Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR OPERATING AN ISLAND NETWORK, AND ISLAND NETWORK
Document Type and Number:
WIPO Patent Application WO/2019/001986
Kind Code:
A1
Abstract:
The invention relates to a method for operating an island network (1) comprising a group of voltage-adjusting converters (9a, 9b) for converting power of regenerative energy sources (3a, 3b) into AC power in a manner corresponding to a frequency/power characteristic curve (20a, 20b). The island network (1) further comprises a load (6), which depends on a voltage amplitude Û0 of an alternating voltage of the island network (1), and a control unit (11) which transmits a specification value of the voltage amplitude Û0 to the group. The power Pload to be consumed by the load (6) is adapted by changing the frequency/power characteristic curve (20a, 20b) of one of the converters (9a, 9b) depending on the available power of the regenerative energy source (3a, 3b) to a higher frequency for a given power in order to check whether the available power of the regenerative energy source (3a, 3b) lies above the current power or to a lower frequency for a given power if the regenerative energy source (3a, 3b) cannot generate the power assigned to the current frequency according to the frequency/power characteristic curve (20a, 20b); determining a frequency f2 of the alternating voltage in the island network (1) as a result of the change of the frequency/power characteristic curve (20a, 20b) by the control unit (11); and increasing a specification value of the voltage amplitude Û0 to the group by means of the control unit (11) if the determined frequency f2 lies above a nominal frequency fnom of the island network (1) or lowering the specification value if the determined frequency f2 lies below the nominal frequency fnom. The invention also relates to an island network (1) for carrying out the method.

Inventors:
FALK ANDREAS (DE)
HARDT CHRISTIAN (DE)
BECHTEL NEIDHARDT (DE)
HERMELING DIRK (DE)
Application Number:
PCT/EP2018/065894
Publication Date:
January 03, 2019
Filing Date:
June 14, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SMA SOLAR TECHNOLOGY AG (DE)
International Classes:
H02J3/38
Foreign References:
DE102013218892A12015-03-26
DE102013102603A12014-09-18
DE102014108395A12015-12-17
DE10140783A12003-04-03
CA2950809A12015-05-21
EP2940826A12015-11-04
EP3185386A12017-06-28
Download PDF:
Claims:
PATENTANSPRÜCHE

1. Verfahren zum Betreiben eines Inselnetzes (1 ) mit

- einer Gruppe spannungsstellender Umrichter (9a, 9b), die zur Umwandlung von Leistung angeschlossener regenerativer Energiequellen (3a, 3b) in AC-Leistung entsprechend einer Frequenz-Leistung-Kennlinie (20a, 20b) eingerichtet sind, wobei die Gruppe mindestens einen Umrichter (9a, 9b) umfasst,

- einer Last (6), deren Leistungsverbrauch von einer Spannungsamplitude Ü0 einer Wechselspannung des Inselnetzes (1 ) abhängt, und

- einer Steuereinheit (1 1 ), die der Gruppe von spannungsstellenden Umrichtern (9a, 9b) einen Vorgabewert der Spannungsamplitude Ü0 übermittelt,

wobei das Verfahren die folgenden Schritte zur Anpassung einer von der Last (6) zu verbrauchenden Leistung PLast umfasst:

- Verändern der Frequenz-Leistungs-Kennlinie (20a, 20b) des mindestens einen Umrichters (9a, 9b) in Abhängigkeit einer verfügbaren Leistung der regenerativen Energiequelle (3a, 3b),

- wobei die Frequenz-Leistungs-Kennlinie (20, a 20b) zumindest abschnittsweise zu einer höheren Frequenz bei gegebener Leistung geändert wird, um zu überprüfen, ob die verfügbare Leistung der regenerativen Energiequelle (3a, 3b) über der aktuellen Leistung liegt, und

- wobei die Frequenz-Leistungs-Kennlinie (20a, 20b) zumindest abschnittsweise zu niedrigerer Frequenz bei gegebener Leistung geändert wird, wenn die regenerative Energiequelle (3a, 3b) die gemäß der Frequenz-Leistungs-Kennlinie (20a, 20b) der aktuellen Frequenz zugeordnete Leistung nicht erbringen kann,

- Bestimmen einer Frequenz f2 der Wechselspannung in dem Inselnetz (1 ) als Folge der Veränderung der Frequenz-Leistungs-Kennlinie (20a, 20b) durch die Steuereinheit (1 1 ), und - Neubestimmen eines Vorgabewerts der Spannungsamplitude Ü0 und Übermittlung des neubestimmten Vorgabewertes an die Gruppe der spannungsstellenden Umrichter (9a, 9b) durch die Steuereinheit (1 1 ), wobei der Vorgabewert erhöht wird, wenn die bestimmte Frequenz f2 über einer Nominalfrequenz fnom liegt, und der Vorgabewert erniedrigt wird, wenn die bestimmte Frequenz f2 unter der Nominalfrequenz fnom liegt.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass vor der Erhöhung des Vorgabewertes der Spannungsamplitude Ü0,

- überprüft wird, ob die über den zumindest einen Umrichter (9a, 9b) fließende Leistung Pa, P eine Leistungsgrenze Pmax,a, max,b des entsprechenden Umrichters (9a, 9b) überschreitet oder zu überschreiten droht, wobei eine Erhöhung des Vorgabewertes der Spannungsamplitude Ü0 nur dann erfolgt, wenn die Überprüfung signalisiert, dass auch mit erhöhtem Vorgabewert der Spannungsamplitude Ü0 ein Überschreiten der Leistungsgrenze Pmax,a, Pmax,b des entsprechenden Umrichters (9a, 9b) ausgeschlossen ist, oder

- überprüft wird, ob ein Verbrauch PLast der Last (6) einen maximal zulässigen Verbrauch Pmax,Last der Last (6) überschreitet oder zu überschreiten droht, wobei eine Erhöhung des Vorgabewertes der Spannungsamplitude Ü0 nur dann erfolgt, wenn die Überprüfung signalisiert, dass auch mit erhöhtem Vorgabewert der Spannungsamplitude Ü0 ein Überschreiten des maximal zulässigen Verbrauchs Pmax,i_ast der Last (6) ausgeschlossen ist. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei einer Überprüfung, ob die regenerative Energiequelle (3a, 3b) die gemäß der Frequenz-Leistungs- Kennlinie (20a, 20b) der aktuellen Frequenz zugeordnete Leistung erbringen kann, ein Spannungswert an einem dem entsprechenden Umrichter (9a, 9b) zugeordneten Gleichspannungs-Zwischenkreis gemessen wird. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass dann, wenn der gemessene Spannungswert einen Spannungsschwellwert unterschreitet, signalisiert wird, dass die regenerative Energiequelle (3a, 3b) die gemäß der Frequenz-Leistungs-Kennlinie (20a, 20b) der aktuellen Frequenz zugeordnete Leistung nicht erbringen kann. 5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Leistungsgrenze Pmax,a, Pmax,b des entsprechenden Umrichters (9a, 9b) aufgrund von maximal erlaubten Strom- und/oder Spannungswerten des Umrichters (9a, 9b) ermittelt wird. 6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass bei bekannten Werten der Leistungsgrenze Pmax,a, Pmax.b des Umrichters (9a, 9b), der dem Umrichter (9a, 9b) zugeordneten regenerativen Energiequelle (3a, 3b) und/oder des maximal zulässigen Verbrauchs Pmax,i_ast der Last (6) die Anpassung der von der Last (6) zu verbrauchenden Leistung derart erfolgt, dass

- die über den zumindest einen Umrichter (9a, 9b) fließende Leistung Pa, P um mindestens einen vorgegebenen Toleranzwert unterhalb der Leistungsgrenze Pmax,a, Pmax.b des entsprechenden Umrichters (9a, 9b) und/oder der dem Umrichter (9a, 9b) zugeordneten regenerativen Energiequelle (3a, 3b) liegt, oder

