12 - stromab des Dampferzeugers 20, das heißt nach dem Dampferzeuger 20 die Temperatur Tl aufweist, ist in dem Abgas der Gasturbine 12 stromab des Dampf ¬ erzeugers 20 Wärme enthalten. Zumindest ein Teil dieser in dem Abgas der Gasturbine 12 stromab des Dampferzeugers 20 enthaltenen Wärme wird - wie in der Figur durch einen Richtungspfeil 36 veranschaulicht ist - dem thermochemischen Wärmespeicher 34 (Reaktor) zugeführt. Diese dem thermochemischen Wärmespeicher 34 zugeführte Wärme wird genutzt, um eine endotherme chemische Reaktion zu bewir ¬ ken. Mit anderen Worten wird eine endotherme chemische Reak ¬ tion mittels der dem thermochemischen Wärmespeicher 34 zugeführten Wärme aus dem vom Dampferzeuger 20 abgeführten Abgas bewirkt. Dadurch wird die dem thermochemischen Wärmespeicher 34 zugeführte Wärme beziehungsweise zumindest ein Teil der dem thermochemischen Wärmespeicher 34 zugeführten Wärme in Produkten der endothermen chemischen Reaktion gespeichert, wobei die gespeicherte Wärme bedarfsgerecht genutzt werden kann .

Zumindest der Teil der in dem Abgas der Gasturbine 12 stromab des Dampferzeugers 20 enthaltenen Wärme wird dem thermochemi ¬ schen Wärmespeicher 34, insbesondere der endothermen chemischen Reaktion beziehungsweise Edukten der endothermen chemi- sehen Reaktion beispielsweise über wenigstens einen Wärmetau ¬ scher 38 zugeführt, durch welchen zumindest ein Teil des Ab ¬ gases strömt. Hierbei erfolgt ein Wärmeübergang von dem Abgas über den Wärmetauscher 38 an Edukte der endothermen chemi- sehen Reaktion. Bezogen auf die Strömungsrichtung des Abgases ist der Wärmetauscher 38 stromab des Dampferzeugers 20 ange ¬ ordnet .

Infolge des beschriebenen Wärmeübergangs wird das Abgas abge ¬ kühlt. Das Abgas, welches dem Wärmetauscher 38 zugeführt wird, wird beispielsweise - wie in der Figur durch einen Richtungspfeil 40 veranschaulicht ist - dem Wärmetauscher 38 abgeführt und weist stromab des Wärmetauschers 38 beispiels ¬ weise eine Temperatur T6 auf, welche 70°C beträgt und gerin ¬ ger als die Temperatur Tl ist. Ferner kann das Abgas einen Massenstrom von 884 kg/s und einen Druck von einem bar aufweisen. Darüber wird zumindest ein Teil des aus dem Dampferzeuger 20 ausströmenden Abgases dem Wärmetauscher 38 beziehungsweise dem thermochemischen Wärmespeicher 34 zugeführt.

Die endotherme chemische Reaktion ist beispielsweise eine Hinreaktion einer chemischen Gleichgewichtsreaktion. Im Rahmen der Hinreaktion entstehen aus den Edukten der endothermen chemischen Reaktion Produkte der endothermen chemischen Reaktion (Hinreaktion) .

Diese chemische Gleichgewichtsreaktion umfasst auch eine Rückreaktion, welche als eine exotherme chemische Reaktion ausgebildet ist. Dabei sind die Produkte der Hinreaktion Edukte der Rückreaktion, wobei Produkte der Rückreaktion die Edukte der Hinreaktion sind. Die Hinreaktion und/oder die Rückreaktion erfolgt beispielsweise in dem Reaktor, das heißt in dem thermochemischen Wärmespeicher 34.

Im Rahmen der Rückreaktion wird Wärme freigesetzt. Diese im Rahmen der Rückreaktion freiwerdende beziehungsweise freige ¬ setzte Wärme kann für Heizzwecke, insbesondere Fernwärmezwe ¬ cke, genutzt werden. Beispielsweise ist es denkbar, mittels der im Rahmen der Rückreaktion freigesetzten Wärme Dampf zu erzeugen und/oder bereitgestellten Dampf zu erhitzen, insbesondere zu überhitzen, um mittels des erzeugten beziehungs ¬ weise erhitzten Dampfes beispielsweise zumindest einen Teil des Kraftwerks zu erwärmen oder aber die Turbineneinrichtung 22 anzutreiben, insbesondere zu beschleunigen, so dass beispielsweise das Kraftwerk aus einem ersten Lastbereich in einem dem gegenüber höheren, zweiten Lastbereich hochgefahren werden kann.

