Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR OPERATING AN INFRARED RADIATOR ELEMENT AND USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2005/069687
Kind Code:
A1
Abstract:
The invention concerns a method for operating an infrared radiator element comprising: at least one heating tube made of quartz glass; an electric heat conductor, which serves as a radiation source and which is placed inside the at least one heating tube, the at least one heating tube having, at both ends thereof, a gas-tight current feed-through for electrically connecting the heat conductor, and; a cooling tube, which is made of quartz glass and which surrounds the at least one heating tube. A cooling channel for a liquid coolant is formed between the at least one heating tube and the cooling tube. A liquid fluorocarbon, which serves as the coolant for the infrared radiator element, is guided through the cooling channel. This fluorocarbon is solely synthesized from the following chemical elements: fluorine, carbon and oxygen. The invention also concerns the use of a liquid fluorocarbon as a coolant for an infrared radiator element.

Inventors:
ZISSING HOLGER (DE)
LINOW SVEN (DE)
Application Number:
PCT/EP2004/014049
Publication Date:
July 28, 2005
Filing Date:
December 10, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HERAEUS NOBLELIGHT GMBH (DE)
ZISSING HOLGER (DE)
LINOW SVEN (DE)
International Classes:
H05B3/00; H05B3/04; (IPC1-7): H05B3/00; H05B3/04
Foreign References:
DE10041564A12002-03-21
FR2686967A11993-08-06
DE1960875A11971-06-09
Attorney, Agent or Firm:
Kühn, Hans-christian (Schutzrechte Heraeusstrasse 12-14, Hanau, DE)
Download PDF:
Claims:
Patentanmeldung Heraeus Noblelight GmbH Verfahren zum Betreiben eines Infrarotstrahlerelements sowie Verwendung Patentansprüche
1. Verfahren zum Betreiben eines Infrarotstrahlerelements mit mindestens einem Heizrohr aus Kieselglas, mit einem in dem mindestens einen Heizrohr angeordneten elektrischen Heizlei ter als Strahlungsquelle, wobei das mindestens eine Heizrohr an seinen beiden Enden je weils eine gasdichte Stromdurchführung zum elektrischen Anschluss des Heizleiters auf weist, mit einem das mindestens eine Heizrohr umgebenden Kühirohr aus Kieselglas, wobei ein Kühlkanal für ein flüssiges Kühlmittel zwischen dem mindestens einen Heizrohr und dem Kühlrohr ausgebildet ist, dadurch gekennzeichnet, dass als Kühlmittel ein flüssiger Fluor kohlenstoff durch den Kühlkanal geleitet wird, der lediglich aus den chemischen Elementen Fluor, Kohlenstoff und Sauerstoff aufgebaut ist.
2. Verfahren zum Betreiben eines Infrarotstrahlerelements nach Anspruch 1, dadurch gekenn zeichnet, dass der Kühlkanal eine Höhe h im Bereich von 1 bis 3mm aufweist.
3. Verfahren zum Betreiben eines Infrarotstrahlerelements nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass im Bereich des Heizleiters mindestens ein Reflektor zur Re flexion von Strahlung in Richtung eines zu bestrahlenden Gutes angeordnet wird.
4. Verfahren zum Betreiben eines Infrarotstrahlerelements nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Perfluorpolyether als flüssiger Fluorkohlenstoff eingesetzt wird.
5. Verfahren zum Betreiben eines Infrarotstrahlerelements nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der flüssige Fluorkohlenstoff zusätzlich das chemische Element Chlor enthält.
6. Verfahren zum Betreiben eines Infrarotstrahlerelements nach Anspruch 5, dadurch gekenn zeichnet, dass Polyfluorchlorethylen als flüssiger Fluorkohlenstoff eingesetzt wird.
7. Verfahren zum Betreiben eines Infrarotstrahlerelements nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der mindestens eine Heizleiter mit einer Heizleitertemperatur im Bereich von 1200°C bis 3000°C betrieben wird.
8. Verfahren zum Betreiben eines Infrarotstrahlerelements nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Stromdurchführungen zum elektrischen Anschluss des Heizleiters mit Druckluft gekühlt werden.