- ein Verbrauch PLast der Last (6) um mindestens einen vorgegebenen Toleranzwert unterhalb des maximal zulässigen Verbrauchs Pmax,i_ast der Last (6) liegt. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Veränderung der Frequenz-Leistungs-Kennlinie (20a, 20b) eine Parallelverschiebung zumindest eines Abschnittes der Frequenz-Leistungs-Kennlinie (20a, 20b) in Richtung der Frequenz- Achse aufweist. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Frequenz-Leistungs-Kennlinie (20a, 20b) zumindest in einem Abschnitt durch eine Gerade beschrieben wird, wobei die Veränderung der Frequenz-Leistungs-Kennlinie (20a, 20b) eine Änderung der Geradensteigung (aa, ab) in dem betreffenden Abschnitt aufweist. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gruppe eine Mehrzahl von spannungsstellenden Umrichtern (9a, 9b) beinhaltet, die jeweils zur Umwandlung von Leistung angeschlossener regenerativer Energiequellen (3a, 3b) in AC- Leistung entsprechend einer Frequenz-Leistung-Kennlinie (20a, 20b) eingerichtet sind und wobei das Verändern der Frequenz-Leistungs-Kennlinie (20a, 20b) in Abhängigkeit der verfügbaren Leistung der dem Umrichter (9a, 9b) zugeordneten Energiequelle (3a, 3b) für jeden einzelnen der Umrichter (9a, 9b) erfolgt. 10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schritte zur Anpassung der von der Last (6) zu verbrauchenden Leistung PLast wiederholt durchlaufen werden, um eine zeitliche Änderung einer maximal verfügbaren Leistung der regenerativen Energiequelle (3a, 3b) zu verfolgen oder eine Leistungsgrenze Pmax,a, Pmax,b des entsprechenden Umrichters (9a, 9b) zeitlich zu verfolgen. 1 1. Inselnetz (1 ) mit

- einer Gruppe aus zumindest einem einen DC/AC-Wandler (8a, 8b) aufweisenden spannungsstellenden Umrichter (9a, 9b), dessen Eingang an eine regenerative Energiequelle (3a, 3b) und dessen Ausgang an eine AC-Leitung (7) des Inselnetzes (1 ) angeschlossen ist, - wobei der Umrichter (9a, 9b) ausgelegt ist, eine Wechselspannung in dem Inselnetz (1 ) in Abhängigkeit einer dem Umrichter (9a, 9b) zugeordneten Frequenz-Leistungs-Kennlinie (20a, 20b) zu stellen, - einer Last (6), deren Leistungsverbrauch von einer Spannungsamplitude Ü0 der Wechselspannung in dem Inselnetz (1 ) abhängig ist,

- einer Steuereinheit (1 1 ) zur Steuerung der Gruppe des zumindest einen spannungsstellenden Umrichters (9a, 9b), die ausgelegt ist, der Gruppe einen Vorgabewert der Spannungsamplitude Ü0 für die Wechselspannung des Inselnetzes (1 ) zu übermitteln und - einer mit der Steuereinheit (1 1 ) verbundenen Detektionseinheit (18) zur Bestimmung einer Frequenz f2 der Wechselspannung in dem Inselnetz (1 ),

- wobei die Steuereinheit (1 1 ) in Verbindung mit der Gruppe des zumindest einen Umrichters (9a, 9b) und der an den Umrichter (9a, 9b) angeschlossenen regenerativen Energiequelle (2a, 2b) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10 ausgelegt ist. 12. Inselnetz (1 ) nach Anspruch 1 1 , dadurch gekennzeichnet, dass zumindest ein Umrichter (9a, 9b) der Gruppe in Verbindung mit der an den Umrichter (9a, 9b) angeschlossenen regenerativen Energiequelle (2a, 2b) als eine Photovoltaik (PV) - Anlage, oder eine Windkraft - Anlage ausgebildet ist. 13. Inselnetz (1 ) nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass das Inselnetz (1 ) eine Hochspannungs-Übertragungsstrecke mit einer Hochspannungsleitung (17) aufweist, die über einen Transformator (19) an die AC-Leitung (7) des Inselnetzes (1 ) angeschlossen ist. 14. Inselnetz (1 ) nach einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass die Last (6) als eine Gleichstromlast (14), insbesondere als ein Elektrolyseur, ausgebildet ist, die/der über einen AC/DC-Wandler (4) an die AC-Leitung (7) des Inselnetzes (1 ) angeschlossen ist. 15. Inselnetz (1 ) nach einem der Ansprüche 1 1 bis 14, dadurch gekennzeichnet, dass das Inselnetz (1 ) eine Speichereinheit (15) aufweist, die über einen bidirektional betreibbaren stromstellenden DC/AC-Wandler (16) an die AC-Leitung (7) das Inselnetzes (1 ) angeschlossen ist.

Description:
VERFAHREN ZUM BETRIEB EINES INSELNETZES UND INSELNETZ

TECHNISCHES GEBIET DER ERFINDUNG

Die Erfindung bezieht sich auf ein Verfahren zum Betrieb eines Inselnetzes und ein Inselnetz, das mit einem derartigen Verfahren betrieben wird. Insbesondere - aber nicht ausschließlich - handelt es sich dabei um ein Inselnetz, bei dem elektrische Leistung eines regenerativen Energieerzeugers einem Elektrolyseur als Energie-Langzeitspeicher und Last in dem Inselnetz zugeführt wird.

STAND DER TECHNIK

Bei Inselnetzen sind Energieerzeuger über eine oder mehrere AC-Leitungen zum Transport der Leistung mit einem oder mehreren Energieverbrauchern verbunden. Da das Inselnetz nur sehr begrenzte Möglichkeiten einer Leistungsspeicherung aufweist, ist zu jeder Zeit eine ausgeglichene Bilanz von durch die Energieerzeuger erzeugter Leistung einerseits und von den Energieverbrauchern verbrauchter Leistung andererseits einzuhalten. Eine Frequenz einer Wechselspannung in dem Inselnetz signalisiert dabei, ob die Bilanz tendiert, sich zugunsten eines Leistungsverbrauches (Frequenz unterhalb der Nominalfrequenz) oder zugunsten einer Leistungserzeugung (Frequenz oberhalb der Nominalfrequenz) zu verschieben. Die Frequenz dient als Maß dafür, in welche Richtung - Leistungserzeugung oder Leistungsverbrauch - die Leistungsbilanz verschoben werden muss, um der tendenziellen Bilanzverschiebung entgegen zu wirken. Dabei wird bei herkömmlichen Inselnetzen üblicherweise eine Leistungserzeugung abhängig von einem jeweiligen Leistungsverbrauch geregelt, d. h. der Leistungsverbrauch definiert die Leistungserzeugung.

In manchen Inselnetzen ist es jedoch wünschenswert, nicht die Leistungserzeugung abhängig vom Leistungsverbrauch zu regeln, sondern umgekehrt, den Leistungsverbrauch in Abhängigkeit einer aktuell maximal verfügbaren Leistungserzeugung zu regeln. Dies ist insbesondere dann der Fall, wenn das Inselnetz einen regenerativen Energieerzeuger beinhaltet, dessen erzeugte Leistung einem Langzeitspeicher, beispielsweise einem Elektrolyseur als Last zugeführt werden soll. Hier ist das Ziel, den oder die Energieerzeuger möglichst stets bei der jeweilig zur Verfügung stehender Leistung zu betreiben, um ein Maximum dieser Leistung in einem geeigneten Energieträger (hier: Wasserstoff) zu speichern.