Vorliegend wird die bei der Rückreaktion freigesetzte Wärme jedoch zu Heizzwecken, insbesondere Fernwärmezwecken, genutzt. Mittels der bei der Rückreaktion freiwerdenden Wärme wird beispielsweise ein Fluid insbesondere in Form von Wasser erwärmt. Das Wasser wird einem weiteren Wärmetauscher 42 des thermochemischen Wärmespeichers zugeführt, was in der Figur durch einen Richtungspfeil 44 veranschaulicht ist. Die bei der Rückreaktion frei werdende Wärme wird dem den Wärmetau- scher 42 durchströmenden Wasser über den Wärmetauscher 42 zugeführt, wodurch das Wasser erwärmt wird. Das erwärmte Wasser wird dem Wärmetauscher 42 abgeführt, was in der Figur durch einen Richtungspfeil 46 veranschaulicht ist. Beispielsweise weist das Wasser einen Massenstrom von 1100 kg/s (Kilogramm pro Sekunde) auf. Das Wasser wird beispielsweise mit einer

Temperatur T7 bereitgestellt, wobei das Wasser mit der Tempe ¬ ratur T7 den Wärmetauscher 42 zugeführt wird. Mittels des Wärmetauschers 42 wird das Wasser auf eine Temperatur T8 er ¬ wärmt, wobei die Temperatur T7 beispielsweise 65°C (Grad Cel- sius) und die Temperatur T8 100°C beträgt. Somit ist die Tem ¬ peratur T8 größer als die Temperatur T7, wobei das Wasser die Temperatur T7 stromauf des Wärmetauschers 42 und die Tempera ¬ tur T8 stromab des Wärmetauschers 42 aufweist. Ferner ist es beispielsweise vorgesehen, dass das Wasser einen Druck von 14,5 bar aufweist, wobei das Wasser mit diesem Druck und der Temperatur T7 bereitgestellt und dem Wärmetauscher 42 zugeführt wird.

Da die Hinreaktion bei 90°C des Abgases bewirkt wird, wird der thermochemische Wärmespeicher bei 90 °C beladen. Da das Wasser mittels des thermochemischen Wärmespeichers 34 auf 130 °C aufgeheizt wird, wird der thermochemische Wärmespeicher 34 bei 130°C entladen. Durch den Einsatz des Wärmetauschers 38 kann eine räumliche Trennung der Edukte der Hinreaktion von dem Abgas realisiert werden, sodass das Abgas die Edukte der Hinreaktion nicht di ¬ rekt berührt. Alternativ ist es denkbar, dass das Abgas die Edukte der Hinreaktion direkt berührt und dabei anströmt bzw. umströmt. Dann entfällt beispielsweise der Wärmetauscher 38. Dies ist auch auf die Rückreaktion übertragbar: Durch den Einsatz des Wärmetauschers 42 kann eine räumliche Trennung der Edukte und/oder Produkte der Rückreaktion von dem Wasser, welches mittels der freigesetzten Wärme erwärmt wird, reali ¬ siert werden, sodass das Wasser die Edukte und/oder Produkte der Rückreaktion nicht direkt berührt. Alternativ ist es denkbar, dass das Wasser die Edukte und/oder Produkte der Rückreaktion direkt berührt und dabei anströmt bzw. umströmt. Dann entfällt beispielsweise der Wärmetauscher 42.

Das mittels des thermochemischen Wärmespeichers 34 erwärmte Wasser kann beispielsweise genutzt werden, um Haushalte mit Warmwasser zu versorgen und/oder um Haushalte zu beheizen. Hierdurch kann ein besonders effizienter Prozess insgesamt realisiert werden. Ferner ist es möglich, eine besonders hohe Flexibilität der Wärmeversorgung zu realisieren. Insbesondere ist es denkbar, Spitzenlasten beziehungsweise hohe Wärmebe- darfe mittels des thermochemischen Wärmespeichers 34 auf energiegünstige Weise abzudecken, da zum Erwärmen des Wassers zumindest ein Teil der im Abgas stromab des Dampferzeugers 20 enthaltenen Energie, zumindest mittelbar, genutzt wird. Je nach Massenstrom des Abgases und des Wassers ist es denkbar, lediglich einen Teil des Abgases stromab des Dampferzeugers 20 den Wärmetauscher 38 und/oder lediglich ein Teil des Wassers dem Wärmetauscher 42 zuzuführen, um insbesondere ein zumindest im Wesentlichen kontinuierliches Erwärmen des Wassers mittels des thermochemischen Wärmespeichers 34 sicherstellen zu können.