9. Verwendung eines flüssigen Fluorkohlenstoffs, welcher lediglich die chemischen Elemente Fluor, Kohlenstoff und Sauerstoff enthält, als Kühlmittel für ein Infrarotstrahlerelement mit mindestens einem Heizrohr aus Kieselglas, mit einem in dem mindestens einen Heizrohr angeordneten elektrischen Heizleiter als Strahlungsquelle, wobei das mindestens eine Heiz rohr an seinen beiden Enden jeweils eine gasdichte Stromdurchführung zum elektrischen Anschluss des Heizleiters aufweist, und mit einem das mindestens eine Heizrohr umgeben den Kühirohr aus Kieselglas, wobei ein Kühlkanal zur Durchleitung des Kühlmittels zwi schen dem mindestens einen Heizrohr und dem Kühlrohr ausgebildet ist.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass der Kühlkanal eine Höhe h im Bereich von 1 bis 3mm aufweist.
11. Verwendung nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass im Bereich des Heizleiters mindestens ein Reflektor zur Reflexion von Strahlung in Richtung eines zu bestrahlenden Gutes angeordnet ist.
12. Verwendung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass Perfluor polyether als flüssiger Fluorkohlenstoff verwendet wird.
13. Verwendung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der flüssi ge Fluorkohlenstoff zusätzlich das chemische Element Chlor enthält.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, dass Polyfluorchlorethylen als flüssiger Fluorkohlenstoff eingesetzt wird.
15. Verwendung nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass der min destens eine Heizleiter aus einem Carbonband oder aus Wolfram gebildet ist.
16. Verwendung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass der Re flektor im Kühlkanal angeordnet ist.
17. Verwendung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Re flektor auf einer dem Heizleiter abgewandten Oberfläche des mindestens einen Heizrohrs angeordnet ist.
18. Verwendung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Re flektor auf dem Kühlrohr angeordnet ist.
19. Verwendung nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, dass der Re flektor als Beschichtung ausgeführt ist.
20. Verwendung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass der Re flektor aus Gold gebildet ist.
Description:
Patentanmeldung Heraeus Noblelight GmbH Verfahren zum Betreiben eines lnfrarotstrahlerelements sowie Verwendung Die Erfindung betrifft ein Verfahren zum Betreiben eines Infrarotstrahlerelements mit mindes- tens einem Heizrohr aus Kieselglas, mit einem in dem mindestens einen Heizrohr angeordneten elektrischen Heizleiter als Strahlungsquelle, wobei das mindestens eine Heizrohr an seinen beiden Enden jeweils eine gasdichte Stromdurchführung zum elektrischen Anschluss des Heiz- leiters aufweist, mit einem das mindestens eine Heizrohr umgebenden Kühlrohr aus Kieselglas, wobei ein Kühlkanal für ein flüssiges Kühlmittel zwischen dem mindestens einen Heizrohr und dem Kühlrohr ausgebildet ist. Die Erfindung betrifft weiterhin die Verwendung eines flüssigen Fluorkohlenstoffs.

Die DE 100 41 564 A1 offenbart ein mittels eines flüssigen Kühlmittels kühlbares Infrarotstrah- lerelement. In den Figuren 5a bis 5b sowie 6a bis 6c ist ein Infrarotstrahlerelement mit mindes- tens einem Heizrohr aus Kieselglas und mit einem in dem mindestens einen Heizrohr angeord- neten elektrischen Heizleiter als Strahlungsquelle gezeigt, wobei das mindestens eine Heizrohr an seinen beiden Enden jeweils eine gasdichte Stromdurchführung zum elektrischen Anschluss des Heizleiters aufweist. Das mindestens eine Heizrohr umgibt ein Kühlrohr aus Kieselglas, wobei ein Kühlkanal für ein flüssiges Kühlmittel zwischen dem mindestens einen Heizrohr und dem Kühlrohr ausgebildet ist, das zudem einen von mindestens einem Teil des Kühlmittels durchströmten Reflektor enthält. Als flüssiges Kühlmittel für den Infrarotstrahler ist lediglich Wasser genannt.