Aus dem Stand der Technik sind Inselnetze mit einer regenerativem Energieerzeuger und einem Elektrolyseur als Last bekannt. Jedoch beinhalten diese zum Zweck einer Erzeugung der Wechselspannung in dem Inselnetz neben dem als Last operierenden Langzeit- Energiespeicher meist einen kurzzeitig in seinem Arbeitspunkt variierbaren Energiespeicher, beispielsweise eine Batterie. Dieser kurzzeitig variierbare Energiespeicher, fortan schlicht als Energiespeicher bezeichnet, ist über einen bidirektional betreibbaren Umrichter an eine AC- Leitung des Inselnetzes angeschlossen. Er hat die Aufgabe, einerseits eine Wechselspannung mit konstanter Spannungsamplitude in dem Inselnetz zu stellen, und andererseits den Leistungsfluss zu der Last bei einer gegebenenfalls fluktuierenden Leistungserzeugung des regenerativen Energieerzeugers durch Laden oder Entladen zu vergleichmäßigen. Hierzu ist der dem Energiespeicher zugeordnete Umrichter spannungsstellend und bidirektional ausgebildet. Ebenfalls sind Inselnetze bekannt, bei denen statt dem Energiespeicher ein Dieselgenerator vorgesehen wird, der die Aufgabe des Energiespeichers übernimmt und einerseits eine Wechselspannung mit konstanter Spannungsamplitude und andererseits den Leistungsfluss zu der Last durch entsprechende Änderung einer Primärenergiezufuhr (hier Kraftstoff) vergleichmäßigt.

In einem herkömmlichen Inselnetz ist somit stets ein Energiespeicher und/oder ein Dieselgenerator als Netzbildner und Puffer einer gegebenenfalls stark fluktuierenden Leistung des regenerativen Energieerzeugers vorzuhalten. Dieser zieht nicht nur eine beträchtliche Investition in der Anschaffung, sondern zusätzlich auch Kosten beim Betrieb (z.B. Kraftstoffkosten) nach sich. Des Weiteren ist eine zusätzliche gegebenenfalls wartungsanfällige Komponente erforderlich, wodurch der Betrieb des Inselnetzes aufwändig gestaltet wird.

Aus der DE 10140783 A1 ist eine Vorrichtung zum gleichberechtigten Parallelbetrieb von wenigstens zwei induktiv gekoppelten Wechselrichtern unter Berücksichtigung einer vorgewählten Frequenzstatik und einer vorgewählten Spannungsstatik bekannt.

Die Schrift CA 2950809 A1 offenbart ein Verfahren zur automatischen Kennlinien-Steuerung von Wechselrichtern eines Inselnetzes. Bei dem Verfahren werden Steigungen einer Frequenz- Leistungs (f-P) - Kennlinie und einer Spannungs-Blindleistungs (U-Q) - Kennlinie der Wechselrichter aktiv variiert, um auch bei einer Laständerung eine Frequenz und eine Spannung der Wechselspannung in dem Inselnetz abweichungsfrei aufrechtzuerhalten. Das Verfahren nutzt eine Kleinsignal-Stabilitätsanalyse zur Verifikation einer Umsetzbarkeit der aktiv geänderten Kennlinien.

Die EP 2940826 A1 offenbart einen Leistungswandler, dessen Steuerverfahren nicht geändert werden muss, wenn ein Betrieb eines Inselnetzes, an das der Leistungswandler zusammen mit anderen Erzeugungseinheiten angeschlossen ist, von einem spannungsstellenden in einen stromstellenden Betrieb geändert wird.

Die EP 3185386 A1 offenbart ein Verfahren zur Steuerung eines Inselnetzes mit einer erneuerbaren Erzeugungseinheit und einem Synchrongenerator. Die erneuerbare Erzeugungseinheit ist ausgelegt, eine erste Leistung kennliniengesteuert an das Inselnetz zu übertragen und kann parallel mit einem Synchrongenerator, der eine zweite Leistung an das Inselnetz überträgt, betrieben werden. Der Synchrongenerator wird gestartet, wenn eine Frequenz des Inselnetzes unterhalb eines Frequenzschwellwertes und/oder eine Spannung des Inselnetzes unterhalb eines Spannungsschwellwertes liegen. Der Synchrongenerator wird gestoppt, wenn die zweite Leistung unterhalb eines Leistungsschwellwertes liegt.

AUFGABE DER ERFINDUNG

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betrieb eines Inselnetzes mit einer Last und zumindest einem spannungsstellenden Umrichter, an dessen Eingang eine regenerative Energiequelle angeschlossen ist, aufzuzeigen, wobei der Leistungsverbrauch der Last so gesteuert wird, dass ein den spannungsstellenden Umrichter und die an diesen angeschlossene regenerative Energiequelle umfassender Energieerzeuger möglichst bei maximal verfügbarer Leistung betrieben wird. Dabei soll das Verfahren geeignet sein, das Inselnetz auch ohne einen Netzbildner in Form eines bidirektional betreibbaren Energiespeichers oder eines Dieselgenerators zu betreiben. Es ist weiterhin Aufgabe der Erfindung, ein Inselnetz mit einem derartigen Verfahren aufzuzeigen.

LÖSUNG

Die Aufgabe der Erfindung wird durch ein Verfahren zum Betrieb eines Inselnetzes mit den Merkmalen des unabhängigen Patentanspruchs 1 gelöst. Die abhängigen Patentansprüche 2 bis 10 sind auf bevorzugte Ausführungsformen des Verfahrens gerichtet. Der unabhängige Patentanspruch 1 1 zielt auf ein Inselnetz mit einem derartigen Verfahren. Die abhängigen Patentansprüche 12 bis 15 sind auf vorteilhafte Ausführungsformen des Inselnetzes gerichtet.

BESCHREIBUNG DER ERFINDUNG

Bei einem erfindungsgemäßen Verfahren zum Betreiben eines Inselnetzes umfasst das In sei netz

eine Gruppe spannungsstellender Umrichter, die zur Umwandlung von Leistung angeschlossener regenerativer Energiequellen in AC-Leistung entsprechend einer Frequenz- Leistungs-Kennlinie eingerichtet sind, wobei die Gruppe mindestens einen Umrichter umfasst, eine Last, deren Leistungsverbrauch von einer Spannungsamplitude Ü 0 einer Wechselspannung des Inselnetzes abhängt, und

eine Steuereinheit, die der Gruppe von spannungsstellenden Umrichtern einen Vorgabewert der Spannungsamplitude Ü 0 übermittelt. Dabei umfasst das Verfahren die folgenden Schritte zur Anpassung einer von der Last zu verbrauchenden Leistung P Las t:

Verändern der Frequenz-Leistungs-Kennlinie des mindestens einen Umrichters in Abhängigkeit einer verfügbaren Leistung der regenerativen Energiequelle,

wobei die Frequenz-Leistungs-Kennlinie zumindest abschnittsweise zu einer höheren Frequenz bei gegebener Leistung geändert wird, um zu überprüfen, ob die verfügbare Leistung der regenerativen Energiequelle über der aktuellen Leistung liegt, und

wobei die Frequenz-Leistungs-Kennlinie zumindest abschnittsweise zu einer niedrigeren Frequenz bei gegebener Leistung geändert wird, wenn die regenerative Energiequelle die gemäß der Frequenz-Leistungs-Kennlinie der aktuellen Frequenz zugeordnete Leistung nicht erbringen kann,

Bestimmen einer Frequenz f 2 der Wechselspannung in dem Inselnetz als Folge der Veränderung der Frequenz-Leistungs-Kennlinie durch die Steuereinheit, gegebenenfalls in Verbindung mit einer Detektionseinheit, und

Neubestimmen eines Vorgabewerts der Spannungsamplitude Ü 0 und Übermittlung des neubestimmten Vorgabewertes an die Gruppe der spannungsstellenden Umrichter durch die Steuereinheit, wobei der Vorgabewert erhöht wird, wenn die bestimmte Frequenz f 2 über einer Nominalfrequenz f nom des Inselnetzes liegt, und der Vorgabewert erniedrigt wird, wenn die bestimmte Frequenz f 2 unter der Nominalfrequenz f nom des Inselnetzes liegt.