Die DD 257 200 A1 beschreibt eine Infrarot-Hochleistungsstrahlungsquelle für medizinische Zwecke, bei welcher ein Infrarotstrahler in einem Mantelrohr angeordnet ist. Zwischen dem Infrarotstrahler und dem Mantelrohr wird ein Kühlmedium hindurchgeleitet, wobei in diesem Fall Wasser als Kühlmedium offenbart ist. Sowohl auf dem Mantelrohr als auch auf dem Infrarot- strahler befinden sich Reflektorschichten.

Die DE-OS 19 60 875 offenbart eine Vorrichtung zum berührungsfreien Erhitzen von mit Lö- sungsmitteln versehenem Textilgut. Dabei werden Infrarotstrahler in einem Quarzglasrohr ein- gesetzt, wobei das Quarzglasrohr gekühlt wird. Als Kühlmittel ist Luft offenbart.

Die WO 00/73533 A1 beschreibt ein Fenster in einer thermischen Behandlungskammer, wel- ches für Infrarotstrahlung transparent ist und von einem Kühlfluid durchströmt wird. Dabei be- strahlt eine Infrarotstrahlungsquelle außerhalb der Behandlungskammer ein Behandlungsgut in der Behandlungskammer. Als Kühlfluid wird flüssiger Fluorkohlenstoff eingesetzt. Als Strah- lungsquellen werden Wolfram-Halogenlampen offenbart, bei denen der Halogenkreislauf inner- halb weniger Stunden zusammenbrechen würde, wenn die Wandtemperatur der Strahlungs- quelle unter 250°C sinken würde. Allerdings wird auch die Möglichkeit, andere Typen von Strah- lern zu verwenden, erwähnt.

Die FR 26 86 967 A1 offenbart eine Vorrichtung zur Behandlung von Halbleiterbauteilen. Dabei wird ein doppelwandiges Fenster mittels IR-durchlässigen Flüssigkeiten gekühlt, welches zwi- schen mehreren Infrarotstrahlern und dem Behandlungsgut angeordnet ist. Als IR-durchlässige Flüssigkeiten sind dabei Perfluorpolyether und Trifluormonochlorethylen genannt.

Die EP 0 424 183 A1 offenbart eine CVD-Vorrichtung zum Aufbringen einer metallischen Be- schichtung auf ein Substrat mit einer Behandlungskammer, welche ein IR-transparentes Fens- ter aufweist. Im IR-transparenten Fenster ist ein Kühlkanal zur Hindurchleitung eines flüssigen, im wesentlichen IR-transparenten Kühlmittels vorgesehen. Als verwendbare Kühlmittel sind dabei diverse Alkane, Alkine, aromatische Verbindungen, Alkohole, Ether, Carboxylsäuren, Karbonsäuren, Esther, Ketone, Anhydride, Amide, Amine und Flüssigkeiten auf Silikonbasis genannt, die bei Raumtemperatur in flüssigem Zustand vorliegen.

Die US 4,550, 684 offenbart eine Vorrichtung zur Dampfphasenabscheidung, wobei ein wasser- gekühltes Fenster zwischen einem Strahler und dem Behandlungsgut angeordnet ist, welches für die Strahlung, die vom Strahler zur Erwärmung des Behandlungsgutes emittiert wird, im we- sentlichen transparent ist.

Es ist nun Aufgabe der Erfindung, ein verbessertes Verfahren zum Betreiben eines Infrarot- strahlerelements bereitzustellen, mit welchem eine höhere Leistungsausbeute erzielt wird. Wei- terhin soll eine neuartige Verwendung flüssiger Fluorkohlenwasserstoffe angegeben werden.

Die Aufgabe wird für das Verfahren dadurch gelöst, dass als Kühlmittel für das Infrarotstrahler- element ein flüssiger Fluorkohlenstoff durch den Kühlkanal geleitet wird, der lediglich aus den chemischen Elementen Fluor, Kohlenstoff und Sauerstoff aufgebaut ist.

Ein derartiges Verfahren ermöglicht es, einen Infrarotstrahler in Bereichen einzusetzen, in de- nen die mit der Erzeugung der Infrarotstrahlung einhergehende starke Wärmeentwicklung nicht tolerierbar ist. Dabei ist die Emissionswellenlänge des Infrarotstrahlers jedoch frei wählbar.

Im Vergleich zu herkömmlichen Systemen-zum Beispiel die aus der DE 100 41 564 A1 be- kannten Systeme-mit einer Leistungsausbeute beziehungsweise Effizienz (= Verhältnis von abgegebener zu aufgenommener Leistung) von 25-50% wird mit dem erfindungsgemäßen Verfahren eine Leistungsausbeute beziehungsweise Effizienz des Infrarotstrahlerelements von bauartbedingt ca. 70% bis hin zu 80% erreicht. Weiterhin ist es nun möglich, weitaus größere Bahnbreiten zu bestrahlen beziehungsweise ausgedehntere Prozessräume zu realisieren. Eine flexiblere Anordnung des Infrarotstrahlerelements ist möglich, wobei auch der direkte Einsatz in Vakuumkammern oder explosionsgeschützten Räumen in Frage kommt. Selbst eine Durchfüh- rung des erfindungsgemäßen Verfahrens unter beengten Raumverhältnissen stellt kein Prob- lem dar. Hohe spezifische Strahlungsleistungen der Heizleiter bis zu 100-200 W/cm sind rea- lisierbar.

Dabei hat es sich bewährt, wenn der Kühlkanal eine Höhe h im Bereich von 1 bis 3mm auf- weist. Die Abmessungen des Kühlkanals sind optimal, wenn zum einen eine ausreichende Menge an Kühlmittel je Zeiteinheit transportiert werden kann, um das Heizrohr zu kühlen. Zum anderen sollte der Kühlkanal jedoch schmal bleiben, damit nur eine möglichst geringe Menge an Strahlung absorbiert wird.

Hierbei ist der benötigte Massenstrom abhängig von der zu kühlenden Leistung. Der durch den Kühlkanal strömende Massenfluss wird durch die Druckdifferenz und die Viskosität bestimmt. Die Abmessung des Kühlkanals ergibt sich also aus der Druckfestigkeit des Hüllrohres.

Die Effizienz des Verfahrens kann noch gesteigert werden, wenn im Bereich des Heizleiters mindestens ein Reflektor zur Reflexion von Strahlung in Richtung eines zu bestrahlenden Gutes angeordnet wird.

Dabei hat es sich bewährt, Perfluorpolyether als flüssigen Fluorkohlenstoff einzusetzen.

Von Vorteil ist es weiterhin, wenn dass der flüssige Fluorkohlenstoff zusätzlich das chemische Element Chlor enthält. Somit kann auch Polyfluorchlorethylen als flüssiger Fluorkohlenstoff ein- gesetzt wird.

Es ist bevorzugt, den mindestens einen Heizleiter mit einer Heizleitertemperatur im Bereich von 1200°C bis 3000°C, insbesondere im Bereich von 2000°C bis 2500°C, zu betreiben.

Weiterhin hat es sich als günstig erwiesen, wenn die Stromdurchführungen zum elektrischen Anschluss des Heizleiters bei sehr hohen Betriebsströmen mit Druckluft gekühlt werden.