Die Last kann durch eine ohmsche Last mit einer linearen Strom-Spanungs-Kennlinie gebildet sein. Alternativ dazu kann die Last jedoch auch - wie beispielsweise im Falle eines Elektrolyseurs - eine nicht-lineare Strom-Spannungs-Kennlinie aufweisen. Die Steuereinheit kann in Form einer einzelnen separaten Steuereinheit vorliegen. Alternativ dazu kann sie jedoch auch auf mehrere Steuereinheiten verteilt sein. Die einzelne oder die mehreren Steuereinheiten können dabei ausschließlich für die Durchführung des erfindungsgemäßen Verfahrens vorgesehen sein. Es liegt jedoch im Rahmen der Erfindung, dass die Steuereinheit auch andere Steuerungsaufgaben, beispielsweise Aufgaben im Rahmen einer Betriebssteuerung eines Umrichters, übernehmen kann. Konkret kann die Steuereinheit auch auf mehrere Umrichter verteilt vorliegen, und dort insbesondere jeweils als Teil der Steuerung der einzelnen Umrichters ausgebildet sein. Für diesen Fall kann die Steuerung eines bestimmten Umrichters als Master und die der anderen Umrichter als Slave operieren. Das Verändern der Frequenz-Leistungs-Kennlinie kann bei mehreren Spannungsstellenden Umrichtern durch die Steuereinheit koordiniert werden. Alternativ kann es jedoch auch ohne Koordination der einzelnen Umrichter untereinander, quasi autark in jedem einzelnen Umrichter, ablaufen.

Im Gegensatz zu einem öffentlichen Energieverteilungsnetz ist in dem Inselnetz die Spannungsamplitude Ü 0 der Wechselspannung nicht konstant, sondern durch die Steuereinheit variierbar. Die variable Spannungsamplitude Ü 0 wird im Rahmen des Verfahrens gerade zur Anpassung einer von der Last verbrauchten Leistung P Las t genutzt. Jeder der an das Inselnetz angeschlossenen Spannungsstellenden Umrichter in Verbindung mit der eingangsseitig angeschlossenen Energiequelle überprüft, ob er mehr als eine aktuell erzeugte Leistung liefern kann. Hierzu wird zunächst seine Frequenz-Leistungs-Kennlinie zumindest abschnittsweise zu einer höheren Frequenz bei gleicher Leistung verschoben. Im Falle mehrerer Umrichter verschieben sich hierdurch Arbeitspunkte aller Umrichter untereinander so, dass der Umrichter, dessen Frequenz-Leistung-Kennlinie zu einer höheren Frequenz verschoben wurde, sofern dessen Energiequelle über eine höhere Leistung verfügt, eine höhere Leistung liefert, während die anderen Umrichter entsprechend ihrer Frequenz-Leistungs-Kennlinie etwas weniger Leistung beitragen. Es ergibt sich eine zunächst noch unveränderte Gesamtleistung, jedoch mit anderen Teilleistungen der einzelnen Umrichter. Allerdings wird die Gesamtleistung nun bei einer höheren Frequenz in dem Inselnetz transportiert. Die höhere Frequenz wird über die Steuereinheit, gegebenenfalls mithilfe einer Detektionseinheit gemessen und als Signal interpretiert, dass mehr Leistung an die Last transportiert werden kann. Um den Leistungsverbrauch der Last zu erhöhen, wird den Umrichtern durch die Steuereinheit ein neuer Vorgabewert der Spannungsamplitude Ü 0 übermittelt. Indem die Umrichter nun eine Wechselspannung mit einer höheren Spannungsamplitude Ü 0 stellen, vergrößert sich die von der Last verbrauchte Leistung. Kann der Umrichter in Verbindung mit der angeschlossenen Energiequelle die gemäß ihrer Frequenz-Leistungs-Kennlinie nicht stabil erbringen, so wird dies, beispielsweise durch Leistungsmessungen am Eingang und am Ausgang des Umrichters, oder durch eine Detektion einer Spannung über einem dem Umrichter zugeordneten Gleichspannungszwischenkreis erkannt. In Reaktion darauf wird die Frequenz-Leistungs- Kennlinie des betreffenden Umrichters zumindest abschnittsweise zu einer geringeren Frequenz bei gleicher Leistung verschoben. Hierdurch verringert sich auch die über den Umrichter fließende Leistung, während die anderen Umrichter eine etwas höhere Leistung liefern, so, dass zunächst eine unveränderte Gesamtleistung aber mit unterschiedlichen Teilleistungen der einzelnen Umrichter geliefert wird. Die Gesamtleistung wird jedoch mit einer geringeren Frequenz in dem Inselnetz transportiert. Ähnlich wie schon vorher wird nun die geringere Frequenz von der Steuereinheit detektiert und als Signal zur Verringerung der von der Last verbrauchten Leistung interpretiert. Entsprechend wird daher ein geringerer Vorgabewert der Spannungsamplitude Ü 0 an die Gruppe der Spannungsstellenden Umrichter übermittelt. Das oben am Beispiel mehrerer an das Inselnetz angeschlossener spannungsstellender Umrichter erklärte Verfahren kann auch auf einen einzelnen an das Inselnetz angeschlossenen Spannungsstellenden Umrichter übertragen werden. Als Unterschied ergibt sich lediglich, dass bei einem Einzelnen an das Inselnetz angeschlossenen Spannungsstellenden Umrichter mit dem Verändern der Frequenz-Leistung-Kennlinie nicht unmittelbar eine Veränderung der über den Umrichter fließenden Leistung einhergeht. Vielmehr ändert diese sich erst, wenn die Steuereinheit aufgrund einer sich durch die Kennlinienveränderung unmittelbar ergebenden Frequenzänderung dem einzelnen Umrichter einen neuen Vorgabewert für die Spannungsamplitude Ü 0 übermittelt.

Das Verfahren nutzt innerhalb des Inselnetzes eine AC Kopplung zwischen dem zumindest einen Energieerzeuger und der Last. Eine AC-Übertragungsstrecke ist - insbesondere unter Berücksichtigung der Entfernung zwischen den Energiequellen und der Last - im Allgemeinen deutlich preisgünstiger als eine entsprechend auszulegende DC-Übertragungsstrecke. In vielen Fällen kann sogar eine ohnehin vorhandene AC-Übertragungsstrecke im Rahmen des Verfahrens genutzt werden. Indem nun erfindungsgemäß die regenerativen Energiequellen im Verbindung mit den Umrichtern als Netzbildner operieren, kann auf das Vorhalten von Energiespeichern oder Dieselgeneratoren als Netzbildner verzichtet werden. Hierdurch lässt sich der Aufwand sowohl in der Anschaffung wie auch dem Betrieb des Inselnetzes minimieren.

In einer vorteilhaften Ausführungsform des Verfahrens wird vor der Erhöhung des Vorgabewertes der Spannungsamplitude Ü 0 überprüft, ob die über den zumindest einen Umrichter fließende Leistung P a , P eine Leistungsgrenze P m ax,a, max,b des entsprechenden Umrichters (9a, 9b) überschreitet oder zu überschreiten droht. Alternativ oder kumulativ wird überprüft, ob ein Verbrauch P Las t der Last einen maximal zulässigen Verbrauch P m ax,i_ast der Last überschreitet oder zu überschreiten droht. Nach der/den Überprüfungen erfolgt eine Erhöhung des Vorgabewertes der Spannungsamplitude Ü 0 nur dann, wenn die Überprüfung signalisiert, dass auch mit erhöhtem Vorgabewert der Spannungsamplitude Ü 0 ein Überschreiten der Leistungsgrenze P m ax,a, max,b des entsprechenden Umrichters bzw. des maximal zulässigen Verbrauchs P m ax,i_ast der Last ausgeschlossen ist. Hierdurch lässt sich eine Übersteuerung des zumindest einen Umrichters und/oder der Last im Vorfeld vermeiden.

In einer Ausführungsform erfolgt eine Überprüfung, ob die regenerative Energiequelle die gemäß der Frequenz-Leistungs-Kennlinie der aktuellen Frequenz zugeordnete Leistung erbringen kann, derart, dass ein Spannungswert an einem dem entsprechenden Umrichter zugeordneten Gleichspannungs-Zwischenkreis gemessen wird. Auf diese Weise kann eine ohnehin am Gleichspannungszwischenkreis vorhandene Spannungsmessung für diesen Zweck genutzt werden. In diesem Fall wird dann, wenn der gemessene Spannungswert einen Spannungsschwellwert unterschreitet, durch die Unterschreitung signalisiert, dass die regenerative Energiequelle die gemäß der Frequenz-Leistungs-Kennlinie der aktuellen Frequenz zugeordnete Leistung nicht erbringen kann. Eine Nichterbringung einer der Frequenz- Leistungs-Kennlinie der aktuellen Frequenz zugeordneten Leistung muss jedoch nicht zwingend dadurch erfolgen, dass die Energiequelle nicht über diese Leistung verfügt. Vielmehr ist es auch möglich, dass der Verbund aus Energiequelle und Umrichter aufgrund eines Erreichen der Leistungsgrenze P m ax,a, Pmax.b des entsprechenden Umrichters die geforderte Leistung nicht erbringen kann. Dabei kann die Leistungsgrenze P m ax,a, Pmax,b des entsprechenden Umrichters aufgrund von - gegebenenfalls temperaturabhängigen - maximal erlaubten Strom- und/oder Spannungswerten des Umrichters ermittelt werden. In einer Ausführungsform des Verfahrens sind Werte der Leistungsgrenze P m ax,a, Pmax,b des Umrichters, der dem Umrichter zugeordneten regenerativen Energiequelle und/oder des maximal zulässigen Verbrauchs P m ax,i_ast der Last zumindest näherungsweise bekannt. In diesem Fall kann die Anpassung der von der Last zu verbrauchenden Leistung derart erfolgen, dass die über den zumindest einen Umrichter fließende Leistung P a , P b um mindestens einen vorgegebenen Toleranzwert unterhalb der Leistungsgrenze P m ax,a, Pmax,b des entsprechenden Umrichters und/oder der dem Umrichter zugeordneten regenerativen Energiequelle liegt. Alternativ oder kumulativ dazu kann die Anpassung der von der Last zu verbrauchenden Leistung derart erfolgen, dass ein Verbrauch PLast der Last um mindestens einen vorgegebenen Toleranzwert unterhalb des maximal zulässigen Verbrauchs P m ax,i_ast der Last liegt. Auf diese Weise kann stets eine gewisse positive Regelreserve von den Energieerzeugern aus Umrichter und Energiequelle vorgehalten werden. Hierdurch kann ausgeschlossen werden, dass ein Energieerzeuger aufgrund einer Veränderung der Frequenz-Leistung-Kennlinie eines anderen Umrichters in einen Zustand manövriert wird, bei dem der Energieerzeuger die erforderliche Leistung nicht erbringen kann. Das Verfahren wird hierdurch besonders robust. in einer Ausführungsform des Verfahrens weist die Veränderung der Frequenz-Leistungs- Kennlinie eine Parallelverschiebung zumindest eines Abschnittes der Frequenz-Leistungs- Kennlinie in Richtung der Frequenz-Achse auf. Dabei kann die Frequenz-Leistungs-Kennlinie prinzipiell durch eine beliebige - vorteilhafterweise monotone - Funktion gebildet werden. Es liegt im Rahmen der Erfindung, dass die Frequenz-Leistungs-Kennlinie zumindest in einem Abschnitt durch eine Gerade beschrieben wird. In diesem Fall kann die Veränderung der Frequenz-Leistungs-Kennlinie eine Änderung der Geradensteigung in dem betreffenden Abschnitt aufweisen.

In einer Ausführungsform des Verfahrens beinhaltet die Gruppe nicht nur einen, sondern eine Mehrzahl von Spannungsstellenden Umrichtern, die jeweils zur Umwandlung von Leistung angeschlossener regenerativer Energiequellen in AC-Leistung entsprechend einer Frequenz- Leistung-Kennlinie eingerichtet sind, wobei das Verändern der Frequenz-Leistungs-Kennlinie in Abhängigkeit der verfügbaren Leistung der dem Umrichter zugeordneten Energiequelle für jeden einzelnen der Umrichter erfolgt. Dabei kann das Verändern der Frequenz-Leistungs- Kennlinie - zum Beispiel durch die Steuereinheit - in koordinierter Art und Weise bei den mehreren Umrichtern innerhalb der Gruppe erfolgen. Dies ist jedoch nicht zwingend, und kann auch unkoordiniert untereinander, quasi autark innerhalb jedes einzelnen Umrichters, erfolgen. Hierdurch können die Aufgaben der Steuereinheit minimiert werden, wodurch diese preisgünstiger wird.

In einer vorteilhaften Variante des Verfahrens werden die Schritte zur Anpassung der von der Last zu verbrauchenden Leistung P Las t wiederholt durchlaufen, um eine zeitliche Änderung einer maximal verfügbaren Leistung der regenerativen Energiequelle, oder eine Leistungsgrenze Pmax,a, Pmax.b des entsprechenden Umrichters zeitlich zu verfolgen.

Ein erfindungsgemäßes Inselnetz umfasst

eine Gruppe aus zumindest einem einen DC/AC-Wandler aufweisenden Spannungsstellenden Umrichter, dessen Eingang an eine regenerative Energiequelle und dessen Ausgang an eine AC-Leitung des Inselnetzes angeschlossen ist. Dabei ist der Umrichter ausgelegt, eine Wechselspannung in dem Inselnetz in Abhängigkeit einer dem Umrichter zugeordneten Frequenz-Leistungs-Kennlinie zu stellen. Das Inselnetz umfasst weiterhin

eine Last, deren Leistungsverbrauch von einer Spannungsamplitude Ü 0 der Wechselspannung in dem Inselnetz abhängig ist,

eine Steuereinheit zur Steuerung der Gruppe des zumindest einen spannungsstellenden Umrichters, die ausgelegt ist, der Gruppe einen Vorgabewert der Spannungsamplitude Ü 0 für die Wechselspannung des Inselnetzes zu übermitteln, und

eine mit der Steuereinheit verbundenen Detektionseinheit zur Bestimmung einer Frequenz f 2 der Wechselspannung in dem Inselnetz. Dabei ist die Steuereinheit in Verbindung mit der Gruppe des zumindest einen Umrichters und der an den Umrichter angeschlossenen regenerativen Energiequelle zur Durchführung des erfindungsgemäßen Verfahrens ausgelegt. Es ergeben sich die bereits im Zusammenhang mit dem Verfahren erläuterten Vorteile.

In einer Ausführungsform des Inselnetzes ist zumindest ein Umrichter der Gruppe in Verbindung mit der an den Umrichter angeschlossenen regenerativen Energiequelle als eine Photovoltaik (PV) - Anlage, oder als eine Windkraft - Anlage ausgebildet. Prinzipiell können die Umrichter jedoch auch mit anderen regenerativen Energiequellen verbunden werden. So kann die Verbindung des Umrichters mit der Energiequelle auch eine Wasserkraftanlage oder eine Gezeiten kraftan läge ausbilden.

In einer vorteilhaften Ausführungsform weist das Inselnetz eine Hochspannungs- Übertragungsstrecke mit einer Hochspannungsleitung auf, die über einen Transformator an die AC-Leitung des Inselnetzes angeschlossen ist. Vorteilhafterweise ist die Hochspannungs- Übertragungsstrecke an jedem ihrer zwei Enden über einen Transformator an die AC-Leitung des Inselnetzes angeschlossen, so dass sie die Gruppe der spannungsstellenden Umrichter inklusive der daran angeschlossenen regenerativen Energiequellen mit der Last verbindet. Durch die Hochspannungs-Übertragungsstrecke lässt sich eine gegebene elektrische Leistung durch geringeren Materialaufwand an Verkabelung transportieren. Die zusätzlich erforderlichen Transformatoren werden ab einer gewissen Entfernung zwischen Energieerzeuger und Last durch den geringeren Materialaufwand bei der Verkabelung überkompensiert und dadurch amortisiert.