Die Verwendung eines flüssigen Fluorkohlenstoffs, welcher lediglich die chemischen Elemente Fluor, Kohlenstoff und Sauerstoff enthält, als Kühlmittel für ein Infrarotstrahlerelement mit min- destens einem Heizrohr aus Kieselglas, mit einem in dem mindestens einen Heizrohr angeord- neten elektrischen Heizleiter als Strahlungsquelle, wobei das mindestens eine Heizrohr an sei- nen beiden Enden jeweils eine gasdichte Stromdurchführung zum elektrischen Anschluss des Heizleiters aufweist, und mit einem das mindestens eine Heizrohr umgebenden Kühlrohr aus Kieselglas, wobei ein Kühlkanal zur Durchleitung des Kühlmittels zwischen dem mindestens einen Heizrohr und dem Kühlrohr ausgebildet ist, ist ideal.

Besonders bevorzugt ist dabei ein Kühlkanal mit einer Höhe h im Bereich von 1 bis 3mm.

Es hat sich bewährt, im Bereich des Heizleiters mindestens einen Reflektor zur Reflexion von Strahlung in Richtung eines zu bestrahlenden Gutes anzuordnen.

Insbesondere die Verwendung von Perfluorpolyether als flüssiger Fluorkohlenstoff ist bevor- zugt.

Auch eine Verwendung flüssiger Fluorkohlenstoffe, die zusätzlich das chemische Element Chlor enthalten, insbesondere von Polyfluorchlorethylen, hat sich bewährt.

Besonders bevorzugt ist es, wenn der mindestens eine Heizleiter aus einem Carbonband oder aus Wolfram gebildet ist.

Es hat sich bewährt, wenn der Reflektor im Kühlkanal, auf einer dem Heizleiter abgewandten Oberfläche des mindestens einen Heizrohrs oder auf dem Kühlrohr angeordnet ist.

Es ist von Vorteil für das Gewicht und die Dimensionen des Infrarotstrahlerelements, wenn der Reflektor als Beschichtung ausgeführt ist.

Besonders bevorzugt ist aufgrund der hohen IR-Reflektivität ein Reflektor aus Gold.

Die Figuren 1 bis 1b zeigen ein Beispiel für ein Infrarotstrahlerelement, das gemäß dem erfin- dungsgemäßen Verfahren verwendet werden kann.

So zeigt : Fig. 1 eine Seitenansicht eines Infrarotstrahlerelements, Fig. 1a den Querschnitt A-A'durch das Infrarotstrahlerelement, Fig. 1b den Längsschnitt B-B'aus Figur 1a.

Figur 1 zeigt ein Infrarotstrahlerelement 1, das ein langgestrecktes Kühlrohr 5 aus Quarzglas mit einem darauf aufgebrachten Reflektor 7 in Form einer Goldschicht aufweist. Das Kühlrohr 5 weist an seinen Enden die Stutzen 8a, 8b aus Quarzglas auf, die zur Zu-und Ableitung von Kühlmittel dienen. Die beiden Enden des Infrarotstrahlerelements 1 weisen gasdichte Strom- durchführungen 4a, 4b auf, über welche hier nicht erkennbare Heizleiter 3a, 3b (siehe Figur 1 a) elektrisch versorgt werden können.

Figur 1 a zeigt einen Querschnitt A-A'durch das Infrarotstrahlerelement 1 im Bereich eines Stutzens 8b. Im Inneren des Kühlrohres 5 ist nun ein Zwillingsrohr erkennbar, das sich aus zwei miteinander verbundenen Heizrohren 2a, 2b aus Quarzglas zusammensetzt. In jedem Heizrohr 2a, 2b befindet sich ein Heizleiter 3a, 3b, der als Wendel aus Wolfram ausgebildet ist. Zwischen Kühlrohr 5 und den Heizrohren 2a, 2b befindet sich ein Kühlkanal 6 der Höhe h, der hier bereits mit einem Kühlmittel (Wellenschraffur) gefüllt ist. Als Kühlmittel wird Perfluorpolyether einge- setzt.

Figur 1b zeigt ausschnittsweise einen Längsschnitt B-B' (siehe Figur 1a) durch das Infrarot- strahlerelement 1.