Die Last in dem Inselnetz kann durch eine AC-Last gebildet werden. In einer Ausführungsform des Inselnetzes ist die Last jedoch als eine Gleichstromlast, insbesondere als ein Elektrolyseur, ausgebildet. Dabei ist die Gleichstromlast / der Elektrolyseur über einen AC/DC-Wandler an die AC-Leitung des Inselnetzes angeschlossen. Sofern das Inselnetz eine Hochspannungs- Übertragungsstrecke aufweist, ist die Gleichspannungslast / der Elektrolyseur über einen Transformator an die Hochspannungsleitung des Inselnetzes angeschlossen. Das Inselnetz kann in einer Ausführungsform eine Speichereinheit aufweisen, die über einen bidirektional betreibbaren DC/AC-Wandler an die AC-Leitung des Inselnetzes angeschlossen ist. Hierzu muss der bidirektional betreibbare DC/AC-Wandler nicht zwingend ein spannungsstellender DC/AC-Wandler sein. Vielmehr ist es ausreichend, wenn der DC/AC-Wandler stromstellend ausgebildet ist.

KURZBESCHREIBUNG DER FIGUREN

Im Folgenden wird die Erfindung anhand in den Figuren dargestellter bevorzugter Ausführungsbeispiele weiter erläutert und beschrieben.

Fig. 1 zeigt eine Ausführungsform eines erfindungsgemäßen Inselnetzes;

Fig. 2 zeigt ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen

Verfahrens;

Fig. 3a & 3b zeigt eine Ausführungsform des Verfahrens, bei dem das Verändern der

Frequenz-Leistung-Kennlinie über eine Verschiebung parallel zur Frequenzachse erfolgt; und

Fig. 4a & 4b zeigt eine weitere Ausführungsform des Verfahrens, bei dem die Frequenz- Leistung-Kennlinie durch eine Gerade beschrieben wird, und das Verändern der Frequenz-Leistung-Kennlinie über eine Änderung der Geradensteigung erfolgt.

FIGURENBESCHREIBUNG

In Fig. 1 ist eine Ausführungsform des erfindungsgemäßen Inselnetzes 1 dargestellt. Das Inselnetz 1 weist zwei Energieerzeuger 2a, 2b auf, die an eine AC-Leitung 7 des Inselnetzes 1 angeschlossen sind. Jeder der Energieerzeuger 2a, 2b ist in Form einer Photovoltaik (PV) - Anlage mit einem Photovoltaik (PV) - Generator 10a, 10b als Energiequelle 3a, 3b und einem daran angeschlossenen Spannungsstellenden Umrichter 9a, 9b ausgebildet. Der Umrichter 9a, 9b ist jeweils ausgelegt, eine Wechselspannung gemäß einer in dem jeweiligen Umrichter 9a, 9b hinterlegten Frequenz-Leistung-Kennlinie zu stellen. Hierzu weist jeder der Umrichter 9a, 9b einen DC/AC-Wandler 8a, 8b auf. Das Inselnetz 1 beinhaltet ferner eine Last 6 in Form einer Gleichstromlast 14, beispielsweise eines Elektrolyseurs, die/der über einen AC/DC-Wandler 4 mit der AC Leitung 7 des Inselnetzes 1 verbunden ist. Das Inselnetz 1 weist weiterhin eine Hochspannungsleitung 17 auf, die über Transformatoren 19 an die AC-Leitung 7 angeschlossen ist. Eine Steuereinheit 1 1 zur Steuerung der Spannungsstellenden Umrichter 9a, 9b ist mit diesen über gestrichelt illustrierte Steuer- und Kommunikationsverbindungen 12 verbunden, über die die Steuereinheit 1 1 der Gruppe der Umrichter 9a, 9b auch den Vorgabewert der Spannungsamplitude Ü 0 übermittelt. Weiterhin ist die Steuereinheit 1 1 über gestrichelt dargestellte Steuer- und Kommunikationsverbindungen 13 mit einer Detektionseinheit 18 zur Detektion einer Frequenz f 2 und optional einer Spannungsamplitude Ü 0 einer Wechselspannung in dem Inselnetz 1 verbunden. Über diese Steuer- und Kommunikationsverbindung 13 erfolgt auch die Steuerung der Detektionseinheit 18 und der Last 6.

Beispielhaft ist in Fig. 1 eine Gruppe von zwei Energieerzeugern 2a, 2b dargestellt. Die Gruppe kann jedoch auch lediglich einen Energieerzeuger, oder mehr als zwei Energieerzeuger beinhalten. Dem DC/AC-Wandler 8a, 8b jedes Umrichters 9a, 9b kann ein DC/DC-Wandler, insbesondere ein Hochsetzsteller (in Fig. 1 nicht dargestellt) vorgeschaltet sein. Das Inselnetz 1 ist exemplarisch dreiphasig dargestellt, was schematisch durch die drei Querstriche innerhalb der Hochspannungsleitung 17 illustriert ist. Es liegt jedoch im Rahmen der Erfindung, dass das Inselnetz 1 auch eine andere Anzahl an Phasenleitern aufweisen kann. Weiterhin ist ein Energiespeicher in Form einer Batterie 15 über einen bidirektional betreibbaren stromstellenden AC/DC-Wandler 16 an die AC-Leitung 7 des Inselnetzes 1 angeschlossen. Der Energiespeicher in Verbindung mit dem AC/DC-Wandler 16 ermöglicht es, kurzzeitige Schwankungen in der Leistung der regenerativen Energiequellen 3a, 3b abzupuffern, ohne zwingend die Spannungsamplitude Ü 0 der Wechselspannung und damit die von der Last verbrauchte Leistung anzupassen. Das kann insbesondere für eine träge reagierende Last 6 vorteilhaft sein. Der Energiespeicher und auch der damit verbundene bidirektionale AC/DC-Wandler 16 stellen jedoch nur optionale Komponenten des erfindungsgemäßen Inselnetzes dar, deren Existenz nicht zwingend erforderlich ist.

Fig. 2 zeigt ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens zum Betrieb des Inselnetzes 1 aus Fig. 1. Das Verfahren startet ausgehend von einem stabilen Arbeitspunkt aller Umrichter 9a, 9b und der daran angeschlossenen Energiequellen 3a, 3b, bei der die regenerativen Energiequellen 3a, 3b in der Lage sind, die gemäß der in den Umrichtern 9a, 9b hinterlegten Frequenz-Leistungs-Kennlinie der Nominalfrequenz f n0 m zugeordneten Leistungen zu erbringen. Die Wechselspannung in dem Inselnetz 1 weist zunächst die Spannungsamplitude Ü 0 und die Nominalfrequenz f n0 m auf. In einem ersten Schritt S1 wird nun die Frequenz-Leistungs-Kennlinie eines Umrichters 9a der Gruppe der spannungsstellenden Umrichter 9a, 9b zu einer höheren Frequenz bei gleicher Leistung verschoben, um zu überprüfen, ob die dem Umrichter 9a zugeordnete Energiequelle 3a über eine größere als die aktuelle Leistung verfügt. Das Verschieben der Frequenz-Leistungs-Kennlinie des einen Umrichters 9a zu einer höheren Frequenz bei gleicher Leistung führt dazu, dass der entsprechende Umrichter 9a zumindest kurzzeitig eine höhere Leistung liefert, während der andere Umrichter 9b entsprechend weniger Leistung liefert. Es verändert sich somit zumindest kurzzeitig eine Leistungsverteilung P a / P der beiden Umrichter 9a, 9b bei zunächst gleicher Gesamtleistung P a + P b . In dem Schritt S2 wird überprüft, ob die Energiequelle 3a des einen Umrichters 9a über die gemäß seiner Frequenz-Leistungs-Kennlinie der geänderten Frequenz zugeordnete höhere Leistung verfügt, mit anderen Worten: ob es sich bei dem geänderten Arbeitspunkt um einen stabilen Arbeitspunkt handelt. Die Überprüfung kann beispielsweise durch eine Detektion einer Spannung an einem dem Umrichter 9a zugeordneten Gleichspannungs-Zwischenkreis erfolgen. Sofern die Spannung an den Gleichspannungs- Zwischenkreis zusammenbricht und einen Schwellwert unterschreitet, geht das Verfahren davon aus, dass die Energiequelle 3a nicht über die entsprechende Leistung verfügt. Der Arbeitspunkt des Energieerzeugers 2a aus Energiequelle 3a und Umrichter 9a ist nicht stabil und das Verfahren verzweigt zum Schritt S3, bei dem die Frequenz-Leistungs-Kennlinie zu einer kleineren Frequenz bei gleicher Leistung P a verschoben wird. Wieder wird im Schritt S2 überprüft, ob nun ein stabiler Arbeitspunkt des einen Umrichters 9a und der daran angeschlossenen Energiequelle 3a vorliegt. Die Schleife der Verfahrensschritte S2 und S3 wird so lange durchlaufen, bis der Arbeitspunkt stabil bleibt, das heißt die Spannung über dem dem einen Umrichter 9a zugeordneten Gleichspannungs-Zwischenkreis nicht zusammenbricht und insbesondere einen Schwellwert nicht unterschreitet. In diesem Fall geht das Verfahren davon aus, dass ein stabiler Arbeitspunkt vorliegt und das Verfahren verzweigt zum Schritt S4, bei dem die Frequenz f 2 der Wechselspannung in dem Inselnetz 1 detektiert wird. In dem folgenden Schritt S5 wird über einen Vergleich der detektierten Frequenz f 2 mit der Nominalfrequenz f nom überprüft, ob die detektierte Frequenz f 2 größer als die, kleiner als die oder gleich der Nominalfrequenz f nom der Wechselspannung ist. Ist die detektierte Frequenz f 2 größer als die Nominalfrequenz f nom , so wird in einem Schritt S6 der Vorgabewert der Spannungsamplitude Ü 0 durch die Steuereinheit 1 1 vergrößert. Ist hingegen die detektierte Frequenz f 2 geringer als die Nominalfrequenz f nom , so wird in dem Schritt S7 der Vorgabewert der Spannungsamplitude Ü 0 verkleinert. Für den Fall, dass die detektierte Frequenz f 2 gleich der Nominalfrequenz f n0 m ist, bleibt in dem Schritt S8 der Vorgabewert der Spannungsamplitude Ü 0 unverändert bestehen. Schließlich wird in dem Schritt S9 der aktualisierte Vorgabewert der Spannungsamplitude Ü 0 der Gruppe der Umrichter 9a, 9b von der Steuereinheit 1 1 übermittelt. Durch diesen Schritt wird die Gesamtleistung P a +Pb und somit die von der Last zu verbrauchende Leistung P Las t in dem Inselnetz 1 variiert. Wie im Zusammenhang mit den Figuren 3a und 3b bzw. den Figuren 4a und 4b erklärt wird, wird hierdurch gleichzeitig die Frequenz f 2 der Nominalfrequenz f n0 m angenähert. Bei Schritt S9 endet das Verfahren und kann später beginnend mit Schritt S1 erneut ausgeführt werden. Das am Beispiel des einen Umrichters 9a beschriebene Verfahren läuft bevorzugt zeitlich parallel, aber unabhängig voneinander in jedem der beiden Umrichter 9a, 9b ab. Auf diese Weise wird eine zeitliche Änderung der maximal verfügbaren Leistung beider Energieerzeuger 2a, 2b verfolgt und die von der Last 6 verbrauchte Leistung P Las t wird so nachgeregelt, dass stets möglichst die maximal verfügbare Leistung beider Energieerzeuger P a +P erzeugt und abgegriffen wird.

In Fig. 3a und Fig. 3b ist eine Ausführungsform des Verfahrens dargestellt, bei dem das Verändern der Frequenz-Leistung-Kennlinie 20a des einen Umrichters 9a über eine Verschiebung parallel zur Frequenzachse f a erfolgt. Beispielhaft ist die Frequenz-Leistungs- Kennlinie 20a, 20b beider Umrichter 9a, 9b in Form von Geraden dargestellt. Alternativ dazu kann jede der Frequenz-Leistungs-Kennlinien 20a, 20b jedoch auch durch eine andere monoton fallende Funktion beschrieben werden. In einem ersten Zustand 25 befinden sich die Umrichter 9a, 9b des Inselnetzes 1 innerhalb des Frequenz-Leistungs-Diagrammes an einem Arbeitspunkt 23, der durch einen Schnittpunkt der beiden Frequenz-Leistungs-Kennlinien 20a 20b bestimmt wird. Die Wechselspannung des Inselnetzes 1 weist in dem ersten Zustand 25 die Nominalfrequenz f n0 m und die Spannungsamplitude Ü 0 auf. In dem ersten Zustand 25 liefert der eine Umrichter 9a eine Leistung P a 2 5 und der andere Umrichter eine Leistung P b ,25- Beide Leistungen P a 2 5, Pt>,25 wie auch deren Summe ist in den Figuren 2a und 3b schematisch skizziert. Es wird nun die Frequenz-Leistungs-Kennlinien 20a des einen Umrichters 9a parallel zur Frequenzachse zu einer höheren Frequenz bei gleicher Leistung verschoben. Die Verschiebung um den Betrag Af 0 a ist in den Figuren 3a und 3b ebenfalls durch einen Pfeil gekennzeichnet. Nach der Verschiebung ergibt sich für den Umrichter 9a eine neue Frequenz-Leistungs-Kennlinien 20a, die in den Figuren 3a und 3b; strich-punktiert dargestellt ist. Die veränderte Frequenz-Leistungs-Kennlinien 20a weist einen neuen Schnittpunkt mit der Frequenz-Leistungs-Kennlinie 20b des anderen Umrichters 9b auf. Dieser neue Schnittpunkt definiert einen neuen Arbeitspunkt 23, der in einem auf den ersten Zustand 25 folgenden zweiten Zustand 26 angenommen wird. In dem zweiten Zustand 26 haben sich die Leistungen P a ,26, Pb,26 der einzelnen Umrichter 9a, 9b, jedoch noch nicht deren Gesamtleistung P ges ,26= P a ,26 + Pb,26 geändert. Die geänderten Leistungen P a 2 6, Pb,26 der einzelnen Umrichter 9a, 9b, wie auch deren Gesamtleistung P ges ,26 in dem zweiten Zustand 26 sind in den Figuren 3a und 3b durch Pfeile schematisch illustriert. Obwohl die Gesamtleistung P ges ,26 im zweiten Zustand 26 gleich der Gesamtleistung P ges ,25 im ersten Zustand 25 ist, wird in dem zweiten Zustand 26 die Gesamtleistung P ges , 2 6 nun bei einer im Vergleich zur Nominalfrequenz f n0 m höheren Frequenz f 2 innerhalb des Inselnetzes 1 transportiert. Die geänderte Frequenz f 2 des zweiten Zustandes 26 wird durch die Steuereinheit 1 1 in Verbindung mit der Detektionseinheit 18 gemessen. Aus der höheren Frequenz f 2 wird geschlossen, dass die Gruppe der Umrichter 9a, 9b in Verbindung mit den angeschlossenen Energiequellen 3a, 3b über eine höhere als die aktuelle Gesamtleistung ges,26 verfügen. In Reaktion darauf wird der Vorgabewert der Spannungsamplitude Ü 0 in dem Inselnetz 1 durch die Steuereinheit 1 1 vergrößert. Der vergrößerte Vorgabewert wird der Gruppe der Umrichter 9a, 9b durch die Steuereinheit 1 1 übermittelt, wodurch sich die Gesamtleistung der Gruppe der Umrichter 9a, 9b in einem auf den zweiten Zustand 26 folgenden dritten Zustand 27 vergrößert. In dem dritten Zustand 27 ergibt sich der gemeinsame Arbeitspunkt 23 der Umrichter 9a, 9b wieder aus dem Schnittpunkt der beiden Frequenz-Leistungs-Kennlinien 20a, 20b. Aus Figur 3b ist ersichtlich, dass der gemeinsame Arbeitspunkt 23 im dritten Zustand 27 wieder die Nominalfrequenz f n0 m der Wechselspannung in dem Inselnetz 1 aufweist. Allerdings haben sich die Frequenz-Leistungs-Diagramme beider Umrichter 9a, 9b voneinander entfernt, was einer vergrößerten Gesamtleistung beider Umrichter 9a, 9b entspricht. Der dritte Zustand 27 ist mit den entsprechenden Leistungen P a,27 , Pt.,27 der einzelnen Umrichter 9a, 9b, sowie der sich ergebenden Gesamtleistung P ges ,27 in Fig. 3b dargestellt.

In den Fig. 3a und 3b ist lediglich eine Veränderung schematisch skizziert. Die dargestellte Veränderung wird nach gewissen Zeiten, vorteilhafterweise regelmäßig wiederholt, so, dass eine zeitliche Änderung der jeweilig zur Verfügung stehenden Leistung des zumindest einen Energieerzeugers 2a umfassend den zumindest einen Umrichter 9a und die an diesen angeschlossene Energiequelle 3a verfolgt wird. Des Weiteren erfolgt die oben am Beispiel des Umrichters 9a beschriebene Veränderung der Frequenz-Leistungs-Kennlinie 20a zeitlich parallel auch für den anderen Umrichter 9b, wobei auch dessen Frequenz-Leistungs-Kennlinie 20b entsprechend verändert wird. Hierbei meint zeitlich parallel nicht, dass jeder Teilschritt des Verfahrens zu gleichen Zeitpunkten in den einzelnen Umrichtern abläuft. Vielmehr bedeutet zeitlich parallel hier, dass die Verfahrensschritte in Summe zeitlich parallel in beiden Umrichtern 9a, 9b ablaufen, ohne, dass dabei einzelne Verfahrensschritte stets zeitgleich in beiden Umrichtern 9a, 9b erfolgen müssen. Somit wird auch für den jeweils anderen Umrichter 9b in Verbindung mit der an ihn angeschlossenen Energiequelle 2b eine zeitliche Änderung der jeweilig zur Verfügung stehenden Leistung verfolgt. Auf diese Weise wird die von der Last 6 verbrauchte Leistung P Las t stets einer jeweilig zur Verfügung stehenden Leistung P ges = P a + P der Gruppe der Umrichter 9a, 9b nachgeführt. In den Fig. 3a und 3b wird die Gesamtleistung Pges durch eine Verschiebung der Frequenz-Leistungs-Kennlinien 20a, 20b zu einer höheren Frequenz bei gegebener Leistung vergrößert. Analog dazu erfolgt eine Verringerung der Gesamtleistung P ges dadurch, dass die Frequenz-Leistungs-Kennlinien 20a, 20b zu einer niedrigeren Frequenz bei gegebener Leistung verschoben werden.

In Fig. 4a und Fig. 4b ist eine zweite Ausführungsform des Verfahrens schematisch dargestellt. Die in den Figuren 4a und 4b dargestellten Graphiken gleichen in vielen Merkmalen den bereits in den Figuren 3a und 3b dargestellten Diagrammen, weswegen zur Erläuterung dieser Merkmale auf die Figurenbeschreibung der Figuren 3a und 3b verwiesen wird. Im Folgenden werden daher hauptsächlich die Unterschiede der Figuren 4a und 4b zu den bereits beschriebenen Figuren 3a und 3b erläutert.

Analog zur Fig. 3a sind in Fig. 4a die den jeweiligen Umrichtern 9a, 9b zugeordneten Frequenz- Leistungs-Kennlinien 20a, 20b in zwei nebeneinander stehenden f(P) Diagrammen dargestellt. Beide Frequenz-Leistungs-Kennlinien 20a, 20b sind jeweils in Form einer Geraden ausgebildet. Jeder der Frequenz-Leistungs-Kennlinien 20a, 20b ist eine individuelle geraden Steigung a a , a b zugeordnet. In einem ersten Zustand 25 ergibt sich ein gemeinsamer Arbeitspunkt 23 der beiden Spannungsstellenden Umrichter 9a, 9b aus dem Schnittpunkt der beiden Frequenz- Leistungs-Kennlinien 20a, 20b. Im Gegensatz zu der Ausführungsform der Figuren 3a und 3b wird nun jedoch die Frequenz-Leistungs-Kennlinie 20a des einen Umrichters 9a nicht über eine Verschiebung parallel zur Frequenzachse, sondern über eine Änderung (hier: Vergrößerung) der Geradensteigung a a umgesetzt. Auch auf diese Weise ergibt sich in einem auf den ersten Zustand 25 folgenden zweiten Zustand 26 ein neuer Arbeitspunkt 23 der beiden Umrichter 9a, 9b bei zunächst noch relativ zum ersten Zustand 25 unveränderter Gesamtleistung P ges,26 = P ges ,25 mit P ges ,25 = P a ,25 + b,25 bzw. P ges , 26 = P a ,26 + b,26- Auch hier ist der Arbeitspunkt 23 in dem zweiten Zustand 26 durch eine oberhalb der Nominalfrequenz f nom liegende Frequenz f 2 der Wechselspannung des Inselnetzes 1 gekennzeichnet. Die Frequenz f 2 wird über die Steuereinheit 1 1 gegebenenfalls in Verbindung mit der Detektionseinheit 18 gemessen und mit der Nominalfrequenz f n0 m verglichen. Da in dem Beispiel die gemessene Frequenz f 2 oberhalb der Nominalfrequenz f n0 m liegt, wird dies interpretiert, dass mehr als die aktuell durch die Energieerzeuger 2a, 2b erzeugte Leistung P ges ,26 = P a ,26 + Pt>,26 verfügbar ist. Entsprechend wird dann der Gruppe der Umrichter 9a, 9b durch die Steuereinheit 1 1 ein neuer Vorgabewert der Spannungsamplitude Ü 0 übermittelt. In dem die Umrichter 9a, 9b nun eine Wechselspannung mit einer größeren Spannungsamplitude Ü 0 stellen, vergrößert sich auch die von der Last 6 verbrauchte Leistung P Las t und die beiden Diagramme vergrößern ihren Abstand zueinander, wie in Fig. 4b dargestellt. Dabei ergibt sich in dem auf den zweiten Zustand 26 folgenden dritten Zustand 27 ein Arbeitspunkt 23, der wieder die Nominalfrequenz f n0 m der Wechselspannung des Inselnetzes 1 aufweist. Allerdings hat sich die im dritten Zustand 27 von dem einen Umrichter 9a in Verbindung mit der angeschlossenen Energiequelle 3a gelieferte Leistung P a 2 7 - und damit auch die Gesamtleistung P ges ,27 = P a ,27 + Pt>,27 - relativ zum ersten 25 beziehungsweise zum zweiten Zustand 26 vergrößert.

Die Erfindung kann in äquivalenter Weise ebenfalls mit einer den Umrichtern zugeordneten monoton steigenden Frequenz-Leistungs-Kennlinie ausgeführt werden, wobei die Spannungsamplitude Ü 0 dann bei Überschreiten der Nominalfrequenz f n0 m abgesenkt und bei Unterschreiten erhöht wird. Entsprechend wird dann auch die Kennlinie abschnittsweise zu niedrigeren Frequenzen verschoben, um die Verfügbarkeit einer höheren Leistung zu überprüfen, beziehungsweise wird die Kennlinie abschnittsweise zu höheren Frequenzen verschoben, wenn die der Kennlinie zugeordnete Leistung nicht erbracht werden kann. Diese Variante soll als äquivalente Ausführung der Erfindung und nicht als nicht beanspruchte Alternative verstanden werden. Zur Verbesserung der Verständlichkeit und Knappheit der Ansprüche und der Beschreibung wurde allerdings nur die dem Wortlaut der Ansprüche entsprechende Variante näher erläutert.

BEZUGSZEICHENLISTE

1 Inselnetz

2a, 2b Energieerzeuger

3a, 3b Energiequelle

4 AC/DC-Wandler

5 DC-Leitung

6 Last

7 AC-Leitung

8a, 8b DC/AC-Wandler

9a, 9b Umrichter

0a, 10b Photovoltaik (PV) - Generator

1 1 Steuereinheit

12 Steuer- und Kommunikationsverbindung

13 Steuer- und Kommunikationsverbindung

14 Gleichstromlast

15 Batterie

16 DC/AC-Wandler

17 Hochspannungsleitung

18 Detektionseinheit

19 Transformator

0a, 20b Frequenz-Leistungs-Kennlinie

23 Arbeitspunkt

, 26, 27 Zustand

S1 - S8 Verfahrensschritt